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ABSTRACT. A necessary and sufficient condition for a topological group whose topology

can be induced by a total order compatible with the group structure is given and such

groups are called ordered or orderable topological groups. A separable totally-

disconnected ordered topological group is proved to be non-archimedean metrizable while

the converse is shown to be false by means of an example. A necessary and sufficient

condition for a no-totally disconnected locally compact abelian group to be orderable

is also given.
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I. INTRODUCTION.

Topological groups whose topology can be induced by a total order are called top-

ologically orderable groups and they are studied by Nyikos and Reichel [i] and

Venkataraman, Rajagopalan and Soundarajan [2]. In this paper we give a necessary and

sufficient condition so that topological group is orderable in the sense that it admits

a total order which ind,,ces the topology of the topological group and which is also

compatible with its group structure. We call such groups ordered topological groups.

As a first step to this we give a necessary and sufficient condition that a group be

orderable so that it admits a totoal order compatible with the group structure and such

groups are called ordered groups. Venkataraman, Rajagopalan, and Soundararajan have

shown (Theorem 2.6, [2] that a separable totally-disconnected topological group is a

topologically orderable group if and only if it is metrizable and zero dimensional. It

turns out that a separable totally-disconnected ordered topological group is non-

archimedean metrizable (in the sense of Rangan [3]) while the converse fails to be true.

It is interesting to note that the totally-disconnected non-archimedean metrizable

locally compact abelian topological group (Qp,+) of p-adic numbers under addition

admits an order that is compatible with the group structure (+) alone and another order

that is compatible with its topology alone but admits no order that is compatible with
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both its group structure + and sufficient condition for a non-totally disconnected

locally compact abelian group to be orderable.

2. ORERABILITY OF A TOPOLOGICAL GROUP.

THEOREM 2.1. A group G can be ordered if and only if a subgrodp C(x) and a

homomorphism f from C(x) into the additive group of real numbers can be found
x

corresponding to each x e (e being the identity of G) which satisfies the fol-

lowing conditions

(i) xC(x) and f (x) 0 for every x in G x e
x

(ii) for y in C(x), C(y) C(x)

(iii) for x,y in G x e, y e, either C(x) C(y) and f f or
x y

C(x) C(y) in which case fy(X) O,

-I -I -i
(iv) for every a in G aC(x)a C(z) where z axa and f (t) f (ata

x z

-I
for every t in C(x) i.e. if I :x/axa is the inner automorphism deter-

a

mined by the element a in G then f f oI
x z a

Further for the order on G C(x) for each x is the smallest convex subgroup con-

taining x and C(x) ker f is the largest convex subgroup not containing x.
x

PROOF. Let G be an ordered group. For each x e in G let C(x) denote the

smallest convex subgourp containing x and C(x)* be the largest convex subgroup not

containing x Then it i well known (see [4] and [5]) that C(x)* is a normal sub-

group of C(x) and that C(x)/C(x)* is order isomorphic to a subgroup of the reals

and we identify this quotient group with the corresponding subgroup of the reals. Let

fx be the natural map of C(x) to C(x)/C(x)* Then clearly fx(X) 0 Since

C(x)* and C(y)* are the largest convex subgroups contained in C(x) and C(y)

respectively C(x) C(y) implies C(x)* C(y)* and hence f f Ifx y

C(x) C(y) then being convex subgroups of an ordered group either C(x) C(y) or

C(y) C(x) Hence (i), (ii) and (iii) of the theorem are easily verified. Inner

-I -!
automorphism being order preserving it follows that aC(x)a C(axa and

aC(x)*a-I C(axa-1) * I induces an order isomorphism I* between the quotienta a

-I
groups C(x)/C(x)* and C(z)/C(z)* where z axa If we identify these two sub-

groups of the reals forgetting the order isomorphism between them we get that

f f oI which proves (iv) of the theorem.
x z a

Conversely if G satisfies the conditions of the theorem we show that the set P

of all elements such that f (x) > 0 serves as the strict positive part of an orderingx

on G For x e G C(x) C(x-I) by (ii) and hence f f -1 x P>f (x) 0
x x x

4=>f -l(x O<x Px

We now observe a useful property of the subgroups C(x)’s which we call the pro-

perty P.
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PROPERTY P. If a, b G, a e, b e and C(b) C(a) then C(a) C(ab)=

C(ba).

For C(b) C(a) ab C(a) and f (b) 0 C(ab) = C(a) and f (b) 0 Now
a a

C(ab) C(a) 0 f (ab) f (a) + f (b)f (a) 0 since f (b) 0 a contradic-
a a a a a

tion to (i). Hence C(a) C(ab). Similarly it can be seen that C(a) C(ba).

If f (x) 0 f (y) 0 and C(x) C(y) then C(xy) C(x) C(y) and fxy(Xy)=x y

fx(X) + fy(y) 0 since f f f For oherwise since xy C(x), C(xy)
x y xy

C(x) C(y) and hence by (iii) 0 f (xy) f (x) + f (y) O, a contradiction. If
x x y

C(x) can behowever C(x) C(y) let us suppose that C(x) C(y) (the case C(y)

similarly dealt with). By Property P, C(xy) C(y) and so f f and f (xy)
xy y xy

fy(X) + fy(y) 0. i.e. x,y e P implies that xy e P.

-I
Let x e P a e G Then f (x) > 0 By (iv) of the theorem we have aC(x)a

X

-1 -1 -1
C(z) where z axa and f (z) f (axa f ol (x) f (x) > 0 i.e. z axa

z z z a x

belongs to P. Now by Theorem 2, p. 13, [4] it follows that G is an ordered group.

To prove the second part of the theorem we first show that C(x) is a convex

-I
subgroup by showing that y e C(x), e t < y implies that yt C(x) and hence

C(yt-I) is impossible thereby provingt c C(x) This is done by proving that C(x)

that C(x)
_

C(yt-I) Suppose C(x) C(yt-I) From the assumption y C(x) and

condition (ii) of the theorem we get that C(y C(y) c_ C(x) C(yt ). Property P

now implies that C(yt-1) C(y-lyt-I) C(t-1) C(t) We will now show that this is

impossible. For C(t) C(yt C(ty implies ft fyt-I fty-I and so 0

fyt-l(yt-I) f -l(y) + f -l(t
-1 -I

yt yt
f -l(t ft(t since fyt-1

(y)
0 i.e.

yt

-I
ft(t) 0 a contradiction to the choice of t Thus we get-that C(yt

_
C(x) by

-i
(iii) of the theorem. In other words yt e C(x).

We now prove that C(x) is the smallest convex subgroup containing x For this

let us suppose that C is any conves subgroup containing x and let us assume that

x e and t e C(x), t x, t e This implies C(t) c_ C(x)

CASE I. C(t) C(x)

-I -iC(t) C(t and Property P imply that C(x) C(xt and so fx fxt-! Now

-I -I -i -i
fxt-l(xt f (xt f (x) + f (t f (x) 0 since f (t 0 in view of

X X X X X

-1
C(t C(x). Hence x t e The convexity of C implies that t C.

CASE 2. C(x) C(t) C(xt-I)
Then f -I f f We now discuss the two possibilities f (x) > fx(t) and

xt x t x

f (x) f (t) separately.
X X
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-If (x) fx(t) ==fxt-l(xt > 0 by (i) of the THeorem since t x. i.e.
x

e t x. Again from the convexity of C we conclude that t C.

f (x) fx(t) == fx(t) nf (x) for some integer n =>f (xnt-I) 0 =>c(xnt-I)
x x x

C(x) and f f n -I => f n -l(xnt-I) 0 = x
n

> t e = t C since C is convex.
x x t x t

In either case t C.

-I
CASE 3. C(xt C(x) C(t).

-I
Then f (xt 0 i.e. f (x) fx(t). From Property P we get that C(x2t-I) C(x)

x x

which in turn implies that f f fx2t-1 Now fx2t-l(x2t-l) f (x) + fx(Xt-I)x t x

-I 2
f (x) > 0 since f (xt 0. i.e. x > t e The convexity of C now implies
x x

that t e C.
-I

Thus we see that in all cases C(x) c_ C. For x e C

_
C(x C(x) which

proves that C(x) is the smallest convex subgroup containing x.

f is an order preserving homomorphism from C(x) to the reals. For let
x

-1 -1 -1
z,y C(x) and z > y Then C(zy C(x) C(zy C(x) = f (zy 0

x

-I -I -I
f (z) f (y) C(zy C(x) = f f -1 == 0 f -l(zy fx(Zy fx(Z)x x x zy zy

fx (y) = fx (y) fx (z) In either case fx(Z) _> fx(y) This proves that Ker fx
C(x) is a convex subgroup of C(x) and hence also of G.

It remains for us to show that C(x)* is the largest convex subgroup not contain-

ing x For this let us suppose that C is any convex subgroup not containing x

Let C. Then since x 4 C, C c_ C(x) and so t C(x). If f (t) 0 then
x

C(t) C(x) by (i) of the theorem and C(t) being the smallest convex subgroup con-

taining t, C(x) C(t) C. i.e. x C a contradiction. Hence f (t) 0 i.e.
x

t Ker f C(x)* This completes the proof of the theorem
x

Even though possibly one can prove Theorem 2.1 in a different way using Theorem 11,

p.51 of [4] or Theorem 2 of [5] we have prefered the above proof since it is elementary.

The above form of formulating the theorem gives rise in a natural way for a criterion

of orderability of a topological group as well.

REMARK. C, the intersection of all C(x), x e G, x e is the first convex subgroup of

G Hence when C (e) the above theorem gives a necessary and sufficient condition

that G may be made into an ordered group without first convex subgroup.

THEOREM 2.2. A non-discrete topological group G can be ordered so that the in-

terval topology of the order coincides with the given topology and also simultaneously

this order is compatible with the group structure of G if and only if G satisfies

the following criterion (v) in addition to those of Theorem 2.1.

(v) either the intersection of all the C(x), x G, x e is the singleton (e) in

which case the collection {C(x)} x G form a neighbouhod base at the
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identity e of C or the intersection C of all the C(x), x e G, x e

is an open subgroup of G and for each x in C f is an open continuous
x

homomorphism into the reals.

PROOF. In view of Theorem 2.1, it is enough to show that condition (v) above is

equivalent to the coincidence of the interval topology and the given topology of the

group G

Let now G be an ordered group. G with the interval topology is a topological

group (see 4.19 [6]). We define C(x) and C(x)* for x G, x e as in Theorem 2.1.

CASE I. nC(x) (e)

Let I be an open interval containing e Then since G is not discrete there exists

-I
a y > e such that y and y are in I Since nC(x) (e) there exists x G

such that y # C(x) t e, t C(x) implies t N y since C(x) is convex. Hence

t I i.e. C(x) E I and this proves that C(x), x G form a neighbourhood base of

e in G

CASE 2. oC(x) C z (e)

Then C is a convex subgroup and hence open in G For x e G it is clear that

C C(x) Hence for x,y C, C C(x) C(y) and so f f f (say). x y,x y

-1
x,y C ==f f f f -i = 0 f -l(xy f(x) f(y) ==> f(x) f(y) i.e.x y xy xy

f is one-to-one on C f being the cannonical map from C(x) to C(x)/C(x) andx

C(x)/C(x)* being order isomorphic to a subgroup of the reals, f is an open continu-
x

ous homomorphism from C(x) to the reals.

To prove the converse also we consider two cases.

CASE I. nC(x) (e)

From Case of the necessity part it follows that {C(x)}, x e G x e, form a neigh-

bourhood base for the interval topology. By hypothesis {C(x)}, x e G, x e form a

neighbourhood base at e for the given topology and hence the two topologies coincide.

CASE 2. oC(x) C z (e)

For x,y C, it is clear from the convexity of C(x) and (ii) of Theorem 2.1 that

f f f (say) Then f is a one-to-one open continuous homomorphism from C tox y

the reals, the topology of C being the relative topology got from the order topology

of G Hence C with respect to this (order) topology is homeomorphic to a subgroup

of the reals with respect to its relative topology. But by hypothesis f is an open

continuous homomorphism from C, taken with the relative topology got from the given

topology on G onto this subgroup of the reals. Now f is one-to-one implies that

the two topologies on C conincide. C being an open subgroup in both the topologies

on G the two topologies on G themselves coincide.

COROLLARY 2.3. Let G be an ordered topological group (i.e. the topology of G

is giben by a total order compatible with the group structure of G). Then the com-

ponent of the identity e of G is either the trivial subgroup (e) or it is an open

subgroup topologically isomorphic to the additive group of reals.
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PROOF. If oC(x) (e) by Theorem 2.2 above G becomes a zero dimensional group.

If nC(x) C (e) then C is the component of identity. For, each C(x) being an

open and closed subgroup, contains the component of e and so C itself contains the

component. But the component being a connected subgroup is also a convex subgroup (see

Proposition 1.3(2), [2]) and hence contains C which proves that C is the same as

the component. From Theorem 2.2 it follows easily that C is topologically isomorphic

to the additive group of reals.

3. TOTALLY DISCONNECTED ORDERED GROUPS.

A metric d on a set X is said to be a non-archimedean metric if d satisfies

the stronger triangle inequality

d(x,y) max(d(x,z), d(z,y)

for x,y,z X. A topological group is said to be non-archimedean metrizable if there

exists a right (or left) invariant metric on G which induces the topology of G (see

Rangan [3]).

LEMMA 3.1. Suppose a topological group G is such that its topology is given by

a non-archimedean metric d then there is an equivalent non-archimedean right (or left)

invariant metric 0 on G (i.e. a non-archimedean metric 0 which gives the same

topology as d).

PROOF. When d is a non-archimedean metric on G then the metric d’ d/l+d

also defines the same topology on G Put 0(x,y) sup d’(xz,yz) where supremum is

taken as z varies in G Then 0 is well-defined since d’ is bounded. It is

easy to check that 0 is a right invaPiant non-archimedean metric on G We will now

show that the topologies induced by 0 and d’ coincide.

Since Ox,y) d’(x,y) for all x,y G, it is clear that V U for all
n n

positive integers n where V {x P(x,e) < l/n} and U x d’(x,e) l/n}.
n n

i.e. the topology induced by p is finer than the topology induced by d’. To prove

that the two topologies are the same we will show that each VM contains a U
k

for

some k. Corresponding to the Integer M O, choose positive integers n,m such that

1/n + 1/m 1/M and choose z in G such that O(x,e) d’(XZo,Z + I/n. Let
o

W {x d’ z zo) < I/m Then Wz is the open sphere with centre z and radius
0 O

I/m with respect to the metric d’. The continuity of x xz at x e implies the
o

existence of a positive integer k such that UkZ WZo Let x E Uk. Clearly x

is in W Hence 0(x,e) d’(XZo,Zo) + I/n I/m + I/n I/M proving thereby that

U
k

V
M This completes the proof of the lemma.

THEOREM 3.2. Let G be a separable totally disconnected ordered topological

group. Then O is non-archimedean metrizable.

PROOF. By Theorem 2.6 of [2], it follows that G is topologically orderable,

metrizable, zero-dimensional group and so carries a non-archimedean metric inducing the

topology of G (see proof of Theorem 7 of [I] or [7]). Now from Lemma 3.1 it follows

that G is non-archimedean metrizable.
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Vnkataraman, Rajagopalan and Soundararajan proved (see Theorem 2.6, [2]) that a

separable totally disconnected group is topologically orderable (i.e. the topology is

given by a total order) if and only if it is metrizable and zero-dimensional. Non-

archimedean metrizable groups are totally disconnected groups (see Rangan [3]). Hence

in view of Theorem 3.2 above it is natural to ask whether the converse of Theorem 3.2

is also true. i.e. Is it possible to total order a non-archimedean separable topo-

logical group in such a way that the order is compatible with both the group structure

and the topology? That the answer to this question is in the negative is shown by

Theorem 3.4 given below. For the counter example given in Theorem 3.4 we require the

following definition.

Let Q denote the field of rational numbers. Let p be a fixed prime number.

Each x in Q can be written uniquely in the form pSx’ where p does not divide

the numerator and denominator of x’ and s is an integer. We define Xlp
I/p

s
and d(x,y) Ix-yl for x,y in Q Then d is easily seen to be a non-

P

archimedean metric. The completion of Qp of Q with this metric (which can be made

into a field extending the addition and multiplication in Q is called the field of

p-adic numbers. We consider the additive group of this field Qp and denote it by

Qp itself. It is a separable totally disconnected group (see section 2, [8] for

details).

LEMMA 3.3. (see van Rooij [8]). In Qp the series Z n.n! converges to -I.

PROOF. Since ln!l and In.n,l tend to zero as n tends to infinity, it
P P

follows that En! A and En.n! B Then A + B En! + En.n! E(n+l)! A

which proves that B -i.

THEOREM 3.4. There is no order on (Qp,+) which is compatible with both +

and the usual topology of Qp even though it admits an order compatible with the topo-

logy of Qp alone and an order compatible with the group structure + alone.

PROOF. Suppose Qp admits a total order compatible with the group structure and

topology. Let 0 under this order. From the compatibility of the group structure

and order it follows that s k.k! 0 and from the compatibility of the order
n k=l

and topology it follows by Lemma 3.3 that -i lim s 0 which is a contradiction.

Similarly 0 is also impossible. This proves that Qp admits no order compatible

simultaneously with the group structure + and the topology. However by Theorem 2.6

of [2] it follows that it admits an order which induces the topology of Qp (see also

Remark 5.7 of [2]). Since Qp is a torsion-free abelian group it admits a total order

compatible with the group structure + alone (Corollary 5, p.36, [4]).

4. NON-TOTALLY DISCONNECTED ORDERED GROUPS.

In this section we consider only abelian non-totally disconnected groups. In what

follows we refer the reader to Wright [9] for the deinitions of radical-free, maximal
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radical free etc.

THEOREM 4.1. A non-totally disconnected locally compact ableian topological group

is orderable if and only if it is maximally radical free and its component is an open

subgroup of G topologically isomorphic to the reals.

PROOF. Suppose G is a mon-totally disconnected locally compact abelian group

whose topology is given by a total order which is compatible with the group structure

of G Then by Corollary 2.3 its component C is an open subgroup topologically

isomorphic with the reals. Now by Theorem 5.1 of Wright [9] it follows that G is

maximally radical-free in its interval topology.

Let now G satisfy the conditions of the Theorem. If G is connected then by

Theore 5.2 of Wright [9] G is topologically isomorphic to the reals and so G is

orderable. If not since the component of the identity is open and topologically iso-

morphic to the reals G is one-dimensional G/C is discrete and maximally radical

free by Theorem 5.3 of Wright [9] and hence torsion-free by Theorem 4.1 of Wright [9].

By Theorem of Isiwata [I0], G can be totally ordered so that the order topology

coincides with the given topology of G and this order is compatible with the group

structure as well.
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