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ABSTRACT. The typical Tauberian theorem asserts that a particular summability method

cannot map any divergent member of a given set of sequences into a convergent sequence.

These sets of s,quences are typically defined by an "order growth" or "gap" condition.

We establish th,lt aly conu11 space contains a bounded divergent member of such a set;

hence, such sets fail to generate Tauberian theorems for conull spaces.
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I. INTRODUCTION

In this note we establish that a broad class of Tauberian conditions that hold

for regular matrix methods cannot hold for conull methods. In particular, we consider

"gap" and "order growth" conditions and show they are not Tauberian conditions for

conull spaces.

Before proceeding with the discussion, we pause to collect some definitions and

theorems. We let

{the set of all sequences}

{x : x is finitely nonzero}

c {x : limit x 0}
o n n

c {x : limit x exists}
n n

= x : SUPnlXnl }

e (1,1,,..)

n ne the nth unit vector, o e
j=l

and, if E is a Frechet space, E’ denotes its continuous dual.

Recall that a locally convex Frechet space is FK-space if it is a vector subspace

of and the coordinate functionals are contiuous. We call an FK-space a sequence

space if it contains
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Definition: A sequence space E is (a) conservative if E- c, (b) semi-conservative

if (o
n

is weakly Cauchy, and (c) conull if (on converges weakly to e.

Clealy conull spaces are semi-conservative. It is known that a sequence space

(eE contains c if and only if I if )I for all f e E’[IJ, hence conservativeo
j=l

spaces are also semi-conservative.

;)efinition: An FK-space is pre-conull if every semi-conservative space containing it

is conul 1.

We list some well-known facts in the following two theorems. ([2], [3])

Theorem- Let E F be FK-spaces with E F (set theoretically) and A a matrix

map. Then (a) the inclusion map from E into F is continuous; (b) EA
{x e :

Axe E} is an FK-space; (c) if E is conull, F is conull; and (d) if E, E is

closed in F and F is conull, then E is conull.

Theorem: The intersection of two conull spaces is conull.

We also use a characterization of conservative conull spaces. Let r (r) be
n

be an increasin sequence of natural numbers with r I. Define

Or(x) max{Ixu Xvl r u vn n rn+l
and set

(r) {x m: limit or(x) O}

Or(x) for x e (r), then ((r), II’I r) is a con-If we define lxl Ir Ixll + SUPn n

servative conu11 space. In fact, we also have from [3]:

Theorem: Let E be conservative. E is conull if and only if E a (r) for some r.

Now we are ready to begin. Let E be an FK-space and P We say that "P
is a Tauberian condition for E" provided

(*) x e P E implies x c.

Note that (*) is the general form of a (matrix summability) Tauberian theorem. The

candidates for playing the part of P are defined as follows.

Definition: ("gap" conditions) Let s (s) be an increasing sequence of naturaln
numbers" set

G(s) {x m: (kx)
k

x
k Xk+ 0 only if k s for some n e N}.

n

Definition: ("order growth" conditions) Let (X) be a sequence of positive real

numbers such that l .
n=

6() {x e : (AX)n[ o(k )}
n

Recall that if E is the FK-space of Caesaro summable sequences and we let

(S
n

-IS satisfy limitn Sn+I/Sn and %n n then O(X) 0 and g(s) are

Tauberian conditions for E. Also, J. Fridy has shown that for any real regular matrix

A there is always an such that C(s) n [ is a Tauberian condition for the summa-
bility field of A[4].
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2. PRE-CONULL SPACES.

Our arguments hinge on two properties of pre-conull spaces: that they are neces-

sarily "large" and that pre-conullity is preserved under intersection with a conull

space. These properties are exposed in the next two lemmas.

Lemma i: If E is pre-conu[] and F is conu11, then E n F is pre-conull.

Proof: First observe that if H is a vector space containing E n F, then (E + H F)

F H. This fo||ws from noting that if y E, z H F and y + z F, then

y E F, and clearly E F + H F H.

Now suppose I is a semi-conservative space cntaining E F. Since F is

n
F II is semi-conservative (i.e., () is weakly Cauchy in F H), and consequently

E + F II is semi-cnservative. Nw E E + F n H implies that E + F n H is conull,

and since F is conull, (E + F H) n F is conull. Consequently H is also conull and

we have established the lemma.

Iemma ’2" If E is pre-conull, then (E . + c (r) n for some r. In particular,

E contains a bounded divergent sequence.

Prod)f: It is easy to check that (E oo) + c (E + c)

Since E + c is conserwtive, hence semi-conservative, and E is pre-conull, E + c

is a conservative cnull space. Consequently E + c contains an f(r) for some r and

(E ) + c !(r) .
Now E contains a bounded divergent sequence since (r) does, i.e., (r) contains

a bounded divergent sequence of the form y + z where y E and z c and y must

be divergent (otherwise, y + z c).

We aIso give a sufficient condition for a space to be pre-conu11.

Lemma 3: E is pre-conull if there is a sequence (z n) a such that z converges to e

in E and sup (Az)kl o.
k=l

Proof: This foll(ws from the fact that semi-conservative space F is conul, if (nd

only if) there is n sequence (zn) ; such that z converges to e in F and sup
n k--’l

3. THE MAIN RESULT.

Lemma 4: If (’(s), O(X) and B(X) are defined as in section l, they are all pre-eonull

spaces.

Proof: First we establish that C(s) is a pre-conull space. Observe that G(s) is a

closed subspace of m when is given the topology of coordinatewise convergence (m’s

FK-topology), hence it is an FK-space.

Now let E be any semi-conservative space containing G(s) and set

n
k s ejo k= 1, 2,

j=l
n
k

Since (o cnveres to e in G(s), it converges to e in E. Now we have that (o
n

is weakly Cauchy in E and has a subsequence which converes weakly to e, hence (o
n

is

weakly convergent to e in E. Thus F is conul], and consequently, G(s) is pre-conull.
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We now turn our attention to 5(%) and (%) Consider the natrix B (b de-
n,k

I b _-I 0 otherwise. Observe that
|’ bn,n-I -I’ n,n n-I and bn, kfined by bl,1

() B and 5(X) (Co) B
hence both are FK-spaces with the metric topology bein

v, y te orm If II maxIxI, u ]l<AxI ’ ot c. Ao ot

that, since 5() ! )(), it suffices to show that 5() is pre-conull to show that ()

is pre-conu11.

We now construct a sequence in 5() that satisfies the hypothesis of Lemma 3.

l.et (ilk) be a sequence of reals such that 0 Bk for all k e N,k=l Bk
and

-I 125]) and set

limitk %k fik 0 (this is possible by one of Abel’s results [6, p.

k-
z
n n

l(n) max(k: Z B i
I}. Note that n l(n) for all n e N. Define by z

k
i=n

k-I
n l gi for n k -< l(n) and z 0 for k l(n). It’s easy to

fr k -< n, z
k

i=n

-I n

IB max{ll k kl: n <- k l(n)}, hence limitn z e in 5().
that e

It’s als clear that (z n)
_

and l(AZn)k for all n e N, hence, by Lemma 3,

k=l
5(,) is pre-conull.

We can now show that neither 5(), () nor G(s) can generate Tauberian conditions

for a conull space.

Theorem: If E is a conull space, then 5() E, () E and G(s) E all contain

a bounded diverent sequence.

Proof: Since (), 5() and G(s) are all pre-conull, () E, 5() E and G(s) E

nre all pre-conu|l, hence each contain a bounded diverent sequence.
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