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ABSTRACT. The points of Gateaux and Fréchet differentiability in Lm(u,x) are
obtained, where (f,Z,u) 1is a finite measure space and X 1s a real Banach
space. An application of these results is given to the space B(Ll(uJR),X) of
all bounded linear operators from Ll(u,&o into X .
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1. INTRODUCTION.

Let m be the restriction of Lebesgue measure to [0,1] and Lm(m,ko the
Banach space of all measurable, essentially bounded, real-valued functions on
[0,1] , equipped with the norm “f” = ess sup {|f(t)|: t € [0,1]} (as usual,
identifying functions that agree a.e. on [0,1]) .

In [4], Mazur proved that given any f € L_(m,r) , f # O , there exists a
g € L (m,ix) such that

f+ rgll - jIf

lim k

A0

does not exist. In other words, the closed unit ball in Lw(m,&o has no smooth
points.

In this note, we show that an analogous result holds for Lm(u,x) , the space
of u-measurable, essentially bounded functions, whose values lie in a Banach space
X - provided that the underlying measure space (Q,Z,u) 1is non-atomic. We then obtain
a complete description of the smooth points of L_(u,X) in the general case.
We show, in fact, that f 1is a smooth point of Lm(u,x) if and only if f
achieves its norm on a unique atom for 1y , and its (p-a.e. constant) value on

this atom is a smooth point of X .
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An application of this result is given to the space of all bounded linear
operators from Ll(u,EO into a Banach space X , when X has the andon-Nikodfm

property with respect to p .

2. PRELIMINARIES

Throughout this note, X denotes a real Banach space with dual X* . A point
*
x € X {0} is a smooth point of X if there exists a unique ¢ € X with
ll$|, = 1 such that ¢(x) = ||x|| - The norm function on X 1is Gateaux differentiable

at non-zero x € X if there exists a ¢ € X* such that

nm[ﬂx__"'Ll;IL.'_ﬂﬁu - ¢m)| =0 (*)
A0

for all h € X . The functional ¢ 1is the Gateaux derivative of the norm at

x € X . Mazur, [4], has shown that the following are equivalent:
(i) x 1is a smooth point of X .
(ii) 1lim M“—'—M exists for all h € X
A0
(iii) the norm function on X is Gateaux differentiable at x .

The norm function on X 1is Frechet differentiable, at a non-zero x € X ,

if there exists a ¢ € X* such that

3 | - - .
PSS IS TG I ()
|In]|~0 (IRl
Of course, Fréchet differentiability at a point implies Gateaux differentiability
at the point.
Let (R,Z,u) denote a finite measure space. A mapping f: € -+ X 1is called

p- measurable (or strongly measurable) if

(i) f-l(V) € L for each open set Vg X, and
(ii) f 1is essentially separably valued; that is, there exists a set N € L
with p(N) = 0 , and a countable set H ¢ X , such that f(Q~N) ¢ H.

The Lebesgue-Bochner function space Lw(u,x) is the real vector space of all

p— measurable, essentially bounded, X-valued functions defined on Q . Lw(u,X) is
a real Banach space when equipped with the norm

[[£]] = ess sup {[jf(w)||: w € @} (as usual, identifying functions which agree

u - a.e.) .

A set A €L is an atom for the measure u if and only if u(A) >0, and
for any B € L , with B < A , either p(B) = 0 or u(B) = u(A) . The measure
space (Q,Z,u) 1is called non-atomic if there are no atoms for u in I , and
purely atomic if Q can be expressed as a union of atoms for u . We will write
Q= PC U Qd , with Qc, Qd € ©r , for the (essentially unique) decomposition of Q
into its non-atomic and purely atomic parts. Since u 1is a finite measure, there
exists an at most countable pairwise disjoint collection {Ai : 1 eI} of atoms
for p such that Qd = ! Ai . We note that if A is an atom for u and

iel
feL (u,X) , then f is constant u - a.e. on A , and this constant is called

the essential value of f on A .



ESSENTIAL SUPREMUM NORM DIFFERENTIABILITY 435

If Xl, XZ’ ey Xn are Banach spaces, and 1 < p < = , then the Yp - product
(kl ) X2 D ee. b Xn)p is the product space Xl x X2 X .. X Xn equipped with the
norm
(s xs ween x| = QP+ Yo P+ e + [ PP
1 72 > “a'llp 1 L] n

for 1 <p <=, and

"(xl, Xos eren xn)“°° = max (“xlh,“xzu, ey ”xn“)

for p =« .
We will need the following lemmas in the discussion of the smooth points of

L (b,X) .

LEMMA 2.1: If X, X, o.o,
a smooth point of (Xl ) X2 D . D Xn)m if and only if there exists a jo N
1

Xn are Banach spaces, then (xl, Xyy e xn) is

_ jO <n , such that

(1) hijH > ix Il for 3 # 34, and

(ii) x, is a smooth point of X, .
Jo 0

LEMMA 2.2: Let X be a Banach space, and (Q,Z,u) a finite measure space.
If (Qd,Ed,ud) and (Qc,Zc,uc) are the purely atomic and non-atomic measure spaces,
respectively, in the decomposition of Q; then Lm(u,x) is isometrically isomorphic
to (Lw(ud.x) D L‘,,,(uc,x))m .

The proof of the second lemma is routine, while the proof of the first lemma
usis thi fact that* (Xl b X2 D .. D Xn): is isometrically isomorphic to
(XléB XZEB e D xn)l , see [3] .

The next two lemmas are straightforward generalizations of results in Kothe [2],

we sketch the proof of the first lemma.

LEMMA 2.3: Let X be a Banach space and let Em(X) denote the space of
bounded sequences in X with the supremum norm. If x = {xn}n>1 e (X),x#0,
then x 1is a smooth point of & (X) If and only if there exists a positive integer

n such that

0
1) “x“o" > sup {“xnh :nfny}, and
(ii) X is a smooth point of X .
0
PROOF.
Let x = {xn}n;l € £ _(X) be a smooth point, we may assume that lix|| = ::g “xn“ =1
I1f there exists a subsequence {xn }k>l such that lim “xn =1, we can demonstrate

k -- ko k
*
the existence of distinct elements of nw(x) which support the unit ball at x , by
the following modification of the argument given in Kothe [2] for lm(uo .

We consider the disjoint sequences {X“Zj}ji} and (xnzj-l}jil . For each
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* .
j>1, let 4 and Z be elements of X such that h¢j“ = “¢ju =1 with

a(x ) =lx || and y.(x ) = |ix li -
3 My M2 3 Pay-1 "24-1
i d . (X) b = and ¥.(y) = v ( )
Define ¢j an Wj on ¢ (X) by ¢j(y) ¢j(yn2j) vj(y WJ yan—l
*
= { > : Y 9 d

for all vy 1yn)nzl € 2 (X) and j > 1 ; then ¢j, i €4 (X) an
“¢j“ = “th =1 forall j>1.

Let ¢ and Y be w#*-accumulation points of the sequences {¢'}j>l and
{‘j}j>1 respectively, then by construction we have || = j[4j| = 1 and b7 ¢, but
®(x) = ¥(x) = 1 = ||x|| . This contradicts the fact that x is a smooth point of

£ (X) . Thus, we have shown that if is a smooth point of & (X) , then

x = {xn]qzl

Tim hxn“ < “xh , and therefore there must exist a positive integer n_  such that
n->«

0
“xn Jl = lixli -+ If there exists another integer m, # ng with Nxmon = |Ixjl » let
¢ , € X* with “¢“ = hw“ =1 and ¢(x_ ) = Y(x_) = “xl . Now define
n, ™

*
¢, ver(X) by oy = ¢(yno) and ¥(y) w(ymo) for y = {yn)nil € (X),

then ¢ and VY are distinct support functionals to the ball in zm(x) at x .

Again, a contradiction. We have established that if x 1is a smooth point of

zw(x) , then (i) must hold. A similar argument shows that (ii) must hold as well.
Conversely, if x = {xn}n>1 € zm(x) and (i) and (ii) hold, then for any

y = (yn}nil €2 (X) ,y#0, wehave [x+ iy[|= “x“o + Ayno“ for all A € R

satisfying |A] < H%H(hx“ - sup{|lx_[| : n # nj}) . Therefore,

Ix +y |l = lix |l
n n n
1*m X + A ! - A=l 1im 0 AO 0
A0 A0

which exists by (ii); thus, x 1is a smooth point of zw(x) . This completes the proof

of the lemma.

An argument similar to the above gives the following:

LEMMA 2.4: Let (Q,Z,u) be a finite measure space which is purely non-atomic,

and let X be a real Banach space, then Lm(u,x) has no smooth points.

3. MAIN RESULT

In this section, we characterize the smooth points of the space Lm(u,x) .

THEOREM 3.1: Let (Q,Z,u) be a finite measure space, X a Banach space, and
fe Lm(u,x) with f # 0 ; then f is a smooth point of Lm(u,x) if and only if
there exists an atom Ao for u such that

(i) “fn > ess sup 4”f(w)" T w€E QN AO} , and
(ii) xO is a smooth point of X , where x is the essential value of f on

0
AO .
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PROOF.

Suppose f € Lw(u,x) , £f#0, 1is a smooth point of Lm(u,x) , then Lemma 2.4
implies that ¥ contains at least one atom for u . Let Q = Qc U Qd be the
decomposition of @ into its non-atomic and purely atomic parts. Since, by Lemma 2.2,
Lm(u,x) is isometrically isomorphic to (Lm(uc,x) D Lw(“d’x))w , then Lemma 2.1
and the fact that f is a smooth point of Lw(u,X) imply that either

1°. “f|Q || > ess sup {|[f(w)] : we Qd} , and

C

£l is a smooth point of L _(u_,X)

Q
c
or

2°. ”fl”d“ > ess sup {|[f(w)] : w e ﬂc} , and

f|v is a smooth point of Lw(ud,X) .

Now, case 1° is ruled cut by Lemma 2.4, since (Qc,zc,pc) is a finite ron-atomic
measure space. Therefore, “f‘w || > ess sup {J|f(w)] : w e QC} , and f|Q is a
smooth point of Lm(ud,x) a d

Let Qd = Ai , where {Ai : 1 € I} is a pairwise disjoint collection of
iel
atoms for u , since u is finite, then either 1 is finite or countably infinite. If
I is finite, then Lm(ud,X) is isometrically isomorphic to (xbefa..&sxn)w , with
Xj =X for j=1, 2, ..., n : while if I is countably infinite, then Lm(ud,x)
is isometrically isomorphic to lm(X) . In either case, it is easily seen (from
Lemma 2.1 or Lemma 2.3) that there exists an atom Ao for u with
(1) |||l > ess sup {||f(w)|| : w € 2~ Aj} , and
(ii) xo is a smooth point of X , where xo is the essential value of f
on Ao .

Conversely, suppose that f € Lm(p,X) and there exists an atom AO for p in
z such that (i) and (ii) hold. Let Wy € AD with f(mo) = X, ;s then from
(1) we have |f]| = “f(mo)“ . Let & = “f(mo)n - ess sup {||[f(w)| : wsQn AO} >0,

and let g € Lm(u,X) . If XeR with 0 < |X| < Eﬂiﬂ ; then

£ + rg@ || < IE@ i + 2] Jle@ Il < ilf@ll + X lg]l - 6

u - a.e. on Qv A0 , and hence

[[E) + Agw)| < Ilf(wo)“ + x| lell - 8

u a.e. on Qv AO

Therefore,
8
l£) + gl < [[EC)ll - 3

y - a.e. on Qn AO , whenever O - |A| < ZI;I . This implies that

§
ess sup {|[f(w) + Ag(w)|l : we @™ AO} __“f(wo)“ -2

whenever 0 - IAI < ZIZI . On the other hand,

\ \ 8
lie + el > €l = I3 ngh > Wfwll - 5
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whenever 0 < [A| < 5“%“ .

Theirefore,

if + xgll = ess sup {J[f{w) + Az(w)]| : w € Ay}
whenever 0 < [A]| < Eﬁgn .

Now, f and g are constant u - a.e. on A , so there exists an w, € A such

0 1 0
that f(w) + rg(w) = f(wo) + Ag(ml) u - a.e. on A0 ; and hence
Hf + Ag“ = “f(mo) + Ag(wl)“ when 0 - |Ai < Eﬂgﬂ . Therefore,
£+ 2 - ilf “f(“’o) + )‘g(“’l)“ - “f(wo)“
lim 3 = lim ) .
A0 A0

and the latter limit exists since f(wo) is a smooth point of X ; hence f 1is
a smooth point of Lw(u,x) . This completes the proof of the Theorem.

COROLLARY 3.2: Let (9,Z,u) be a finite measure space, X a Banach space
and f € L (u,X) with f # 0 ; then the norm function on L_(u,X) is Fréchet

differentiable at f if and only if there exists an atom A0 for p such that

(1) Jf]] > ess sup {[If(W)]| : w € Q~ Ay}, and

(ii) the norm function on X 1is Fréchet differentiable at Xy » where x0 is

the essential value of f on AO .

This follows immediately from the proof of Theorem 3.1.
4. REPRESENTABLE OPERATORS ON Ll(u,&O

If X 1is a Banach space and (Q,I,py) 1s a finite measure space, then X 1is

said to have the Radon-Nikodjﬁ property with respect to yu if and only if for every

countably additive X-valued measure m: I » X which is of bounded variation and

absolutely continuous with respect to u , there exists a g € Ll(u,x) such that
m(E) = f g(w)du(w) , for E € L .
E

A bounded linear operator T : Ll(u) -+ X 1is said to be representable if and only
if there exists a g € L_(u,X) such that

T(f) = [ £(w)g(w)du(w)
Q

for all f € Ll(v,EO .

Let B(Ll(uJH),X) denote the Banach space of all bounded linear operators from
Ll(Uyno into X . For each g € Lw(u,x) , define o(g) € B(Ll(u,no,x) by

o{g) (£) = {» f(wgwdu(w) , £ €L .
It follows from the results in Diestel and Uhl [1, p. 63], that if X has

the Radon-Nikodym property with respect to u , then o is a linear isometry of

Lw(u,X) onto B(Ll(uﬂﬁ),x) . Using this fact and Theorem 3.1 , we get the following

characterization of the points of Gateaux and Fréchet differentiability of the norm

function on B(Ll(u,&o, X) .
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THEOREM 4.1: Let X be a real Banach space and (Q,IZ,u) a finite measure
space such that X has the Radon-Nikod&m property with respect to u . Let
T € B(Ll(u,HO,X) with T # 0 . The norm function on B(Ll(ugpo,x) is Gateaux
(Fréchet) differentiable at T if and only if there exists an atom AO for u such
that 0 < u(AO) < p (4) , and

i =1 .
@ 7l A yllT o, Ol > Ty ITOgup )l 5 and
0 0 0 0
(ii) T(xA ) 1is a point of Gateaux (Fréchet) differentiability of the norm of X
0
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