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ABSTRACT. The general diophantine equations of the second and third
degree are far from being totally solved. The equations considered in
this paper are
i) 2 2 +
ii) x5-+my3+m2 2> - 3 mxyz = 1
iii) Some fifth degree diophantine equations

Infinitely many solutions of each of these equations will be
stated explicitly, using the results from the ACF discussed before.

It is known that the solutions of Pell's equation are well
exploited. We include it here because we shall use a common method to
solve these three above mentioned equations and the method becomes very
simple in Pell's equations case.

Some new third and fifth degree combinatorial identities are
derived from units in algebraic number fields.

KEY WORDS AND PHRASES. Diophantine equations, identities, an algorithm
in a complex field (abbr. ACF), units in the algebraic number fields.
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0. INTRODUCTION

In this paper we shall investigate Diophantine equations of the
second and third degree of a special type. The general equations of
the second and third degrees are far from being totally solved. It
suffices to look up Mordell's book on Diophantine equations, to learn
how little we actually know about the general second and third degree
Diophantine equations, in spite of the many numerous results on this

subject that have been gained by great mathematicians with no little
effort. The famous Thue theorem stating that the equation

n 1

n-1 n- n
aox + alx Y+ an_lxy + any = C

(ai,c rational integers, i=0,1,...,n; n>2)
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has only a finite number of (rational) solutions is an amazing dis-
covery. It leaves open the question how to find these solutions and
what is their exact number, and one would conjecture that it will
remain open for (all) times to come.
The equations considered in this part of the paper are:
i) The equation, known (wrongly) as Pell's equation, namely

x° - my2 =+1,

ii) The equation x> +my3 +m2z7 - mxyz=1,

iii) and

X vy z u v
mv X y z u
mu mv X y z =1
mz mu mv X y
my mz mu mv b'q

Infinitely many solutions of each of these equations will be stated
explicitly. Now, it is known that the solutions of Pell's equations
is well exploited. Still, we found it necessary to include it here
because of the simple method we shall use in solving this equation
here, which has such a wide range of application in various branches
of exact sciences. Also, we will derive some new combinatorial
identities.

Since we are going to use some formulas obtained by the author in
some previous papers [1] and [2] we introduce them here

{0 1, alt) o, alm2) _aln), opa{n+l)

A0 -0, A1) L1, alme2) _4(0)  ppp(ne) (0.1)
n=0,1,...

alved) g {v) opp{ved) _ p(ve2), (0.2)
a$®) - rllz:(l) (317273 (20)222 ni1,2,... (0.3)

for n = 2n-1.

af2nel) ?Z:; (1=t (2py21-2 nia 2, (0.4)
ef=A(()f£) +a§°) A(gf“l) e +ar(1(_)iAéf“n‘l), £=1,2,... (0.5)
2l ) plvenn)

A0, ) vneD)| L yuanD) (0.6)
WY, Al alenD)

a0 1, alt) - a§? o, alm+3) adn) 3pa{PL) 3D2A(()n+2) (0.7)

n = 0,1,..
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A§n+2) _ Aén+1) BDA(n+2) (0.8)
A§n+2) ) A(()n) . 3DAéml) . 3DzAC()nJrz) (0.9)
k )

'ri—:rl a[(ll) Aé’() + a:Ek)Aék*l) + oo + algl}_{])_Aék+n-l) (0.10)

y1+y2+y3> VotV Yo+2Y 1
n EE 2773 2 3
3Y1+ZY2+Y3=H

o]
1l
o
T
—~
(@)
=
1"
-
L

A(o) 1, A(1) =A(2) =A(3>=A(4) - o. A

n=0,1,.

A(n+5) A(n) 5DA(n+l) 10D A(n+2)+10D3A(n*3) 5D A(n"“f (0.12)

1. PELL'S EQUATION

Wwe denote
2 i)

w =D‘+l=m,w=(/D2+l,

(1.1)
D e N, m not a perfect square.
We obtain from (0.6) with n=2,
(n) (n+1)
o ° - (-)fe-bm (1.2)
A(n) A(n"’l) - ’
1 1
n = 0,1,...
and from (0.1), (0.2)
(n) (n+1) (n 1
AO AO AO ) Aén+ )
A(n+l) (n+2) = (n+1) (n) (n+1
5 A5 TS a5 +2pal+)

2 2
% aoa (A 4D () )2 (12, ()2

(n) (n+1),2 2 .
(4577 +Dagh™ )™ 4 (0+1)° _(qyn, (1.3)
We have obtained Pell's equations
xnz—myn2=(—1)n, n=0,1,...
(1.4)

. (n) L (n+1) (n+1)
_AO +DAO y yn:AO

_,(2n) (2n+1) (2n+1)
X2n = AO + DAO s Vop = AO
> P (1.5)
Xon~MYon = L.
(2n+1) (2n+2) . (2n+2)
Xone1 =80 + DAg s Yons1 =40

- (1.6)

X2n+l T Yopn, = -1
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Thus we have obtained infinitely many solutions of x2-my2=;0-_l, and,
as is known from the theory of continued fractions, these are all
solutions of these two equations, the so-called plus and minus cases
of Pell's equations.

With (0.3), (0.4), formulas (1.5), (1.6) take the forms

n-1

_ Z (2n-§-i)(2D)2n-2-2i +_:é_(2n-;-i)(2D)2n-21,

X
2n 10 1

n-1
y2n - ZO(ZnJ__l_l)(ZD)Zn-l-21>
1=

2 2
Xon —my2n=l, n=0,1,...

n-1 n
2n-1-i 2n-1-2i 2n-i 2n+1-2i
fon = 2 (1) (2p) 1+iZ=0( =1) (op)2n+1-21

n
2n-i 2n-21
Vor1 :izl( =1) (2p) , n=0,1,...

2

nel "0 Yong = -1

X
With the calculations of Aév) from Ch. O, we have
(0) (1) _a€0) _ 4. A1) _ -
=AO +DA0 =AO =1; AO _yl_O,

*o

xg = myé:l2 - (D2+l) + 0= 1.

X, = Ac()l) +DAC()2) =D; y; = Aéz) =1,
x2 - my? = D°-(DP41) -+ 1 = -1.

x, = 452 +oal®) — 14207 y, - 2p,
xg —myg = (1+2D2)2+ (1+D2) . 4D% = 1.

x5 = A(()3) +DA(()‘*) = 3D+4D%; y5 = 1+4D%,

x% my% = (3D+4D3)2- (1+D2)(l+l+D2)2 = -1,

1+8D2+8D4; Yy = l+D+8D3,

A
X -myZ = (1 +8D2 + 8D*)2 - (1+D?) (4D + 8D°)° = 1.
5. UNITS IN Q(w), w = /D2 +1
It is clear that
e =w+D (2.1)

is a unit in Q(w). For e is an integer, and e-l=w-D, an integer.
The ACF [1] of a(o) =w+D is purely periodic with length of its
primitive period £ = 1; hence we have from formula (0.5)

e = (wsD) = A(()n) + (w+D)A(()n+l). (2.2)
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From (2.2) we get an interesting combinatorial identity
(w+D)2n = Aézn)-+(w+D)Aézn+l)
(w+D)2n = A(Zn)-+DA(2n+l)-+wA(2n+l),
0 (6] 0
hence from (1.5)
2
(w+D)<" = Xop + Yop W (2.3)

2 _ 2

With w D"+1 = m, the reader will easily verify the formulas

n n-1
(w+D)2n - (Zo(gr::)DZlmn—i> + ( .ZO(ZjZ_ill)DZi.*lmn-l_i) . (2. LI»)
1= 1=

From (2.3) and (2.4), and using the expressions for X5, and y,  from
the previous paragraph, we obtain the combinatorial identities

rlZ-l[(2’1‘1‘2'i)(2D)2n'2‘2i + 527 (2p)2n2h)
i=0
3 i i (2.5)
- 2 oty
i=0
n-1 ) . n-1 . ‘
iZ=O (2n—}.—1)(2D)2n-1—21 - lZ:o (Zﬂl)D21+l(D2+l)n—l-l. (2.6)

Similar identities are obtainable from

2n+1
(w+D) = Xons1 *Yona ¥

3. THE CUBIC DIOPHANTINE EQUATIONS
We shall need formulas (0.6), (0.7), (0.8), (0.9) for n=3, viz.
(n+1) (n+2) (n+3)
Ao A5 A0

A:(Ln+l) A](-n+2) A£n+3) -1 (3.1)
A§n+1) A:(2n+2) A£n+3)

al® -1, alt)-al?) _ o,

AC()n+3) _ A(()n) . 3DAén+l) . 3D2Aén+2), 5.2
A£n+3) _ Aén+2) . 3DAc()n+3) )
A§n+3) _ A(()n+l) . 3DA(()n+2) . 3D2A(gn+3).

Substituting in (3.1) the values for A:Ei), Aéi), i=n+3 from (3.2), we
obtain, after simple rearrangements
(n+1) (n+2) (n+3)
Bo Ao Ao

_1,(n) (n+1) (n+l) (n+2) (n+2) (n+3)
1= AO +3DAO AO +3DAO AO +3DAO

(n+1) (n) 2, (n+1) ,(n) (n+1) 2 . (n+2) ,n+l n+2 5n2,(n+3)
AO +3DAO +3D AO AO +3DAO +3D AO AO +3DAO +3D AO
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A(()n+1) AC()n+2) A(()n+3)

1 (n+2)
Aén) Aén+ ) AOn
A(()n-l) Aén) A(()n+1)

We now denote

x= 280, yoalr), 2 oaght) (3.3)

n=1,2,...
and obtain for the above determinant

z  x+ 3Dy +3D% y-+3Dz+-3D2Aén+3)

1<y 2 Aén+2)
x

y z
Subtracting from the first row the 3D multiple of the third and the
3D° of the second, we obtain,

2-3Dx-3D%  x y
y -z  x+3Dy+3D°z| = 1. (3.4)
x y z

We leave it to the reader to expand the determinant in (3.4) to obtain
the Diophantine equation of the third degree as

%3 + (9D7+1)y° + 22 + (9D°-3)xyz + 6Dx°y + 3D°%x°z

(3.5)
+ 120%y%x + (9D4-3D)y22 - 3Dz%x - 6D°2%y = 1.
Even for D=1, equation (3.5) has a complicated form as
X+ lOy3 20+ 6xyz + 6x2y + 3x22 + 12y2x (3.6)
3.

+ 6y22 - 322x - 622y = 1.

In [2] we have calculated the solution triples Aén), Aén+1),
Aén+2), n=0,1,...

(X9sz) = (190»0)7 (0,0,1), (0’193)9 (1a3’12)9
(3,12,46), (12,46,177).
We shall check the solution
(X3,Y3,23) = (113,12)°

Substituting these values in (3.6), we obtain 1 + 270 + 1728 + 216 +
18 + 36 + 108 + 648 - 432 - 2592 = 1, 3025 - 3024 = 1.

For larger values of D and n the verification of (3.5) is only
possible by computer, and without knowing (3.3) even a computer would
have its problems.

As we shall soon see, there is a much simpler third degree
Diophantine equation which can be regarded as, and indeed in a certain
case represents, a generalization of Pell's equation to the third
degree.
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4, UNITS IN THE CUBIC FIELD
As we have seen in [1], the ACF of the vector a

(0)

761

€ E3, with

3
W = VDE+1, De N, a(o) = (w+2D, w2+Dw+-D2), is purely periodic with

length of primitive period £ =1. Hence, by theorem 2 in [2] and

formula (0.10)

e = w2 + Dw + D2

is a unit in Q(w), and

(v+l)
(0]

v = 0,1,..

(v+2)

+(w2+Dw+D2)AO

eV = Aév)-+(w+2D)A

Thus
(w24Dw+D?)V = Aé") . 2DAC()V+1) " DZAC()V*Z)

+ (Aév+l)-+DAéV+2))w-+D2AéV+2)w2.

(4.1)

(4.2)

(4.3)

We shall find the field equation of the expressions (1.3) in Q(w).

We denote
1 2. (v+2
X = Aé") +2DAéV+ ) 4D A(()V+ ),

_ a(v41) (v+2)
= AO + DAO

Yy
z, = Aév+2),
and have

eV = X, YW o+ sz2

we' = mz, + X W + vaz

w2eV = my, + mz w + wiz,
m = W3 = D3+1-

Hence

Xy Yy Zy

mz., Xy, Yyl = 1,

my,, mz., X,

since N(e) = 1, as the reader will easily verify.
Expanding the determinant in (4.6), we obtain

3 3 2.3
X, + myg + mozg - 3mxvyvzV =1

X,1Y,2, from (4.4), v = 0,1,...
The Diophantine equation

3 3 2,3

X7 +my” +mz” - 3m xyz = 1

>

is indeed Pell's equation generalized to the third dimension.

simpler compared with (3.6) and it has as solutions (&4.4).

We shall verify formula (4.5), first line for v
from (4.4),

1,2.

(4. 4)

(4.5)

(4.6)

(4.7)

It is

We have,
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Aél) + 2DA(()2) + DZA(SB) - D?

Xl ’
y, - 482 4pal® _p
2 = Aé3) -1
(0?)? + (DP+1)DP+(D7+1)%1 - 3(DP+1)D%.D -
o+ 0 4 34 004 20341 - 30° - 303 - 1;
x, = 82 2pa3) 4 2 (4
x, = 2D+D? + 3D 2D+ 3D%,
v, = A(()3) +DAé“) -14+3D0
z, = Aéu) = 3D2.
We obtain substituting (x2,y2,22) in (4.7)

6

1 +18D° + 990° + 162D% + 81022 - 3(6D° + 330°

+54D7 + 27D12) < 1.

We shall now extract a few interesting identities from Formula (4.3).
We have, by the binomial theorem,

n
(w24Dw+D?)7" - i_ (w?)2*~1(pw+ %)t -

3n
E: (3n) 6n-2i E: ( )(Dw)l IpRd
i=0 J—O
3n . . . Y

-, ) (%?)w6n'21(3)Dl+le-J -
i=

J=0,1,...,1
3n 3 Y Y

_ ZO (Bin)(é)w6n-(1+3) pi+d.
1=

Jj=0,1,...,1

In the sum }: (2?)(3)w6n'(l+J)Dl+J, i=0,1,...,3n; j=0,1,...,i; we
want to find the coefficient of powers of w3n
w3 =m = D3+3, this sum becomes rational. For this purpose we have to

set i+j = 0(3) and obtain
(w® + Dw + D2)2" -

, so that since

(4.8) is an appealing formula for the expression (w2+Dw+D2)3n, though
this expression could also be calculated by the multinomial theorem.
We have, in order to illustrate its application; n=1, s=0,1,2.
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s=0;1=9=0;
s:l;i=2,j=1;i=3,j=0;
s=2;1=3, =3 (i

I
W
N

Hence we have for the rational part of e3:

(wP4pws®)? = QW + DD + B)(GDP
(g)(g)D6 =W + 7DW 4 D6,
[w2+(Dw+D2)]3 = w6+3w4(Dw+D2)+3w2(Dw+D2)2+(Dw+D2)3 =

= wO43DW + 302 4+ 302w 4+ 607w +

+ 3w2DL‘L + D3w3 + 3D4w2 + 3D5w + D6.

+

The rational members of this sum are w6-+6D3w3-+D3w3-+D6, as was cal-

culated above, with WO o= m = D°+1. The formula (4.8) is easily
applicable since there is no difficulty to solve the linear equations
i+j = 3s.
We shall still find the rational part of e® = (w2+Dw+D2)®. By
formula (4.8), with
n=2, s=0,1,2,3,4; i+j=3s, j<i<6;
s =0; 1 =3 = 0;

s=1;1=3, j =0,
i=2,3=1;
s=2;i=6,j:0,
i=5,3=1,
l=/+,j=2,
i=23,3=23;
s=3;1=6, J=3,
i=5,3=4;
s =4; 1 =6, J=6;

we obtain
Q2+ 15D+ §H )W .
LG+ D+ DD + OO WOE 4
(DS + QWD+ (©)(E)pt? -
1 6.6

= w2 4 50u7D> + 141wPDP 4 50w3D? + DL2 -

n* + 50n7D7 + 141m20° + 50mp? + D2,

+

]

m = D3+1 = w3.

We thus have the final result, viz. The rational part of e3n =

(w2+Dw+D2)3r1 equals

Z Py (2yp2n-Sp3s - piL1. (4.9)
i+j=35£6n = J ’
s=0,1,...,2n
0<£Jd<Lidan
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We shall now find the coefficient of w in

3n - Y . . .
;;5 (2?)(3)w6n-(1+3) pi+d
j=0,1,...,1

and demand, to this end,

én - (i+3j) = 1 (mod 3),
i+ = 2(3), i+J = 3s+2
s =0,1,...,2n-1,

and obtain thus, that this coefficient equals

2: (Qn)(i)w6n-(33+2) pIs+2
i+j=3s+2 Y
s:O,l,...,Zn—l,
0<3<iL3n.
6n-(3s+2) _  6n-(3s+3)+1 _

_ w3[2n—(s+l)]+l _ mzn—(s+l)w,

But w

m = w3 = D3+l.
Hence,
. . . 2 2413n
The coefficient of w in (w“+Dw+D<) equals

D35+2 m2n—s—l(31n) (]';l.).

i+j=3s+2;
s=0,1,...,2n-1
0<3<i<3n

Illustration of (4.12):
n=1; s=0,1; s=0; 1i=2,j=0; i=1,J=1;
s=1; i=3,j=2.
The coefficient of w in the expansion of (w2+Dw+D2)3 equals
D?a[(3)(2) + YD1+ D°[(3)(D)] = 6D° + 307,
as the reader can verify.
n=2; s=0,1,2,3; 3n=6 >
s=0; i=2, j=0; i=
s=1; i=5, j=O; 1
s=2; i=6, j:l; 1
s =3 i:6, ,j=5.
The coefficient of w in (w2+Dw+D2)6
(53 « &)DH? + (G + HDHIn?
6,6 6\(5 6 by 18 64 (6y1nl1 _
IO+ GG+ GO0 1SS -

- 210%m3 + 120°m2 + 1260°m + 6DML.

equals

The reader will now prove without any difficulty that:

(4.10)

(4.11)

(4.12)
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The coefficient of w2 in (w2+Dw+D2)3r1 equals
> ‘
i 1 2n-s-1
CHGHP
14§3s41; +0 Y (4.13)
s=0,1,...,2n-1,
0£J<isan

But by (4.3) we have
(w2+Dw+D2)3n _ [A(()Bn) . 2DA(()3n+l)+ D2A33n+2)] .
. [A(()3n+l) . DAéamz) Jw's D2A83n+2)w2.

wWith (4.9), (4.12), (4.13) we obtain the identities

2 CPy(m@res pIs o p3n) opa(3nel) |, p2p(3042),
i+j=3s { 6n J (4.14)
0<3<i<3n

E: (%?)(é)DBS+2 m2n-s-l==A53n+l).FDA83n+2)'
i+j=3s+2¢ 6n-1 (4.14a)
0<Jjgigan

3ny,iyn3s+1 2n-s-1 2 (3n+2)

> CHta - p2a{31+2). (4. 100)
i+j=3s+1 £ 6n-2
0£jLigan

If we substitute in (4.14), (4.14a), (4.14b) the values of Ac()3n),
A83n+l)’ A(()3n+2)’ we indeed arrive at some new combinatorial identities.
We proceed to obtain further identities for the third dimension.

5. MORE IDENTITIES

We return to formula (4.2)
(w?+Dw+D?)Y = Aé") + (w+2D)A(()V+1) + (w2+Dw+D2)Ac()V+2)’

and have with (w-D)(w2+Dw+D?) = 1,

D)V - 1 . 5.1
(v ATVj+(w+2D)A(V+1)+(w2+Dw+D2)A(V+2) ( )
6] (6] (6]

We want to rationalize the denominator in (5.1) so that
[Aév)+(w+2D)Aév+l)+(w2+Dw+D2)A(()V+2)](a+bw+cw2) = 1. (5.2)
We obtain, with a,b,c rationals,
(Aé") +2DAC()V+1 )+D2Ac()v+2) )a+mA(()V+2 )b+(Ac()V+l )+DAC()V+2) me = 1,
aC+1) paCv2)y o (A V) opa (V) p2a (v2)y, i (V42) 0 L L (5, %)
0 0 0 0 0 0
Ac()"+2)a+(A(gV+1) +DA(gV+2) )b+(A(gV)+2DA(()V+l )+D2Aév+2) )e = O.

The determinant of this system of equations (5.3) equals, with
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(v) (v+1) ~2,(v+2). (v+1) Zv+2), (v+2).
XV = AO +2DAO +D Ao H yV = AO +DAO ’ ZV = Ao H

X, mz, = my,
Yy X, mz,|= x?, + my?, + mzz?, - 3mxvyvzV = 1.
Zy Yy Xy

Hence we obtain from (5.3)

1 mz,, my.
2
a=|0 X, mz | = X, - my z,
0 Yy Xy
X, 1 my.,
b = Yy 0 mz, | = mzs - XY,
z, 0 Xy
Xy mz, 1
2
I A Xy 0 =¥y - X%y
z, Yy o

Thus we have obtained the identity.

2

v 2 2 2
(w=D) ==xv—myvzv+(mzv-xvyv)w-+(yv-xvzv)w or

3v 2 2 2 2
(w=D) =:x3v—m3V23v+(szV—XBVyBV)w+(y3v—x3V23V)w .

Expanding (3-D)>Y, we obtain, with w2 = m = (D +1)

v
v _ _13yi(3vy, v-in3i
(-0 = 2 (DTG I
V-l y . .
+ <;o(_l)l(jzzz)mv-l-lel‘*Z) w o+

v-1
N <;O(_l)ul(ﬁy:l)mv-1-1D31+1) w2.

With (5.4), (5.5) we obtain some new identities

v
v—l . . s
g;o(_l)1(3532)mv_1_1D31+2:=mz§v"XBVYBV;
V-l . . .
é;o('l)l+l(3?11)mv-l-lD31+l:zygv"'XBVZBV;

v=0,1,...5 x,y,,2z, from (4.4).

>

>

(5.4)

(5.5)

(5.6)
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Substituting for x , y,, 2, the values from (4.4), and the values of
A(v) from (0.11) the identities (5.6) take the form
6. FIFTH DEGREE DIOPHANTINE EQUATIONS
We return to formula (0.6) with n = 5, and obtain
(n+4) (n+5) (n+6) (n+7) (n+8)
Ao A0 ) Ao Ao

A§n+4) A§n+5) A§n+6) A](-n+7) A£n+8)
Aén+4) A§n+5) A£n+6) A§n+7) Agn+8)

A§n+4) A§n+5) A§n+6) A§n+7) Agn+8) F 6.1)

A£n+h) A£n+5) A£n+6) A£n+7) A£n+8)

O G Ve FU )

Substituting for.Agv), i=1,2,3,4; v=n+4,...,n+8; their representation
as forms of A(()n+3), j=0,1,2,3,4, we obtain the matrix equality.
(n+4) (n+5) (n+6) (n+7) (n+8)
VAR A A A A
n+3 n+ n+5 n+ n+7
AO AO AO AO A?
(n+2) ,(n+3) ,(n+4) ,(n+5) n+6)
Ao Ao Ao A5 )

-1 (6.2)
a1 p(ne2) y(0v3) y(ned) y(ne)
a0 A e2) y(s) Gt

We denote
A7) Ly, al3) Ly ae2) Ly a(1) a0 (6.3)

and with formula (0.12), viz.

(n+5) _ ,(n) (n+1) 2, (n+2) 3. (n+3) 4 (n+l)
Ao -AO +5DAO + 10D Ao +10D AO + 5D AO .

We will also denote

5D = a,, 10D° = as, 100° = ay, 5p% - a,
(34 = b{o); az = bgo); a, = bgo), a) = b£0)). (8.4)
We then proceed as follows (in order to represent (6.2) as an expression
in powers of X,y,z,u,v):

i) from the first row we subtract the ay multiple of the second row,
then the a, multiple of the third row, then the as multiple of
the fourth row, then the ay, multiple of the fifth row.

ii) from the second row we subtract the ay multiple of the third row,
then the a, multiple of the fourth row, then the a3 multiple of
the fifth row.

iii) from the third row we subtract the a; multiple of the fourth row,
then the a, multiple of the fifth row.

iv) from the fourth row we subtract the a; multiple of the fifth row,
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and obtain, always applying formula (0.12) and the notations (6.3),
(6.4); .

v-aju-2,2-2zy-a,X x y z u
U-a,2-3,y-a3X v-a,u-a,2-azy  X+a,y y+a,z z+a,u
z-a;y-a,Xx U-a;2z-8,Y  V-81U-Z,Z X-8,y+85Z y-8,Z+33zU 1 (6.5)
y-a;x z-ay u-a;z V-a,u  X+8,y+azZ+a5U

x y z u v

with the values of a,, aj, az, 8, from (6.4), x,y,z,u,v from (6.3)
where n=0,1,... . The expansion of the determinant (6.5) would yield
the expression. Even with D = 1, it will still be very complicated.
For n=0, x=1, y=z=u=v=0, the determinant in (6.5) becomes

-ay, 1 0 0O ©
-az 0 1 0O ©
-a, 0] 0 1 0] =1,
-a; 0] 0] o 1
1 0] 0 0O O
and forn=1, u=z2=y=x=0, v=1, the determinant becomes
1 0 0] 0] 0
0] 1 0] 0 0
0] 0] 1 0] o] =1,
0] 0] 0 1 0]
0 0] 0] 0 1

but these elementary determinants can hardly serve as a verification
for formula (6.5). For n=2 the test is also simple.
Let try for n=3,

(A(g})9 A(gh)1 AéB)’ A(()6); A(()7)) = (0, 0, 1, a1, a5 + a%) = (x,y,z,u,v):

2 2
ay+ay-a;-a, 0] 0 1 a;
a,-a a +a2-a2-a 0] a l+a,a
171 271 71 T2 4 14
1 a.-a a +a2-32-a a a,+a-,a =
1741 2te17%17%2 3 471%3 | T
0 1 a,-a a +:512--a2 aL+a,a
171 271 71 377172
2
0 0] 1 ay ay+a;y



DIOPHANTINE EQUATIONS AND IDENTITIES 769

0 0 0 1 a;
0 0] 6] ay, 1+a134
=1 0 0 az a4+ala3 =
0 1 0 a, as+ala2
2
0 0] 1 a; ay+ay
and subtracting the a; multiple of the fourth column from the fifth
0 0 o] 1 0
0 0 0 a,, 1
= |1 0 0 a3 a,l =
0 1 0 a, a3
0] 0 1 a; a,
1 - 0 0 1 0
1 0 0 1
0 0 ay, 1
= 1 0 33 = 1.
1 0 a, a3
0 1 a,
0 1 a; a,

7. FIFTH DEGREE IDENTITIES
As we have seen, the ACF of the fixed vector

a(0) - (wstD, w2+ 3Dw+6D?, w?+2Dw2+ 307w +4D7 ™+ Dw? +D%w 2+ Dow+ D)
is purely periodic with length of the primitive period £ = 1. Hence we

have the formula
e = (wreDwP+DPw4DIwe D) = ]
Aén)+(w+AD)Aén+l)+(w2+3Dw+6D2)Aén+2) +
+(w3+2Dw2+3D2w+4D3)Aé“+5)+(w4+Dw3+D2w2+D3w+D“)Aén+“), *(7.1)
n=0,1,2,...

Aév) (v=5,6,...) from [1]. J
From (7.1) we obtain
(w+Dw2 +D%w2+Dw+D™) 21 =
= 489 upalom) 6p2a(0+2) p3a (51 3) plp (Onvh)
\ (7.2)
+(Aé5n+l)+3DAé5n+2)+3D2A85n+3)+D3Aé5n+h))w .

(852D, pa (5n+3)  p2, (Sneh) g2

+(Aé5n+5)+DAé5n+h))w3+Aé5n+4)wh. )

We shall now arrange (wh+Dw3+D2w2+D3w+Dh)5n in descending powers of w.

The first step will be to achieve this arrangement in powers of w5s,



770 M. BAICA

s=0,1,2,3,...,4n, since the highest power of w in that expression is
w20n’ so we look for the rational part of it. We have by the multi-
nomial theorem -

(wh+Dw3+D2w2+D3w+Du)5n =

§ Y1*Yo*Y3*Y,*Ys Ly, +3y 42y +Y Vo t2y 2 +3y, +4
Y t5Y
<Y1,Y2,y3,}’4,y5 w 1 2 374 -D 2 3 4 > PN (7.3)

4y1+3y2+2y3+y4=k
y2+2y3+3yb+4y5=20n-k,k:O,l,...,20n

/
since the sum of the exponents of w and D in the above expansion equals

20n = k + (20n-k). We also have from (7.3)
hyl+hy2+4y3+4yu+hy5 = 20n
Yy +Yp + Y3+ Y, +Yg = 5n. (7.4)

Since we are looking for 5-multiples of the exponents of w — hence also
of D —we obtain from (7.3), (7.4):

The rational part in the expansion of A
(w4+Dw3+D2w2+D3w+D4)5n equals
5n -

Z <Y1,y2,y3,y4,y5 > msDZOn 58 s (7.5)
In
Z (5-1)y;=5s< 20n
i=1

s>0,n= W = (D5+l). B

The equation y2+2y3+3y4+4y5= 20n-5s follows from y1+y2+y3+yh+y5==5n in
the multinomial coefficient.

As an illustration to (7.5) we shall find the rational part in the
expansion of (w4+Dw3+D2w2+D3w+D4)5, n=1. We obtain from (7.5) that
this equals

5
Z (yl,yZ’yB’Y4xy5 ) mSDZO-ss (7.6)

4
Z (5-1)y;=5s< 20
=1

We solve the equations, s=0,1,2,3,4
s=0; 4y1+3y2+2y3+yh = 0, Y1+ oYzt = 5
Y1=Yp=Y3=Y4,=0, vy =5.
The corresponding member in (7.6) equals

(g) m0p20-0 20

= D7,
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s = 15 b4y +3Y,+2Y3+Yy = 5y V¥V ptYz+Y+Yg = 5
y1=Y4=13 Vp=95=0i ¥5=3.
¥1 =05 ¥p,=Y3=13 y,=0; y5=3
V1=05 yp=1; y3=0; y,=2; y5=2
V1=Y5=05 yz=1; y, =35 y5=1
Y1 =9Y5,=0; y3=2; V=13 y5=2
V1 =Y5=Y3=Y5=0; y;,=5.

The corresponding member in (7.6) equals

5 5 5 ( 5
[(1,1,0,0,3) * (0,1,1,0,3) * (0,1,0,2,2) * 0,0,1,3.1> *

2 5 15 _ 15
<0,0,2,1,2> ¥ (0,0,0,0,5)] mb™~ = 121 mD 7.

s=2; Ayl+3y2+2y3+yh==10; V14V o4V 5+ +Y g = 5.
We shall write (yl,yz,y3,ya,y5) for the solution of the above linear

equations.

(2,0,1,0,2); (2,0,0,2,1); (1,2,0,0,2);
(1,1,1,1,1); (0,3,0,1,1); (0,2,2,0,1);
(0,1,3,1,0); (0,2,1,2,0); (0,1,3,1,0);
(0,0,5,0,0); (1,0,3,0,1); (1,0,2,2,0).

The corresponding member in (7.6) equals

5 5 5 ) ( 5 )
[(2,0,1,0,2)*(2,0,0,2,1)*(1,2,0,0,2 *11,1,1,1,1,)*

M (0,3,8,1,1) + (0,2,2,0,1) (o 1, 3 1 o) + <0,2,5,2,o)

* (O,l,g,l,o) * (o,o,g,o,o) + (1,0,%,0,1) + (1,0,2,2,0)] =

=(30 + 30 + 30 + 120 + 20 + 30 + 20 + 30 + 20 + 1 + 20 + 30)m°D'0 -

- 381 20
§ =35 Ly +3Y,42Y34y, = 155 Y +Yp+Y3+Y,+Yg = 5-
(3’1’070,1); (292’0’1,0); (3’0?1’170);
(2,1,2,0,0); (1,3,1,0,0); (0,5,0,0,0).

The corresponding members in (7.6) equals

5 5 5 5
[(3,1,0,0,1> * (2,2,0,1,0) * (3,0,1,1,0> M (2,1,2,0,0) *
309
(13100> (osooo)} m”D” =

= (20 +30 + 20 + 30 + 20 + 1)m°D° = 121 moD°.
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s =4 hy1+3y2+2y3+yg = 20; V14V o+Y 3+, Y5 = 5.
The only solution is (5,0,0,0,0) and the corresponding member in (7.6)

equals
(5,0,8,0,0) n' - ot
Thus the formula (7.5) yields, for n=1, the sum
m*4121 mD°+ 381 w20 + 121 mp!? + 02O, (7.7)
From the other side we have
(w4+Dw3+D2w2+D3w+Dh)5 = )
- w20.5u19D.15w 824 35wl TD3 70w 0D 4
+121w1 7D 4185w “0P 1255w D7 + 320w 2D° 4 (7.8)
+365wr 109 +3810 0w 04 365w Dt L4 320wED1 2 4 r
+255u/ D3 1185wCD 4 1121w D0 470w DO 4
+35w D17 +15w?D 8 +5wDt 24+0%0, J
That the expansion in (7.8) is symmetric (the coefficients of wip?0-1
and wzo'iDi, i=0,1,...,20, are equal) is clear. The rational part
equals
w20 4 121w7D° 4+ 381w D0 4 121w7D1? 4 0?0 -

- n® +121m7D° + 381m2D

as should be by (7.7).
Comparing formulas (7.2) with (7.5), we obtain the identity

4
5n ) nSp20n-5s _ (Q)DiA(smi).
Z (yl’yz’YB’yh’yB zo 1 0
A

2+ 121mp*2 + 2O

-

0<Y 1(5—i)yi=53_<_20n < (7.9)
1=

n=1,2,...; Aé") from (7.6), v=5,6,... . j
Substitution of the values of Aév) from (7.6) in (7.9) would yield a
new expression for (7.9). The reader can prove the statements:

The coefficients of w in the expansion of
(w4 Dw3 +DPw2 4D 3w D) 5
w +Dw”+D“w +D’w+D ' )”" equals

5n
__; (yl,yz,y3,y4,y5) mSp2On-5s-1 (7.10)
4

(5—i)yi=5s+l < 20n;
1 <

1=
S = O,l,. . ,41’1-1.

Fuzthermore, the coefficients of wi in the expansion of
(w* D7 402 24D%wsD*) M equal, with 1<0,1,2,3,4,
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5n .
Z (yl’Y2,yB,Y41Y5> msDZOn 58-1

L
1< ¥ (5-1)y;=5s+i 20n (7.11)
i=1
S:O,l,--. ,41'1-1, i=o,l,... ’L‘,‘
Comparing (7.2) with (7.11) we have finally the five identities,
3
E (yl,yg,yj,yw}%) mSp20n-5s-1 _
i< 3 (5-3)y =5s+1 < 20n
J_O Y (7.12)
= %:;(h‘l) DJA(5n+l+J)
J=0
i=0,1,2,3,4 J

We shall give a verification for formula (7.12) with i =0, formula
(7.9), D=1, n=1; we have m=D7+1 =2, Aéo) -1, A(()l) =A(()2) =Ac()3)=A(()‘*) =
0, a§1+9) _a{n) L 5p(nl) | 10p(ne2)  10p(n43) , splnet) - p(5) _q, al®) s,

(7) _ (8) _ (9) _
AO =35, AO =235, AO = 1580.
This yields

16 +121-8+ 3814 +121:2+1=1+20+ 210 + 940 + 1580 = 2751.
It is also easy to verify the identities (7.12) for n=2.
8. MORE ABOUT UNITS AND IDENTITIES

Since wo-D° = (w—D)(wh+Dw3+D2w2+D3w+D4) = 1, we have also,

(w2 =D°+1)

1

eV = (w-D)V = 3 -
(w +DwO+D°w 2+Dow+D" )

and with formula (7.2), and setting v =5n,
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(w-D)*" - ———
g+a,W+azW +A,W +a W
bl f i S (5paisd) (8.1)
B —iyvnda(5n+i+] .
a5_i..§;o( P )D A5 , i=0,...,4 (from (7.12)).
We shall now rationalize the denominator in (8.1) and demand
1= (a5+a4w+a3w2+a2w3+alw4)(cl+02w+c3w2+cAw3+c5w5). (8.2)
Expanding (8.2), with m=w” = D°+1, we obtain
A
a5cl-+ma102-+ma203-rmajch-rmahc5 =1
a,Cq + a502-+ma103-+ma204-+ma3c5 =0
85Cy + 8,Cp+ 85C3+Ma Cy +MAsCy = 0 > (8.3)
0

3201 + 8302 + auCB + 8504 +malo5 =

alcl + a202-+ a303-+ a,cy + a5c5 = 0.

The determinant of the system of linear equations (8.3) equals, inter-
changing columns with rows,

a5 ay, az a, a,
ma, ag ay, az a,
A = |ma, ma; ag a, az| - (8.4)

ma3 m82 mal 85 84

m34 ma3 m32 mal 85

Now, the reader will verify that the field equation of

e5n = a5-+ahw -+a3w2-+a2w3-+alwh has exactly the free element =1,
since e is a unit, as in case n=3. We thus obtain
(w-D)5nﬁ=cl+02w+03w2-+chw3-+05w4. (8.5)

Expanding (w--D)5n we obtain the result. The rational part in the
expansion of (8.5) equals

n
> (-1)ipoi,on-5i, (8.6)
i=0

Comparing (8.6) with c, and calculating c; from (8.3), (8.4), we obtain
the identity, with w° = m = D+1



775

DIOPHANTINE EQUATIONS AND IDENTITIES

(8°8) 30 SPTS 3J9T 9Y3} JIOJ 9ABY dM

‘IT=u=Q 3e ased oTduTs B UT (8°'Q) JUBUTWIS}SP

ay3 — JuT3eTnoTed 30U Ing — TTNF UT 3N0 JUTITIM JO SATITNOTIITP 9Y3 3B FTUWIT ATuo sn 37

*suorssaadxs
po3eoTTdwod Axsa pTSTA pTnom STYL *(9°L) WOJF pajn3TIsqns 8q 03 8aBY TIIM (H‘C‘2‘T‘0=T) .ﬁémvm«

JO senTea ay3 (8°8) JO MaTA 9397dwod e aAey Oy

*(¢°8) wezsds 8yj wWoOaF pe3eTNOTed (G‘hgc‘z=T) o

U3TM SITTIUSPT SJ0W JINOF UTEIQO dM (G'8) JO SI9pTS U3oq uo (4‘¢c‘2‘T=T) .M Jo szamod ayz Suraeduwo)

I3 o=C
(erug)y¥ea(y)
7

e, 05F

(0+Trugy¥ea(g) { (rug)?
4

o) e Ouﬂ o) ¢ Oﬂﬂ
(0+zrug)Ved(z) { (prgrugy¥ed(p) <
Z T

o) Oﬂﬂ o C OHW
(ergrugi¥ed(p) ¢ (przrug)Ved(5) ¢
T Z
(8°8)
uTe3qo pue (T°8)
mm
qm
AN.@V . mm
NN

s o=C
(erugyTealy) L@
7

C Ouﬁ Ouﬂ
(Crgrugy¥pa(y) L u (Crzrug)Vpd(5) {u
T Z

p.0f

(rug)?®  (prgrug)¥ed(p) {m
T

e Ouﬂ

(rug)7ea() ¢ (yrug) T
7

° o=C

%Lémwéﬁwv w

¢

o=C
(c+ug¥ealy)
7

0=1
= -afply(T) <
u

(Gl fT=1 «Tg JO sanTeA ayj 93N3TISANS apM

HmE NME <

=210
mm HME NME
JM mw HNE

15} ¢® mm

0=1
= 1% (17) L
u



776 M. BAICA

1
> (it t o oD% -1
=0

For the right side we calculate
(5) _ (6) _ (7) _ (8) _ (9) _
AO =1, AO =5, AO =35, AO =235, AO =1580.

Thus the determinant (8.8) becomes, with the values from (8.1), viz.

4
ag = Z (g)Aé5“j) =1 +4:5+6-35+ 4235 + 1580 = 2751,
3=0
3 .
a, = Zo(g)Ac(f*J) =5+ 335 + 3- 235 + 1580 = 2395,
J=
2 .
ag = 2 (?)A((f*:’) =35 + 2235 + 1580 = 2085,
3=0
l .
a, = > (%)Aégw) =235 +1580 = 1815,
3=0

0
- 0y, (9+3) _ -
a; = %O(J.)AO -1580, m=2,

2751 2395 2085 1815
3160 2751 2395 2085
3630 3160 2751 2395
4170 3630 3160 2751

Thus formula (8.8) has been verified for D=n=1. The entries in the
right hand determinant become a challenge for n,D > 1.

On the combined subject of this paper about "Diophantine Equations,
Units and Identities'" there is not much literature, but I cannot finish
without naming the literature in each of the three above mentioned sub-
Jects without indicating at the very end, some papers which have been
most useful in my paper.
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