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ABSTRACT. The general diophantine equations of the second and third

degree are far from being totally solved The equations considered in

this paper are

i x2 my2 =+l

ii) x3 +my3+m2 z3 3 mxyz i

iii) Some fifth degree diophantine equations

Infinitely many solutions of each of these equations will be

stated explicitly, using the results from the ACF discussed before

It is known that the solutions of Pell’s equation are well

exploited. We include it here because we shall use a common method to

solve these three above mentioned equations and the method becomes very

simple in Pell’s equations case.

Some new third and fifth degree combinatorial identities are

derived from units in algebraic number fields.

KEY WORDS AND PHRASES. Diophantine equations, identities, an algorithm

in a complex field (abbr. ACF), units in the algebraic number fields.
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O. INTRODUCTION

In this paper we shall investigate Diophantine equations of the

second and third degree of a special type. The general equations of

the second and third degrees are far from being totally solved. It

suffices to look up Mordell’s book on Diophantine equations, to learn

how little we actually know about the general second and third degree

Diophantine equations, in spite of the many numerous results on this

subject that have been gained by great mathematicians with no little
effort. The famous Thue theorem stating that the equation

aoxn + alxn-ly + an_lxyn-1 n
+ anY c

(ai,c rational integers, i 0,I,... ,n; n> 2)
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has only a finite number of (rational) solutions is an amazing dis-

covery. It leaves open the question how to find these solutions and

what is their exact number, and one would conjecture that it will

remain open for (all) times to come.

The equations considered in this part of the paper are:

i) The equation, known (wrongly) as Pell’ s equation, namely

2 2x -my :+i,

ii) The equation x3 +my3+m2z3- 3mxyz i,

iii and

x

mv

mu

mz

my

y z u v

x y z u

my x y z

mu my x y

mz mu mv x

Infinitely many solutions of each of these equations will be stated

explicitly. Now, it is known that the solutions of Pell’s equations

is well exploited. Still, we found it necessary to include it here

because of the simple method we shall use in solving this equation

here, which has such a wide range of application in various branches

of exact sciences. Also, we will derive some new combinatorial

identities.

Since we are going to use some formulas obtained by the author in

some previous papers [1] and [2] we introduce them here

A0(0) I, A0(1) 0, A0(n+2)=A0(n) +2DA0(n+I)
I( :, i( =, A(n+2) Al(n l(n+l) (0. I)A 0) 0 A I) I "’i

+2DA

n 0,i,...

n-1A0(2n) - (2ni2-i)(2D)2n-2-2i n 1,2,
+/--.-

n-1 2n-l-i 2_n-I-2i
A 2n+l) - i )(2D) n=l,2,...

i=0

ef A + a A +... +

A0(V a(v+l) 0(v+n-l)0 ,..., A

AI(V (v+l) (v+n-l)
"’i

A(V) A (v+l) A(v+n-l)
n-l’ n-I n-I

f=l,2,...

(0.2)

(o.4)

(o.5)

a(n+3)_A0(n) +3DA0(n+I) +3D2AO(n+2) } (0.7)4o) o --o
n 0,i,...

(-1)v(n-1) (0.6)
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A(n+2) AO(n+l) + DA(0n+2)i

7-[ a A +a A +... +an_.,i=l n

Y!+Y2+Y5) y2+y Y2+2Y3A(On+3) >I yI’Y2’Y3 3 3 D
3YI +2Y2+Y3=n

n o,L,...; (8) L

A0(n+5) AO(n) + 5DAo(n+I) + 10D2ASn+2) + IODgAo(n+)
n 0,!,...

i. PELL’ S EQUATION

We denote

2 D2 /i2W +! m, w +l,

D e N, m not a perfect square.

We obZain from (0.6) with n= 2,

A0(n) A0(n+l)
A(n (n+l) (-I) (2-1)n

n 0,I,...

and from (0. I), (0.2)

A0(n) A0(n+l) Ao(n)
(n+l A0(n+2 A0(n+l0

(a n)+m n+)) -m

We have ob;aned Pe12’s equations

2 2 nxn -myn (-Z) n=0,2,...

Xn m y2
2n Z.

X2n+l A;2n+!) + DA;2n+2)
Xn+l-m Yn+I -I.

AO(n+l)
A0(n) +2DA0(n+l)

(-I)n."

Y2n+l A0(2n+2

(o.s)

(0.9)

(o. Lo)

+ 5D4A(on+4 (0.12)

(1.2)

(D2+l)(n+l)2
(1.3)

(]_. 4)

(1.6)
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Thus we have obtained infinitely many solutions of x2- my2= +i, and,

as is known from the theory of continued fractions, these are all

solutions of these two equations, the so-called plus and minus cases

of Pell’ s equations.

With (0.3), (0.4), formulas (1.5), (1.6) take the forms

n-I

X2n Z 2n-2-ii )(2D) 2n-2-2i + 1/2( 2n-l-ii )(2D) 2n-2i
i=0

n-i

Y2n 2nil-i (2D) 2-n-i-2i
i=0

2 2
X2n -mY2n =I’ n=0,1,...

n-i n

X2n+l E (2n-l-ii )(2D)2n-l-2i + E (2ni-i)(2D)2n+l-2i,
i=0 i=0

n

Y2n+l . (2ni-i)(2D)2n-2i n 0,I,
1--1

2.
X2n+l-m Y2n+l -i"

With the calculations of A(0V) from Ch. 0, we have

xo: 4>+ :-4>= ,+ ’>: o,

m ram- (Din+m) o=-tx my0

2 2 D2-(D2+I) I -ixI myI

2 2 2
x2 -mY2 (I+2D2) + (i+ 4D2 i.

x3 A(03)+ DA(04) 3D+4D3; Y3 I+4D2,
2 2 2 -i,x3 -mY3 (3D+4D3) (I+D2)(I+4D2)2

x4 1 +8D2+8D4; Y4 4D+8D3,
2 8D4) 2 1.x4 -mY4 (i +8D2+ (I+D2)(4D+8D3) 2

2. UNITS IN Q(w), w 2+i
It is clear that

e w + D (2.1)

is a unit in Q(w). For e is an integer, and e-l=w-D, an integer.

The ACF [i] of a(O)=w+D is purely periodic with length of its

primitive period $ i; hence we have from formula (0.5)
n )n A(0n) w+D)A(on+l)e (w+D + (2.2)



DIOPHANTINE EQUATIONS AND IDENTITIES 759

From (2.2) we get an interesting combinatorial identity

(w+D) 2n AO(2n) + (w+D)Ao(2n+l)
(w+D)2n A(O2n) + DA(O2n+I)+wA0(2n+l)

hence from (1.5)

(w+D) 2n =X2n + Y2n w.

With w2 D2+I m, the reader will easily verify the formulas

( i) (n-iI i12n 2n D2i+lmn-I(w+D) 2n 2i D2imn- + w.2i+Ii=0
(2.4)

From (2.3) and (2.4), and using the expressions for X2n and Y2n from

the previous paragraph, we obtain the combinatorial identities
n-1

Z (2n-2-i 2n-2-2i 1/2(2n-l-i 2n-2i
i )(2D) + i )(2D)

i=O

n

2 (i)D2i (D2+I)n-i"
i=O

n-I n-i
2n-l-i 2n-I-2i 2n )D2i+l )n-l-iE i )(2D) E (2i+i (D2+I (2.6)

i=0 i=0

(2, 5)

Similar identities are obtainable from

(w+D) 2n+l X2n+l + Y2n+l w.

3. THE CUBIC DIOPHANTINE EQUATIONS

We shall need formulas (0.6), (0.7), (0.8), (0.9) for n=3, viz.

AO(n+l) AO(n+2) AO(n+3)
A(n+l) Al(n+2) Al(n+3 i (3 i)1

A2(n+l) A(2n+2) A(2n+3)
4)_-, 4)_-4)_- o,

Ao(n+3) A0(n) + 3DA0(n+l)+ 3D2Ao(n+2)
Al(n+3) AO(n+2) + 3DAo(n+3)
A2(n+3)=A0(n+l) +3DA0(n+2)+3D2A0(n+3).

(.2)

Substituting in (3.1) the values for Al(i), A(2i), i n+3 from (3.2), we

obtain, after simple rearrangements

A0(n+l) A0(n+2) AO(n+3)
l= A(on) +3DA(0n+I A0(n+l +3DAo(n+2) A0(n+2) +3DAo(n+3)

A0(n+l )+3DA0(n )+3D2Ao(n+l AO(n )+3DA0(n+I )+3D2Ao(n+2 .n+..O1+3DA+2+3D2A(on+3)
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A(0n+l) "’0A(n+2) A0(n+3)
A(0n) A(0n+l) A(0n+2)
A(0n-l) A0(n) A(0n+l)

We now denote

0 (0 A(n+l)x=A n-l) y=A n) z=..0

n 1,2,. :.

and obtain for the above determinant

x + 3Dy + 3D2z y + 3Dz + 3D2An+3)(

A(n+2)

x y z

Subtracting from the first row the 3D multiple of the third and the

3D2 of the second, we obtain,

2-3Dx-3D2y x

y z

Y

x+3Dy+3D2z
x y z

. (5.4)

We leave it to the reader to expand the determinant in (3.4) to obtain

the Diophantine equation of the third degree as

x3 + (9D3+I )y3 + z3 + (9D3_3)xyz + 6Dx2y + 3D2x2z
3. 5

+ 12D2y2x + (9D4-3D)y2z- 3Dz2x- 6D2z2y 1.

Even for D=l, equation (3.5) has a complicated form as

x5 + lOy3 + z5 + 6xyz + 6x2y + 3x2z + 12y2x
(5. 6

+ 6y2z- 3z2x-6z2y 1.

In [2] we have calculated the solution triples AO(n) A(on+l)
An+2)," n 0,1,...

(x,y,z)- (1,O,O), (O,O,1), (0,i,3), (1,3,12),
(3,12,46), (12,46,177).

We shall check the solution

(x3,Y3,Z3) (1,3,12).

Substituting these values in (3.6), we obtain 1 + 270 + 1728 + 216 +

18 + 36 + 108 + 648 432 2592 l, 3025 3024 1.

For larger values of D and n the verification of (3.5) is only

possible by computer, and without knowing (3.3) even a computer would

have its problems.

As we shall soon see, there is a much simpler third degree

Diophantine equation which can be regarded as, and indeed in a certain

case represents, a generalization of Pell’s equation to the third

degree.
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4. UNITS IN THE CUBIC FIELD
As we have seen in [i], the ACF of the vector a (0) E3, with

D2w D e N, a (0) (w+2D w2+Dw+ ), is purely periodic with

length of primitive period Z I. Hence, by theorem 2 in [2] and

formula (0. I0)
2 D2e =w + Dw +

is a unit in Q(w), and

eV Ao(V)+ (w+2D)A0(V+I)+ (w2+Dw+D2)Ao(V+2)
v 0,1,

Thus

(4.1)

(4.2)

We shall find the field equation of the expressions (1.3) in Q(w).
We denote

xv Ao(V + A

a(v+2)ZV "’0

and have
v 2e xv + yvw + ZvW
v 2we mzv + XvW + yvw

2 v 2w e myv + mZvW + XvW
m w3 D3+I.

(4.4)

Hence

Xv Yv Zv
mzv Xv Yv i,

mYv mzv xv

since N(e) i, as the reader will easily verify.

Expanding the determinant in (4.6), we obtain

2 3X3v + mYv3 + m zv 3mXvYvZv 1

Xv,Yv,Zv from (4.4), v 0,i,

The Diophantine equation

x3 + my3 + m2z3 3m xyz 1

(4.6)

(4.7)

is indeed Pell’s equation generalized to the third dimension. It is

simpler compared with (3.6) and it has as solutions (4.4).
We shall verify formula (4.5), first line for v 1,2. We have,

from (4.4),
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z AO(5) Z.

(D2)3 + (D3+l)D3+(D3+I)2.1 3(D3+I)D2.D
D6+D6+D3+D6+2D3+1- 3D6- 3D3 l;

x2 2D+132 D2=2D+3D4,

Y2 A(03) + DAo(4) i + 3D3

z2 ao(4) 3D2.
We obtain substituting (x2,Y2,Z2) in (4.7)

i + 18D3 + 99D6 + ]’62D9 + 81D
12 3(6D3 + 33D6 + 54D9 + 27D12) 1.

We shall now extract a few interesting identities from Formula (4.3).
We have, by the binomial theorem,

(w2+Dw+O2) 3n (w2)2n-i(Dw + D2) i

i=0

3n i

i=O(3in)w6n-2i (i)(Dw)i-JD2J
j:o j

3n

i__O (Sin)w6n-2i(i)Di+Jwi-jj
j=0,1,... ,i

3n

i=O (Sin) (i0)w6n- (i+0) Di+0.
,j:o,z,... ,i

In the sum (3in)(i)w6n-(i+J)Di+Jj i=O,1,...,3n; j =O,1,... ,i; we

want to find the coefficient of powers of w3n, so that since

w3 m D3+3, this sum becomes rational.

set i+j 0(3) and obtain

(w2 D2 3n+Dw+_
5in i )w6n-3SD3S

i+j=3s i 6n
s=O,1,... ,2n
O<j<i<3n

For this purpose we have to

(4.8)

(4.8) is an appealing formula for the expression (w2+Dw+D2) 3n, though

this expression could also be calculated by the multinomial theorem.

We have, in order to illustrate its application; n=l, s=O,1,2.
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s O; i O O;
s I; i 2, j i; i 3, O O;
s 2; i 3, j 3. (i < 3).

Hence we have for the rational part of e3"

+ ()()D6 w6 + 7D3w3 + D6,
[w2+(+D2) ]3 w6+3w4(+D2) + 3we(+De)e + (+D2)3

6 D2w4w +35 +3 +3D2w4+6D3w3+
+ 3w2D4 + D3w3 + 3D4w2 + 3DSw + D6.

e rational members of this s are w6 D3w3 D6+6D3w3+ + as was cal-
culated above, with w3 m D3+1. e formula (4.8) is easily
applicable since there is no difficulty to solve the linear equations
i+O 3s.

We shall still find the rational part of e6 (w2++D2)6. By
formula (4.8), with

n= 2, s=0,1,2,3,4; i+j= 3s, j < i< 6;
s O; i j O;
s l; i 3, j 0,

i 2, j i;

s 2; i 6, j O,
i 5, O l,

4, j 2,
i 3, j 3;

s 3; i 6, j 3,
i 5, j 4;

s 4; i 6, j 6;
we obtain

2
+

12 DI2w + 50w9D3 + 141w6D6 + 50w3D9 +

4 DI2m + 50m3D3 + 141m2D6 + 50roD9 +

m D3+I w3.
We thus have the final result, viz. The rational part of e3n

(w2++D2) 3n equals

--_ in i m2n-SDS D +im-
i+j=s 6m
s=O,l,...,2n
O<_j <_iin

(4.9)
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We shall now find the coefficient of w in

3n

0 (3in)(i)w6n-(i+J)0 Di+j

j=0,1,... ,i

and demand, to this end,

6n- (i+O) 1 (mod 3),
i+j 2(3), i+O 3s+2
s 0,1,...,2n-l,

and obtain thus, that this coefficient equals

(3in)(i)w6n-(3s+2) O3s+2Ji+j=3s+2
s=O,1,..., 2n-1,
O<j<i<3n.

But w6n-(3s+2) w6n-(3s+3)+l

w[ en-(s+ ]+

m w3 D3+I.
Hence,

The coefficient of w in (w2+Dw+D2) 3n

D3s+2 m2n-s-1 3in)(ij.
i+j=3s+2;
s=O,l,... ,2n-i
O<j<i<3n

lllustration of (4.12)"

zn-(s+)m w,

equals

n=l; s=O,1; s=O; i= 2,j =0; i=l,j=l;

s=l; i=3,j=2.

The coefficient of w in the expansion of (w2+Dw+D2) 3 equals

as the reader can verify.

n=2; s=0,I,2,3; 3n=6 > i.

s=O; i=2, j=O; i=l, j=l;

s=l; i=5, j=O; i=4, j=l; i=3, j=2;

s=2; i=6, j=l; i= 5, j=2; i=4, j= 3;

s:3; i:6, j=5.

The coefficient of w in (w2+Dw+D2) 6 equals

[(62)() + (61)(]I)]D2m3 + [()(50)+ (61)(]I_)]DSI2 +

+ [()(16) + ()(52) + (64)( )]D8m + [(60)( )]DII
21D2m3 + 12DSm2 + 126DSm + 6DII.

The reader will now prove without any difficulty that:

(4.o)

(4.12)
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The coefficient of w2 in (w2+Dw+D2) 3n equals

Z (3in) (i)D3S+l 2n-s-i
j

m
i+j=3s+l;
s=O,l,..., 2n-l,
Oijiii3n

But by (4.3) we have

(w2+Dw+D2)3n [A(03n)+ 2DAo(3n+l)+
+ [A(O3n+l )+ DA(O3n+2 )]w’+ D2A(O3n+2)w2.

with (4.9), (4.12), (4.13) we obtain the identities

(3in)(i)m2n-s D3S= AO(3n) + 2DA(o3n+I) + D2A(O3n+2)
i+j=3s ( 6n
O<j<i<3n

>- in (ij) Ds+e
i+j=3s+2 < 6n-i
O!j _i _3n

2n-s-1 o(3n+l) (03n+2)m =A + DA

(4.)

(4.14)

(4.14a)

in)( i )D3S+I 2n-s-i D2A(O3n+2)
i+j=3s+l < 6n-2
0

_
j _i _3n

If we substitute in (4 14) (4.14a) (4.14b) the values of A(O3n
A(O3n+l A(3n+2

"’0 we indeed arrive at some new combinatorial identities.

We proceed to obtain further identities for the third dimension.

5. MORE IDENTITIES

We return to formula (4.2)

and have with (w-D)(w2+D+D2) 1,

(4.14b)

We want to rationalize the denominator in (5.1) so that

We obtain, with a,b,c rationals,

(Ao(V)+2DAo(v+I )+D2A(oV+2))a+mA(oV+2)b+ (Ao(V+l)+DAo(v+2 )mc i,

(A(oV+l)+DAo(V+2 ))a+ (Ao(V)+2DAo(V+I )+D2A(oV+2))b+mAo(V+2 )c =0, (5.3)

The determinant of this system of equations (5.3) equals, with
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xv mzv mYv

Yv Xv mZv
zv Yv Xv

=x3+mYv3+m2Zv3 Iv 3mXvYvZv

Hence we obtain from (5.5)

a

b

I mzv myv

0 xv mzv

0 Yv Xv
xv 1 myv

Yv 0 mzv

zv 0 xv

x2v- mYvZv

mZv
2

XvYv

xv mzv I

2c Yv Xv 0 Yv XvZv"
Zv Yv 0

Thus we have obtained the identity.

(w-D)V= x-mYvZv+(mz-XvYv)W+ (y-XvZv)W2 or

(w_D)3V 2 2 )w+(Yv_X3vZ3v)W2"X3v-m3vZ3v+(mZ3v-X3vY3v
Expanding (3-D) 3v, we obtain, with w3 m (D3+I)

v

3V)mv-iD3i(w-D) 3v i=O(-l)i(3i +

3v mV-l-iD3i+2+ )i(3i+2) w +
i=O

3v mV-l-iD3i+l 2
+ (-l)i+l (3i+i w

i=O

With (5.4), (5.5) we obtain some new identities

v

3V)mv-iD3i 2(-1)i(3i X3v mY3vZ3v;
i=O

v-1
3v )mV-l-iD3i+2 mZv_ X3vY3v:0(-1)i(3i+2

v-1
3v )mV-l-iD3i+l 2i=o(-l)i+l(3i+l Y3v- X3vZ3v;

v:0,1,... Xv,Yv,Zv from (4.4).

(5.4)

(5.5)

(5.6)
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Substituting, for Xv, Yv’ Zv the values from (4.4), and the values of

Av; from (0. ii) the identities (5.6) take the form

6. FIFTH DEGREE DIOPHANTINE EQUATIONS

We return to formula (0.6) with n 5, and obtain

A(0n+4 A(0n+5)Ao(n+6 )A0(n+7 )A(0n+8
Al(n+4) Al(n+5) Al(n+6) Al(n+7) Al(n+8)
A(2n+4) A(2n+5) A(2n+6) A2(n+?) A(2n+8)
An+4 An+5 An+6 A(n+? A(3n+8)
A(4n+4) A(4n+5) A(4n+6) A(4n+7) A(4n+8)

(-i) (5-I)(n+4) i, n=O,l,

A(v)Substituting (fr)-i o, i=1,2,3,4; v=n+4,... ,n+8; their representation

as forms of An+j
8 =0,1,2,3,4, we obtain the matrix equality.

A(on+4) AO(n+5 .(n+6).0 .(n+?).O AO(n+8)
A(on+3) A(on+4 A(0n+5 "’0

(n+6) A(0n+
A(n+2) A(0n+,) (n+4) A0(n+5 Ao(n+6o o . (6.)
(n+l) AO(n+2) (n+3) AO(n+4) (n+5)
0 ""0 ""0

A0(n) A(0n+l) "’o(n+2) A(On+3 A(0n+4
We denote

0 (0 (n+2) (n+l)A n+4) _v, A n+3) =u, "’0 z, y, A(0n) x (6.3)

and with formula (0.12), viz.

A(0n+5): A0(n)+5DA(0n+l )+ 10D2A(0n+2)+IOD3A(On+3 )+ 5D4A(on+4).
We will also denote

5D a4, IOD2 a3, IOD3 a2, 5D4 aI,

(a4 bl(O); a3 b(20); a2 b(]O), al b(40)) (6.4)

We then proceed as follows (in order %o represent (6.2) as an expression

in powers of x,y,z,u,v):
i) from the first row we subtract the aI multiple of the second row,

then the a2 multiple of the third row, then the a3 multiple of

the fourth row, then the a4 multiple of the fifth row.

ii) from the second row we subtract the aI multiple of the third row,
then the a2 multiple of the fourth row, then the a3 multiple of

the fifth row.

iii) from the third row we subtract the aI multiple of the fourth row,
then the a2 multiple of the fifth row.

iv) from the fourth row we subtract the aI multiple of the fifth row,
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and obtain, always applying formula (0.12) and the notations (6.3),

(6.4);

v_alu-a2z-a3Y-a4x x y z u

u-alz-a2Y-a3x v-alu-a2z-a3Y x+a4Y Y+a4z z+a4u

z-alY-a2x u-alz-a2Y v-alu-z2z x-a4Y+a3z Y-a4z+a3u
Y-alx z-alY u-alz v-alu x+a4Y+a3z+a2u

x Y z u v

with the values of aI, a2, a3, a4 from (6.4), x,y,z,u,v from (6.3)

where n=O,l, The expansion of the determinant (6.5) would yield

the expression. Even with D i, it will still be very complicated.

For n=O, x=l, y= z=u=v=O, the determinant in (6.5) becomes

-a4 i 0 0 0

-a3 0 I 0 0

-a2 0 0 1 0 l,

-aI 0 0 0 1

1 0 0 0 0

and for n=l, u= z=y=x=O, v=l, the determinant becomes

i 0 0 0 0

0 i 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

but these elementary determinants can hardly serve as a verification

for formula (6.5). For n 2 the test is also simple.

Let try for n=3,

(o) (o) o(), o() o()): o,o,,,+) x,,z,u,v):

2 2a+a-a-a 0 0 I aI
2 2

l+ala4al-aI a2+al-al-a2 0 a4

I al_aI a2+a2 2
1-al-a2

0 l al-aI

0 0 i

a
3 a4+ala3

a2+a]2-a a3+ala2
aI a2+al

2

=z (6.D)



DIOPHANTINE EQUATIONS AND IDENTITIES 769

0 0

0 0

1 0

0 i

0 0

and subtracting the a

0

0

1

0

0

0 i aI

0 a4 l+ala4
0 a

3 a4+ala3
0 a2 a3+ala2
i aI a2+al

2

I multiple of the fourth column from the fifth

0 I O

0 a4 i

0 a
3

a4

0 a2 a
3

i aI a2

0 0 i 0

0 0 a4 I

I 0 a2 a3
0 i aI a2

0 0 I

i 0 a
3

0 i a2

7. FIFTH DEGREE IDENTITIES

As we have seen, the ACF of the fixed vector

a 0 (w+4D, w2+3Dw+6D2 w3+2Dw2+3D2w+4D3 w4+Dw3+D2w2+D3w+D4
is purely periodic with length of the primitive period Z I. Hence we

have the formula

ne (w4+Dw3+D2w2+D3w+D4)n

AO(n) + (w+4D)A(on+l) + (w2+3Dw+6D2)A(on+2) +

0 4322340(+(w3+2Dw2+3D2w+4D3)A n+3)+,w +Dw +D w +D w+D )A (7.1)

n 0,1,2,...

A0(v) (v: 5,6,... from [i].

From (7.1) we obtain

(w4+Dw3+D2w2+D3w+D4) 5n

A(o5n)+4DA(o5n+I)+6D2A(O5n+2)+4D3A(o5n+3)+D4AO(5n+4)
+(Ao(Sn+I)+3DAo(5n+2)+3D2Ao(5n+3)+D3AO(Sn+4))w +

+(Ao(Sn+2)+2DA(oSn+3)+D2A(oSn+4))w2 +

+(Ao(Sn+3) +Di(OSn+4))w3+a(oSn+4)w4.
We shall now arrange (w4+Dw3+D2w2+D3w+D4) 5n in descending powers of w.

Te first step will be to achieve this arrangement in powers of w5s,
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s=0,i,2,3,... ,4n, since the highest power of w in that expression is
20nw so we look for the rational part of it. We have by the multi-

nomial theorem

w4+Dw3+D2w2+D3w+D4 5n

I ( YI+Y2+Y3+Y4+Y5 I 4YI+3Y2+2Y3+Y4 DY2+2Y3+3Y4+4Y5Yl’Y2’Y3’Y4’Y5 w

4Y1 +3Y2+2Y3+Y4=k
Y2+2Y3+3Y4+4Y5=20n-k ,k=O ,1,... ,20n

since the sum of the exponents of w and D in the above expansion equals

20n k + (20n-k). We also have from (7.3)

4yl+4y2+4y3+4y4+4y5 20n

Yl +y2 +y3 +y4 +y5 5n. (7.4)

Since we are looking for 5-multiples of the exponents of w --hence also

of D --we obtain from (7.3), (7.4)"

The rational part in the expansion of

(w4+Dw3+D2w2+D3w+D4) 5n equals

2 ( 5n ) mSD2On_5sYI’Y2’Y3’Y4’Y5 (7.5)

4

2 (5-i)Yi=5s < 20n
i=l

s > O, m w5 (DS+l).
The equation Y2+2Y3+3Y4+4y5 20n-5s follows from yl+Y2+Y3+y4+y5 5n in

the multinomial coefficient.

As an illustration to (7.5) we shall find the rational part in the

expansion of (w4+Dw3+D2w2+D3w+D4) 5, n= 1. We obtain from (7.5) that

this equals

Z I 5 ) mSD20_5s
Yl,Y2,Y3,Y4,Y5

4

Z (5-i)Yi:5s < 20
i=l

We solve the equations, s=0,i,2,3,4
s O; 4yl+3y2+2y3+y4 0, Yl+Y2+Y3+Y4+Y5 5

Yl =y2 =y3 =y4 =0’ y =5.

The corresponding member in (7.6) equals
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S i; 4Yl+3Y2+2y3+y4 5, yl+Y2+Y3+y4+Y5 5

Yl =y4 i; Y2:Y3 =0; Y5
Yl =0; Y2 =y3 =I; Y4 O; Y5
Yl =0; Y2 =I; Y3 O; Y4= 2; Y5 2

Yl =y2 =0; Y3 I; Y4 3; Y5 i

Yl =y2 =0; Y3 2; Y4 i; Y5 2

Yl =y2 =y3 =y5 O; Y4 5.

The corresponding member in (7.6) equals

1,1,0,0,3 + 0,i,I,0,3 + 0

( 5 ) ( 5 )I mDl5 121 mDl50,0,2,1,2 + 0,0,0,0,5

,1,0,2,2 + 0,0,1,3,1 +

s 2; 4Yl+3Y2+2Y3+y4 i0; yl+Y2+Y3+Y4+y5 5.

We shall write (yl,Y2,Y3,Y4,Y5) for the solution of the above linear

equations.

(2,0,1,0,2) (2,0,0,2,1) (1,2,0,0,2);
(1,1,1,1,1) (0,3,0,1,I) (0,2,2,0,1)
(0,1,3,1,0) (0,2,1,2,0); (0,I,3,1,0)
(0,0,5,0,0); (1,O,3,0,1) (1,0,2,2,0).

The corresponding member in (7.6) equals

2,0,1,0,2 + 2,0,0,2,1 + 1,2,0,0,2 + i,i,i,i,i +

+ 0,3,0,1,1 + 0,2,2,0,1 + 0,1,3,1,0 + 0,2,1,2,0 +

+ 0,1,3,1,0 + 0,0,5,0,0 + 1,0,3,0,1 + 1,0,2,2,0

=(30+30+30+120+20+30+20+30+20+1 +20+30)m2Dl0

381 m2D10.
s= 3; 4YI+3Y2+2Y3+Y4 15; yl+Y2+Y3+Y4+y5 5.

(3,1,0,0,1); (2,2,0,1,0); (3,0,1,i,0);
(2,1,2,0,0) (1,3,1,0,0) (0,5,0,0,0).

The corresponding members in (7.6) equals

3,1,0,0,1 + 2,2,0,1,0 + 3,0,1,1,0 + 2,1,2,0,0 +

+ 1,3,1,0,0 + 0,5,0,0,0 m

"(20+30+ 20+30+20+l)m3D5 121 m3D5.
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s=4; 4Yl+3Y2+2Y3+y4 20; yl+Y2+y3+y4+Y5 5.

The only solution is (5,0,0,0,0) and the corresponding member in (7.6)
equals

5,0,0,0,0 m m__.

Thus the formula (7.5) yields, for n=l, the sum

4 m3D5 m2DlO mD15 D20m +121 + 381 + 121 + (7. ?)

From the other side we have

(w4+Dw3+D2w2+D3w+D4) 5

w20+5w19D+15w18D2+35wlFD3+?Ow16D4 +

+121w15D5+185w14D6+255w13D7+320w12D8 +

+365wllD9+381DlOwlO+365w9Dll+320w8D12 +

+255wTD13+185w6D14+121wSD15+70w4D16 +

+35w3D17+I5w2D18+5wDl9+D20

(7.8)

equals

20 5D5 0 D20w + 121wI + 381wlOD1 + 121w5D15 +

4 D20m + 121m3D5 + 381m2D2 + 121mD15 +

as should be by (7.7).
Comparing formulas (7.2) with (7.5), we obtain the identity

4

2 ( 5n ) mSD2On-5s 4 i(5n+i)=)D A0Yl’Y2’Y3’Y4’Y5 =0 i

4
0< (5-i)Yi=Ss <_20n

i=l

n=1,2,... A(v) from (7.6), v= 5,6,

(7.9)

Substitution of the values of AV)t from (7.6) in (7.9) would yield a

new expression for (7.9). The reader can prove the statements:
The coefficients of w in the expansion of

w4+Dw3+D2w2+D3w+D4)Sn equals

2 ( 5n ) mSD2On_Ss_lYl,Y2,Y3,Y4,Y5
4

(5-i)Yi=Ss+l < 20n;
i=l

s=O,l,...,4n-1.

(7.10)

Furthermore, the coefficients of wi in the expansion of(w4+Dw3+D2w2+D3w+D4 5n equal, with i=0,1,2,3,4,

That the expansion in (7.8) is symmetric (the coefficients of wiD20-i
and w20-iDi i 0,i, ,20, are equal) is clear. The rational part
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2 ( 5n ) mSD2On_5s_iYl,Y2,Y3,Y4,Y5
4

i <_ [ (5-i)Yi=Ss+i<20n
i=l

s=O,l,...,4n-l, i= 0,i,...,4.

Comparing (7.2) with (7. ii) we have finally the five identities,

(7. )

2 ( 5n ) mSD2On_Ss_iYl,Y2,Y3,Y4,Y5
4

i <_ [ (5-j)Yj:Ss+i<20n
j=O

DA0
j=O

i:0,i,2,3,4.

(7.12)

We shall give a verification for formula (7.12) with i =0, formula

(7.9), D=I, n=l; we have m=D3+l=2, Ao(0)=l, A(O1)=AO(2)=A(o)=AO(4)=
0, A(On+5) =A(On +5A(on+l +lOA(on+2 +lOA(on+ +5A(On+4), A(05):1, A(06)=5,

This yields

16 +121.8 + 81"4 +121"2 +1 =1 +20+210+940+1580= 2751.
It is also easy to verify the identities (.12) for n= 2.

8. MORE ABOUT UNITS AND IDgNTITIES

Since w5-D5 (w-D)(w4+Dw3+D2w2+Dw+D4) 1, we have also,

(w5 D5+Z
-v v Ie (w-D) (w4+Dw3.02w2+’D3W+o4 4’

and with formula (7.2), and setting v: 5n,
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(w_D) 5n i

a5+a4w+a3w2+a2w3+alw4
4-i

a5-i=- (4 i o(5n+i+j)
j=O

DjA i=0,...,4 (from (7.12)).

We shall now rationalize the denominator in (8.1) and demand

1 a5+a4w+a3w2+a2w3+alw4) cI +c2w+c3w2+c4w3+c5w5 ).

Expanding (8.2), with m=w5=D5+l, we obtain

a5cI +malc2 + ma2c3 + ma3c4 + ma4c5 1

a4cI + a5c2+malc3+ma2c4+ma3c5 0

a3cI + a4c2+ a5c3+malc4+ma2c5 0

a2cI + a3c2+ a4c3+ a5c4+malc5 0

alcI + a2c2+ a3c3+ a4c4+ a5c5 O.

(8.2)

The determinant of the system of linear equations (8.3) equals, inter-

changing columns with rows,

a5 a4 a3 a2 a1

maI a5 a4 a3 a2

ma2 maI a5 a4 a
3

ma3 ma2 maI a5 a4
ma4 ma3 ma2 maI a5

Now, the reader will verify that the field equation of

e5n a5 + a4w + a3w2 + a2w3 + alw4 has exactly the free element =l,

since e is a unit, as in case n 3. We thus obtain

(w_D)5n Cl +c2w+c3w2 4+c4w3+CsW
Expanding (w-D) 5n we obtain the result. The rational part in the

expansion of (8.5) equals

n

(-l)iDSiw5n-Si
i=O

(8.4)

(8.)

Comparing (8.6) with cI and calculating cI from (8.3), (8.4), we obtain

the identity, with w5 m D5+l
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4

0
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1

(-l)iD5imn-i m- D5 i.
i=O

For the right side we calculate

Thus the determinant (8.8) becomes, with the values from (8.1), viz.

4

a5 (4 (05+J)
j=O

j)A i + 4.5 + 6- 35 + 4.235 + 1580 2751,

3
a4 "-- (3)A06+0)=" 5 +3"35 +3"235+1580= 2395

0=0 J
2

"-->__ ()Ao+)-" + . + o-o
j=O J

1

"-->__ ()Ao+0)" +o
i=0 J

0> ()o9+) o m
j=0 J

2751 2395 2085 1815
3160 2751 2395 2085 1.
3630 3160 2751 2395
4170 3630 3160 2751

Thus formula (8.8) has been verified for D n 1. The entries in the

right hand determinant become a challenge for n,D > 1.

On the combined subject of this paper about "Diophantine Equations,

Units and Identities" there is not much literature, but I cannot finish

without naming the literature in each of the three above mentioned sub-

jects without indicating at the very end, some papers which have been

most useful in my paper.
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