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ABSTRACT. Given a sequence XI, X
2

X of m-dependent random variables withn

moments of order 3+ (0<<I), we give an Edgeworth expansion of the distribution of

-I 2 2So (S-- XI+ X2+...+ X ES under the assumption that E[exp(itSo )] is smalln’
away from the origin. The result is of the best possible order.

KEY WORDS AND PHRASES. Edgeworth Expansion, m-dependent, Berry-Esseen bound, CentraZ

Limit Theorem.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. P60F05, $60G50

I. INTRODUCTION.

A sequence of random variables (r.v.) XI, X
2

X is said to be m-dependentn

if for each i.<j.<n-m-1 the two sequences (Xi)i.<j and (Xi)i>j+m are independent. Let

2XI+...+X ES2 A Berry-Esseen bound of the exact order for the distributionS n’

-I
of So has been obtained by V.V. Shergin [I] under the assumption of existence of

moments of order 2+ (0<<I).

The purpose of this work is to establish an Edgeworth expansion for the

-Idistribution of So under the assumption of the existence of moments of order 3+

-I(0<<I). Provided that the characteristic function of Eexp(itSo is small away

from the origin, this bound is of the best possible order (O(n (I+)/2) in the

,tationary case). The result is stated and discussed in section 2, section 3
outlines the proof nd section 4 contains- +he various estimates needed.
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2. MAIN RESULT AND DISCUSSION.

Let (t) and (t) be the distribution and density function respectively of a

standard normal random variable. Let E(S3)0 -3,

and

then

L (m+1)2 3 3, 2+o-3-e 3/o- 11 EIXjI_. M (m+l) Z EIXjI..
j .<n j .<n

N o-5EIXj 3E(X<)
THEOREM 1. There exists an universal constant K such that if we set

A M L2+ N log3/2L-1+ exp -(MK)-I+ L ep -(LK) -2

-I -I A-ISup {IE exp(itSo )I, (KL) < Itl <

Sup IP(So-1< t) (t) 3/6 (1-t2)v(t)I <. K(A+6A-I).
taR

To see what fs the order of A, let us specialize to the case when we have a

n
sequence (Xj) such that

2
ES

2
where S Z X In this case >stationary

n n n i" n

BYrd, where B is some constant, so we get M of the order n
-(I+)/2

L of the order

-I/2 -5/2n and N of the order n So, in A, the main term is M (or the main terms are

2
L and M if I). So, provided 6 is small enough the bound given by theorem A is

-(I+)/2
of order n the best possible order.

Theorem A gives a first order expansion, but it is clear that the same type of

methods will apply for higher order expansion, though the computation becomes rather

complex.

3. METHODS.

We first suppose m=1. We will use the following estimate, proved by the author

in [2], using ideas of V.V. Shergln:

LEMMA I. There exists a universal constant K2, such that if S is a sum of m-

dependent random variables then for K21tlL < I, we have

Sup IP(So- t) (t) /6 (1-t2)(t)l 24A J(t)dt,
tR -I-A

where

J(t) IE exp(itS0-I) exp(-te/2)(1_i3t3/6o3)l
The integral for (K2L e20)-I It < A -I is bounded by

26A-I+ K3[ulo-3exp-(K3L)-2
for some constant K

3. Let TO= Inf(20 logl/2L-1 M-1/2)

-1IE exp(itSo )I -< (1+K21tl)Max{ exp(-t2/80), (K21tlL)-I/4 logL}. (3.1)

We shall use Esseen smoothing inequality,

-I

(3.2)

(3.3)



EDGEWORTH EXPENSION FOR A SUM RANDOM VARIABLES 565

< Itl < (2L eFor T
O

2o)-I we have (K21tlL)
I/4 log L_< L5, so it follows easlly

that the integral is bounded by K3(L2+exp{-(MK3)-I}).
To study J(t) for Itl =< T

O
let f(t) E exp(itS0-1).

-I -IIn order to simplify notations, we set U So and Y.= X.o We have

f’(t) E Uexp(tu). For j n and 6, let

Uj,= k-jT. Yk and let Uj,O U. So we have

f’(t) E( I Y.exp(itU)) (3.4)
:<n 3

E{ 7. Y.exp(itU
j<n

j,1

7. Y (exp(it(U-Uj ))-1)exp(itUj 2
j=<n J

7. Y.(exp(it(U-Uj 1)-1)(exp(it(Uj I-Uj 2)-1)exp(itUj 3j -_<n J

7. 7. Y. II (exp(it(Uj -Uj +I ))-l)exp(itUj
r=2,3,4 j-<n 30=<<r ,r+l

j<nT Y,o 0<_-<511 (exp(it(Uj,-Uj,+1)-1)exp(itUj,6)
Except for the last term, the last exponential in each term is independent of the

first part of the term. The first term has expectation zero. For the second and

third, we expand the expectation of the first part, then replace E(exp(itUj,k)),
(k=2,3), by E(exp(itU)), modulo a perturbation. We use several time the estimate

(3.1) for these computations. The last two terms are bounded more directly. The

result is a relation of the type

f’(t) (-t/2-iut3/6 R(t))f(t) H(t)

where R(t) and H(t) are small. Integration of this relation yield the needed

estimate for f(t).

The method just described has been used in the stationary case by A.N.

Tikhomirov [3]. It does not seem possible to extend his method directly to the

general case. However, the estimate (3.1) made this possible. It should be noted

that the method used to obtain (3.1) does not seem to extend to establish theorem A.

4. ESTIMATES.

We shall use the fact that for xeR, lep(x)-l I1
Ir,(.x)- -1 -: Ixl + lexp(x) -1 ix x2/21 < Ixl 2+’

Let aj E(Yjexp(it(U-Uj,I ))-I ). Then the above formula give

aj=-tE(Yj(U-Uj,I)) (it2/2) E (Yj(U-Uj,I)2) (4.1)

t
2+( R!(t)

J

1(t)l < EIYj(U-Uj,where )l 2+e Let

bj= iE(Yj (exp( it(U-Uj, )-I (exp( it (Uj, I-Uj ,2
))-i)).
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Then

where

b -it2E(Yj(U-Uj,I)(Uj,I-Uj,2 )) +Itl
2/ R2(t) (4.2)

j J

To prove theorem A, we can as well assume L -_< 10-3 for otherwise by taking

K > 106 the inequality will be automatically satisfied. Then, for each j, we have

EIYjl
2 < (EIYjI3) 2/3 < L2/3 <. i0-2.

From l-dependence, for j.<n, <=4, we have

E U2. E U2- Z E
2 +

Z E Y
j, ik_jl< Yk

k:j--1
kYk+1"

(this assumes +I <= <- n--1; the proof of the estimate below is slmllar in the

other cases) .%o finally E U
2 => I/2 By using (3.1) where t is changed in tEU
j, j,,

we get that for 8K21tlL < I, we have

for each j and <4, IE exp(itUj,) < a(t) (4.3)

where

We have

so we get

a(t) (1+K21t l)Max{exp(-t2/320), (8K2tL)
-I/4 log L}.

exp(itU)-exp(itUj ,2 (exp(it(U-Uj, 2))-1)exp(itUj,3
+ (exp(it(U-Uj,2))-1)(exp(it(Uj,2-Uj,3))-1)(exp(itUj,4))

(exp( it(U-Uj ,2))-I (exp( it(Uj ,2-Uj, 3))-I
(exp(it(Uj, 3-Uj, 4 ))-I (exp(itUj,5))

(4.4)

E(exp(itU)-exp(itUj ,2
(4.5)

< t2a(t){E(U-Uj,2)2+ EIU-Uj,211Uj,2-Uj,31}

t3EIU-Uj ,211Uj ,2-Uj, 311Uj, 3-Uj, 4

It should be noted that if one uses at this point the cruder estimate

IE exp(itUj,3) < I, the order of the bound obtained in the stationary case drops

from O(I/n) to O(logl/2n/n). In a similar but simpler way, we get

IE(exp(itU)-exp(itUj,3) .< te{E(U-Uj,3)2+ EIU-Uj,311Uj,3-Uj,41}.
The expectation of the term in (3.4) obtained for r=2 is bounded by

tZ+ea(t) EIYj(U-Uj,I)(Uj,I-Uj,2)IIUj,2-Uj,3 I.Hi(t)
The expectation of the terms obtained for r--3 and 4 is similarly bounded by 2H 1(t)
and 4H 1(t) respectively using the fact that lexp(itZ)-11 2 for all Z. Finally the

expectation of the last term is bounded by

E IYj (U-Uj, )(Uj, I-Uj ,2)IE IUj, 3-Uj, 4 IIj, 4-Uj, 5 I"
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It remains to comb,he these estimates. y 1-depndence, we have

and similarly,

So, from (3.4) we get,

where IN(t) <

and

7. E Yj(U-Uj, I) 7. E YjU E U
2

J J

I (EY (U-Uj )2+
j 2EYj (U-Uj, )(Uj, 1-Uj ,2

E EY.U
2

EU 3
U.

j

f’(t) (-t-iut?/2 t3R(t))f(t)

(1+t4)a(t)H2(t) (1+t5)H3(t)
7. R 1(t) R2(t)

J JJ

IH2(t)l < 7. EIYj(U-U )IE((U-Uj 12+
j

j,2 ,2

7 E EIYj(U-Uj I)(Uj I-Uj 2)IIUj 2-Uj 3 I
H3(t) _<- 7. EIYj(U-Uj I)IEIU-Uj 211Uj 2-Uj 311Uj 3-Uj 41

7. EIYj(U-Uj I)(U-Uj 2)IE((U-Uj 3)2+ IU-Uj 311Uj 3-Uj 41
2 7. EIYj(U-Uj )(Uj -Uj )IEIUj IIU

j
,I ,I ,2 ,3-Uj,4 j,4-Uj,5

Now using (4.3) and the c -inequality of [4],r

R 1(t) < 7. EIYjlIU-U 12+sj
j

j,1

< 7. (E IYjI3+e)I/(3+el(EIU-Uj iI 3+)
j

(7. EIYjlZ+a)I/(3+)(7. EIU-Uj 13+)
J J

.< K4M.
Similar computations give

1/(3+(,)

I/(3+)

(4.6)

I(t)l s K5M, IH2(t)l K5M, IH3(t)l K5N.
t3a(t)H2(t) (1+t5)H4(t). We now assume t.>O, the case t<O is similar.Let H(t)

From (4.6), we get f(t) G(t)f1(t) where

t

f1(t) exp(-t2/2 it3/6 u3R(u)du)
0

t u
and G(t) H(u)exp(u2/2 iu3/6- s3R(s)ds)du.

O 0

So we have f(t) f1(t) f2(t) where

t t

f2(t) H(u)exp(-t2/2 u2/2 s3R(s)ds)du. (4.7)
0 0
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We have 2M

Hence

I/OT
0

.< I. S) for t .< T
O we have

t

lJ’ s3R(s)dsl =< (t2-u2
u

2 2)(t 2+ u )K5M/4 -< t2/4 u /4.

t

lf2(t)] --< H(u)exp(-t2/4 u2/4) du.
0

(4.8)

1/2L-IWe can also assume that L is sma]l enough so that 80K2L log for

otherwise by taking K lage enough, theorem A will be automatically satsried. But for

we have exp(-t2/320) > L400/320 and

(8KeltlL)-I/4 log L < L-2 so we have a(t) < (I/K lt)exp(-t2/320) It follows then

easily from (4.8) that

If2(t)l <- K6{M(1+t2)e-t2/320+ (1+t4)N} (4.9)

On the other hand,

If1(t) exp(-t2/2)(1.ipt3/6)l

=< exp(-t2/2) l{exp(iut3/6 -I -it3/6}I
lexp(-t2/2 iptB/6)(exp(K5t4M I)I.

Since t=<T
0

and, as already used, we can then suppose K5t2M < t2/4.

We get, using the fact that le-a-e-b =< Ib-alexp(-inf(a,b)),

If1(t) exp(-te/2)(1+it3/6)l (4-I0)

.< exp(_t2/4)(eKst4M P2t6).
3We have U EU Z EYIYjYk. Considering that EY.= O for each j, and that the

,j ,k<n

variables are l-dependent, EYiYjYk is zero unless there is an with i,j,k E{, E+I,

To
J(t)dt6+2}. It follows easily that EU 3 .< K

7
Y. EIYil 3 < KTL. Estimation of -T

o

using (4.9) and (4.10) gives the result in the case of l-dependence.

We reduce the case of m-dependence to l-dependence by using the standard

blocking argument. If X X
2

X is a m-dependent sequence, for j< [n/m] we set
n

and we set for jm < n,

jm
Z.= l X.
O i=(j-1)m+1

m
Z T. X..
n,m+1

i=jm+1

The (Zj) are l-dependent; we apply the bound of theorem A to the Z., then compute

the moments of the Z. in function of the moments of the . using the c -inequality.
j r
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