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ABSTRACT. Given a sequence Xl' X2,..., Xn of m-dependent random variables with
moments of order 3+a (0<as1), we give an Edgeworth expansion of the distribution of
80_1 (S= X1+ Xz*...+ Xn’ 02 = Esz) under the assumption that E[exp(itSo’)] is small

away from the origin. The result is of the best possible order.
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1. INTRODUCTION.

A sequence of random variables (r.v.) X X Xn is said to be m-dependent

1°? 20ty

. et
if for each isjsn-m-1 the two sequences (xi)iSj and (xi)i>j+m are independent. Let

S = X1+...+Xn, 02= ESZ. A Berry-Esseen bound of the exact order for the distribution

of So_1 has been obtained by V.V. Shergin [1] under the assumption of existence of
moments of order 2+a (0<as1).

The purpose of this work is to establish an Edgeworth expansion for the
distribution of So-l, under the assumption of the existence of moments of order 3+a

(0<as1). Provided that the characteristic function of Eexp(itSo-1) is small away

-(1+a)/2) in the

from the origin, this bound is of the best possible order (0(n
stationary case). The result is stated and discussed in section 2, section 3

nutlines the proof ind section 4 contains *he various estimates needed.
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2. MAIN RESULT AND DISCUSSION.
Let ¢(t) and ¥(t) be the distribution and density function respectively of a

standard normal random variable. Let u = E(S3)o-3,

L= 1o} M- % Blx, "%,
Jjsn Jsn
- 2
N= I 0 5E|xj|3E(x;)
|i-k[s12m
THEOREM 1. There exists an universal constant K such that if we set
A =M+ L2+ N log3/2L.—1+ exp -(MK)‘1* L exp -(L.K)_2
and
§ = Sup (|E exp(itSo )|, (kL) '< lt] <A™y
then

sup [P(so” s t) - a(t) - u3/6 (1-c2)w(t)| s K(avsa™).
teR
To see what is the order of A, let us specialize to the case when we have a
2 2 n
stationary sequence (X,) such that o = ES* +» », where S = £ X.. In this case o >
J n n n (=1 i n

B/F. where B is some constant, so we get M of the order n-(1*°)/2, L of the order

n_1/2, and N of the order n-5/2. So, in A, the main term is M (or the main terms are

L2 and M if a = 1). So, provided § is small enough the bound given by theorem A is

of order n-(1+a)/2

,» the best possible order.

Theorem A gives a first order expansion, but it is clear that the same type of
methods will apply for higher order expansion, though the computation becomes rather
complex.

3. METHODS.

We first suppose m=1. We will use the following estimate, proved by the author

in [2], using ideas of V.V. Shergin:

LEMMA 1. There exists a universal constant K2. such that if S is a sum of m-

dependent random variables then for K2|t|L < 1, we have

|E exp(itSo™ )| s (14K, |t|Max{ exp(-t/80), (K |t|L)™"/" 198Ly (3.1)
We shall use Esseen smoothing inequality,
-1
-1 2 A
Sup [P(So 'S t) - @(t) - w6 (1-t)¥(t)| s 24A + J(t)dt, (3.2)
teR -1
-A
where
J(t) = |E exp(itSo ') - exp(-t2/2)(1-iu3t3/603)|. (3.3)

The integral for (KL e°)7's |t| < 47" is bounded by

26871+ K3|u|o'3exp~(K3L)’2

for some constant K3. Let To= Inf (20 1081/2L-1, M-1/2).
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20,-1 -1/4 log L 5

< L7, so it follows easily

For Ty s |t| £ (¢ L e"7) ', we have (K,[t|L)

that the integral is bounded by K3(L2+exp{~(MK3)-1}).

To study J(t) for |t| S T,, let f(t) = E exp(itSo ).

In order to simplify notations, we set U = So_1 and Yi= X 0-1. We have

i
f'(t) = i E Uexp(itu). For 1 £ 3 <nand 1 £ 56, let

U, ,= T Y and let U, = U. So we have
J»e X k 3,0

£1(t) =1 E( ¢ Yjexp(itU)) (3.4)

jsn
i E{ © Y.,exp(itU
jsn J i

+ .Z Y.(exp(it(U-Uj.1))—1)exp(itUj'z)
jsn

+ .E Yj(exp(it(U-Uj'1)-1)(exp(it(Uj'
jsn

+ L I Y, I (exp(it(U

r=2,3,4 jsn J osesr

+ Y, n (exp(it (U,
jsn I osess J

)

)-1)exp(itu, .)

17,2 3.3

))-1)exp(itU )

3,075, 01 o+

U )=1)exp(itU

LT, .6) }

J

Except for the last term, the last exponential in each term is independent of the
first part of the term. The first term has expectation zero. For the second and

third, we expand the expectation of the first part, then replace E:(exp(it.UJ k)).
’

(k=2,3), by E(exp(itU)), modulo a perturbation. We use several time the estimate
(3.1) for these computations. The last two terms are bounded more directly. The

result is a relation of the type

£1(t) = (~t/2 -iut3/6 + R(t))F(L) + H(t)

where R(t) and H(t) are small. Integration of this relation yield the needed
estimate for f(t).

The method just described has been used in the stationary case by A.N.
Tikhomirov [3]. It does not seem possible to extend his method directly to the
general case. However, the estimate (3.1) made this possible. It should be noted
that the method used to obtain (3.1) does not seem to extend to establish theorem A.
4. ESTIMATES.

We shall use the fact that for xeR, |exp(ix)-1] s |x|®,

lexp(ix) -1 - ix| < |x|"*®, Jexp(ix) -1 - 1x + x°/2| s |x|2*.

Let aj =1 E(Yjexp(it(U-Uj 1))-1). Then the above formula give

2

a.= -tE(Y, (U-U, )7) (4.1)
J J

)) - (it?/2) E (Y, (U-U,
3 1 j ,

J

’

2+a 1
+ R.(t
t J( )

1 2+a
where le(t)| < E]YJ(U-Uj,1)] . Let

bj= 1E(Yj(exp(it(U-Uj’1))-1)(exp(it(Uj’1-Uj’2))-1)).
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Then

- -1t? - - 2+a g2 u.2
b it E(YJ(U Uj'1)(UJ'1 uj,z)) +|t] Rj(t) (4.2)

where
2 a a
R S E(|Y.||U-U U-U. (|u-u + |U-U, )).
RJCe)] s By o=y [lu-uy o] Cu-ug |% [u-u) o]
To prove theorem A, we can as well assume L < 10-3 for otherwise by taking
K 2 106, the inequality will be automatically satisfied. Then, for each j, we have

E|Yj|2 < (E|YJ|3)2/3 s 1273 <1072,

From 1-dependence, for jsn, %<4, we have

2 2 2 Ik
E U7 = EU- I E Yk - I E YkYk+1'
3 | k=32 k=j-2-1
{this assumes 2+1 € j € n-2-1; the proof of the estimate below is similar in the

other cases). So finally E U? lz 1/2. By using (3.1), where t is changed in tEUJ e’

we get that for 8K2|t|L < 1, we have

for each j and %54, |E exp(itUJ'l)l < a(t) (4.3)
where
a(t) = (1+K,|t] Max(exp(-t2/320), (8K, eL) /% 28 Ly, (4.4)
We have
exp(itU)-exp(itUJ ) = (exp(it(U- U )) 1)exp(1tUj 3)
+ (exp(it(U- Yy 2))- 1)(exp(1t(U -UJ,3))-1)(exp(itUJ'u))
+ (exp(it(u- U )) 1)(exp(1t(UJ 2-Uj 3))-1)
(exp(lt(U 3 j u)) 1)(exp(1tU ))
so we get
|E(exp(itU)-exp(itUJ’2)| (b.5)

st a(t){E(U—U ) + E|U-U 2|[UJ'Z-UJ,3|}

+ t E{U-U U -U U, ,-U .
| j,2|| j.2 J.3" 3.3 J."I
It should be noted that if one uses at this point the cruder estimate

|E exp(itUJ 3)| £ 1, the order of the bound obtained in the stationary case drops
’

/2

from 0(1/n) to 0(log1 n/n). In a similar but simpler way, we get

|E(exp(1tU)-exp(itU Pl st 2 (e (u- Uy ) + Efu-uy 3||Uj,3'”j,u|}'

The expectation of the term in (3.") obtained for r=2 is bounded by

Hy(£) = t3*%(t) E|Y,(u-u B

U

3,005,470 5,279,31%

The expectation of the terms obtained for r=3 and 4 is similarly bounded by 2H1(t)
and RH1(t) respectively using the fact that |exp(itZ)-1| § 2 for all Z. Finally the
expectation of the last term is bounded by

2|t|5 E|Yj(U-Uj ) -U. )|E|U

y17773,0 3.3 J “'lUJ ¥ J 5I
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It remains %o comb.ne these estimates. Ry 1-depndence, we have
2

I E Yj(U-Uj’1) = L E YJU =EU =1
J J
and similarly,
- 2 2 - -
§ (EYJ(U uj'1) + _EYJ(U Uj’])(UJ,1 UJ'Q)
= L EY.U2 = EU3 = U.
s J
J
So, from (3.4) we get,
£1(t) = (~t-iut>/> + t3R(£))F(L) (4.6)

+ (eehaleimy(e) (1+t5)H3(t),

wnere |R(t)] s @ RI(t) + R%(L),
j 3 J
and [H(t)] € T E|Y_(U-U, ))|E((U-U )2+ ju-u. J|Ju. 5-u; o]
2 3 J J,2 3,2 J,2'73,2 75,3
a
+ 7 § E[YJ(U-Uj'1)(Uj’1-UJ'2)||UJ,2-Uj'3|
Ha(t) < § Ele(U-Uj’1)IEIU-UJ'ZI|Uj’2-Uj'3|]Uj,3-Uj'u|

+ § EJY (U-uy

+ 2 L E|]Y (U-U, U,
j l J( 3'1)( Js1

Now using (4.3) and the cr-inequality of [4],

2
)(U-Uj’z)lE((U-U )+ |U-Uj'3||U.

33 35,37Y5,0)

V5,21 EIV; 5705 1Yy 0y sl -

1 2+a

IR 2 -U,

; j(t) s § FIYJIIU UJ'1|

ST (R |Y
J

s (z |y, |33 (5 gy-y /G
j J 3 J»

3+a,1/(3+a)
P

+a,1/(3+a)
(Efu-y, |33

s KNM'

Similar computations give
[R(E)| s KM, [Hy(e) | S KM, ]H3(t)| S KN,

Let H(t) = t3a(t)H2(t) + (1+t5)Hu(t). We now assume t20, the case t<0 is similar.

From (4.6), we get f(t) = G(t)f1(t) where

2 3 b3
fI(t) = exp(-t~/2 - iut”/6 + I u~R(u)du)
0
t 2 3 43
and G(t) = 1 + [ H(uwexp(u®/2 + iyu>/6 - | s°R(s)ds)du.
0 0

So we have f(t) = f1(t) + f2(t) , wWhere

t 5 5 t
£,(t) = [ H(wexp(-t/2 + u“/2 + [ s’R(s)ds)du. (4.7)
0 0
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We have 2M1/2T0 £1. So for t £ TO' we have
¢ 3 2_2 2 2 2 2
[[ s7R(s)as| s (£%-u") (% uIK MU < t5/U - u/u.
u
Hence
¢ 2 2
[f,()] < ] H(wexp(-t“/4 + u“/4) du. (4.8)
- 0

172, -1 -8

We can also assume that L is small enough so that 80K_L log L S e for

2
otherwise by taking K lage enough, theorem A will be automatically saisfied. But for

1/2L-1 400/320

|t] s Ty = 20 log we have exp(—t2/320) 2 L and

-1/4 1 -
%8 L <172, so we have a(t) s (1+KP|t|)exp(-t2/320). It follows then

(8K2|t|L)
easily from (4.8) that

2
Tt/320, (e (4.9)

2
[£,(E)] < KgM(1+t%)e
On the other hand,

|r1(t) - exp(-t2/2)(1+iut3/6)|

< exp(-t%/2) |(exp(int3/6 -1 -1t3/6}]

+ lexp(-t%/2 + 1ut3/6) (expligt'm) - 1)].

Since tSTO and, as already used, we can then suppose K5t2M < :2/u.
We get, using the fact that |e_a-e_b| < |b-a|exp(-inf(a,b)),
£, () = exp(-t%/2)(1+1t3/6) | (4-10)
ES exp(-tz/u)(ekst"M + uzté).
We have yu = EU3 = I EYinYk. Considering that EYja 0 for each j, and that the

i,j,ksn
variables are 1-dependent, EYiYJYk is zero unless there is an % with i,j,k e{f, 2+1,

T
L. Estimation of [ 7 J(t)dt

g+2}. It follows easily that EUS s K, I ElYi|3 $K
)

7

using (4.9) and (4.10) gives the result in the case of 1-dependence.
We reduce the case of m-dependence to 1-dependence by using the standard

blocking argument. If X1, X2,..., Xn is a m-dependent sequence, for jS [n/m], we set
jm
Z,.= T Xi
I i=(3-1)m1
and we set for jm < n,
m
Z = L X..
mm e me

The (ZJ) are l1-dependent; we apply the bound of theorem A to the Zj' then compute

the moments of the Zj in function of the moments of the Xi using the cr-inequality.
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