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A logarithmically improved regularity criterion for the 3D nematic liquid crystal flows is
established.

1. Introduction

We consider the following hydrodynamical systems modeling the flow of nematic liquid
crystal materials ([1, 2]):

U +u-Vu+ Vo —pAu=-A\V- (Vdo Vd + (Ad - f(d)) ®d), (1.1)
di+u-Vd—-d-Vu=y(Ad - f(d)), (1.2)

divu =0, (1.3)

(v,d)|i=0 = (vo,dy) in R>. (1.4)

u(x,t) € R? is the velocity field of the flow. d(x,t) € R? is the (averaged) macroscopic/
continuum molecular orientations vector in R3. o (x,t) is a scalar function representing the
pressure (including both the hydrostatic part and the induced elastic part from the orientation
field). p is a positive viscosity constant. The constant A represents the competition between
kinetic energy and potential energy. The constant y is the microscopic elastic relaxation time
(Deborah number) for the molecular orientation field. f(d) = (1/€?)(|d|*-1)d. For simplicity,
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we will take g = A = y = ¢ = 1. The 3 x 3 matrix is defined by (V © Vd)i]- = (0;d - 0;d). ® is the
usual Kronecker multiplication, for example, (a ® b)ij =a;bjfora,b e R3.

Very recently, results for the local existence of classical solutions for the problems (1.1)—
(1.4) were presented in [3]. The aim of this paper is to establish a regularity criterion for it.
We will prove the following.

Theorem 1.1. Let (ug,do) € H? x H® with div ug = 0 in R3. Suppose that a local smooth solution
(u, d) satisfies

J‘T IVu)llL,

2 3
dt<oo, with —+—-—=2,2<p<3. 1.5
o 1+In(e+||Vu(t)||rr) rop b (15)

Then (u,d) can be extended beyond T.

Remark 1.2. Equation (1.5) can be regarded as a logarithmically improved regularity criterion
of the form Vu € L"(0,T; LP(R3)) with (2/7) + (3/p) = 2. Condition (1.5) only involves the
velocity field u, which plays a dominant role in regularity theorem. Similar phenomenon
already appeared in the studies of MHD equations (see [4-6] for details).

Remark 1.3. When A = 0 in (1.1), then (1.1) and (1.2) are the well-known Navier-Stokes
equations. Similar conditions to (1.5) have been established in [7-10]. But previous methods
can not be used here.

Remark 1.4. A natural region for p in (1.5) should be 3/2 < p < oo, but we only can prove it
for 2 < p < 3 here. We are unable to establish any other regularity criterion in terms of u or .

2. Proof of Theorem 1.1

Since we deal with the regularity conditions of the local smooth solutions, we only need to
establish the needed a priori estimates. We mainly will follow the method introduced in [9].
First, it has been proved in [3] that

331 | (Wt + 9P, + 1R = DG, )d -,

+ f <|Vu|2(x,t) +|Ad - f(d)|2(x,t))dx =0.
]R3

Hence

Nl Lo 0,7:12) + 8l 20,7501y < C- (2.2)



Journal of Inequalities and Applications 3

Multiplying (1.3) by d, integration by parts yields

%% j 3 d|* (x, £)dx + sz <|Vd|2(x, t) +|d|* (x, t))dx
<|d| (x,t) +(d-V)u- d(x,t))dx (2.3)

<

I
NI s

f 3 |d[* (x, H)dx + IRB (|d|2(x, £ + E|Vu|2(x, t)>dx

Thanks to (2.1), (2.2), and the Gronwall inequality, we get
Nl e 0,101y + 1Al 2 0,7;112) < C- (2.4)

Let u = (u1,u,u3)" and d = (dy,d>, d3)", then the ith (i = 1,2, 3) component of u satisfies

3
Oty + 14 - Vit + 0y — Ay = =0 <Za,-dka]-dk +(adi - (jar - 1)d,-)d,->. (2.5)
j=1 k

Multiplying (2.5) by —Au;, after integration by parts, summing over i, and using (1.2), we
find that

1d

2 2
2dt ). |Vu| (x,t)dx+J‘ . |Aul|(x, t)dx

f Oxu;j - Oju; - Oxuidx — J Ady - 0;Vdy - Vu;dx
ijk ik 7R3

-y f didic - VAdy - Vudx + > f 0;(d;jAd;) - Audx (2.6)
R3 ij R3

—Zf |d|—1 dd)-Auidx

2211+12+I3+I4+I5.
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Applying A on (1.3), multiplying it by Ad, and using (1.2), we have

%% L@ |AdP (x, t)dax + fﬂ@ (IVAAP(x,B) + Af(d) - Ad(x, 1) ) dx

=> f Bidic - VAdi - Vugdx = > | 09jdc - 3,V - Vugelx
ik YR ik’ R

+y J' (d;Ad;) - 0jAmdx =Y j Ad;Ad; - djudx (2.7)
ij YR ij YR
- ZZ J‘ Vd] . ajui . VAd,dx
ij /R
=ZI6+I7+IS+19+I]0.

Combining (2.6) and (2.7) together, noting that I3 + I = 0, I + Is = 0, we deduce that

1d
1ld f (I9uP 1)+ 1AdP (x, 1) dx + j | Al (x, t)dx
2 dt ]R3 ]R3
(2.8)
+ J‘ <|VAd|2(x, i’) + Af(d) . Ad(x,t))dx =hL+DL+1Is+I;+ Iy + L.
R3
We do estimates for I; (i=1,2,5,7,9,10) as follows:
L < C||Vu||Lp||Vu||izp/(,,,l)
< ClVul 1Vl 752 Al (2.9)
<ellAul?, + CIVull P | Vu|?, forany e > 0.
Here we have used the following Gagliardo-Nirenberg inequality:
IVull 2 < CVall 2 | Aul22. (210)
Similarly, by using (2.10), we have
L + 17 + I < ClVull | Adl[ 720
2(1-(3/2 3/
< ClIVulllladl 2| v adl;? (2.11)

<el|VAd|2, + Cl|Vul P ad|%,, forany e >0,
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I5 is simply bounded as follows:

Is < cj (|d| + |d|3>|Vd| | Auldx
R3

< C(Nldllgs Vel = + I Velll ) 1 Au
< C(IVAl + Vel | Al 212)
< C(IValZIAdIL2 + VA IV AN ) | Aullye

< ellAul: + CllAd]l + C| VA

< ellAull}, + Cl|Ad|F, + || VAd|)}, + C,
for any € > 0.

When p = 2 or 3, Ijp can be estimated easily and hence omitted here. If 2 < p < 3, we
do estimates as follows:

Lo < ClIVull IV 2 || VAl 2
2—-(3/ 3/
< ClIVull, - A5 v ad|}? (2.13)

2p/(2p-3)
< el VAdIlE: + ClIVully™ ™ - | AdllE,

for any € > 0. Here we have used the Gagliardo-Nirenberg inequality:
IVdllze» < CllAd]E ™ VAR (2.14)

Finally, we omit the trivial term
I Af(d)-Addx = - E I 0if(d) - 0;Ad dx. (2.15)
R3 i /R3

Now, putting the above estimates for I;s into (2.8) and taking e small enough, we obtain

d

dt J‘]RS <|Vu|2 + |Ad|2>dx + J‘R3 <|Au|2 " |VAd|2>dx

< CIVul @ (Ivul, +1adIE) + CladlE; +C (2.16)

2p/(2p-3
<C(1+1vuly ) (1+ 1 Vull, + 1AdIE: ).



6 Journal of Inequalities and Applications

Due to the integrability of (1.5), we conclude that for any small constant € > 0, there exists a
time T, < T such that

T 141V @3
r, 1+In(e +[|Vu(®)ll,)
Easily, from (2.16) and (2.17) it follows that
d 2 2
(1 1Vullf: + Ad]:)
(2.18)

2p/(2p-3)
L+ 1Vl In(e + [|Aul|2 + ||VAd||L2)<1 +[| Va7 + ||Ad||2z),
~ T 1+1In(e+||Vull,) L L

which implies that for t € [T, T),
Ce
Va7 + Ad(®)II7: < C<1 + sup||Au() |2 + sup||VAd<->||Lz> : (219)
[T t] [Tot]

We are going to do the estimate for Au and VAd. To this end, we introduce the following
commutator estimates due to the work of Kato and Ponce [11]:

Aa—lg

1A (fg) - fA“gll, < (| IV E i+ 1A N el e ) (2.20)
IA*(f Oy < CUFlpn 1A o + NA fll e lIgN 1) (2.21)
where A% = (—A)a/z, fora>1,and 1/p=(1/p1) + (1/q1) = 1/p2) + (1/q2).

Applying A to (2.5) and multiplying it by Au;, after integration by parts, and summing
over i yield

1d

S fRs [Auf®(x, t)dx + IRS |V Aul*(x, t)dx

<

(A(u-Vu)—(u-V)-Au) - Audx
R3

+2
ij

J‘ ajA(aid . a]d) . Auidx
R3

+ 2
ij

IRB ;A ((1dP —1)did; ) - Audx

’[ Adl . Ad] . ajAuidx
R3

+ Z f dezdi : a]-Auidx (222)
ij R

+
ij

=Nh+h+3+]a+]5+ 6.

+ 22 J‘R3|Vd] . VAdll . |6]-Aui|dx
L]
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Applying A® to (1.3), multiplying it by A%d, we deduce that

1d

1a 3 412 4 12
¥ J‘Rs A (x, t)dx + :[R3 |[A*d| (x, t)dx

<

fRa (A3(u Vd) - u- VA3d) - A3d dx

+

f A*f(d) ~A3ddx' - Zf d;A%d; - 8; Au;dx
R3 i,j R3
- ZI a]ulAd] . Azdidx - ZZ ’[ Vd] . Vaju,- . Azd,-dx
ij R3 ij R3
= J7+ Js+ Jo+ J1o+ Ju1-

Summing up (2.22) and (2.23), using J4 + Jo = 0, we have

1d

2dt IRS <|A”|2(x/ t) + IA3d|2(x,t))dx + fRs <|VAu|2(x, t) + |A4d|2(x,t)>dx

Sh++3+]s+Je+ J7+ Js+ Jio+ Ju-

Now we estimate each term J; as follows.
By using (2.20), we estimate J; as

Ji < CIVullsl|Aullzs < CIVUlZ2H IV AulM* - [Vull 1221V Aul32?
L L L

< €||VAu||iz + C||Vu||£, for any € > 0;

here we used the following Gagliardo-Nirenberg inequalities:

3/4 1/4 1/4 3/4
IVulls < CIVulZH VAL, | Auls < CIVull 2V Aull}r*.

Using (2.21), we estimate J, as

J2 < ClIVA| - A%l | Au] 2

5/4 1/2

< ClIAdIPH AL - |Vl 221V Aul 22

< el VAUl + el| A*d|[7: + Cl|Vullt. | Ad]S,,

for any e > 0. Here we have used the following Gagliardo-Nirenberg inequalities:

1/4

IVdllp- < AP IAYENL, 1 Aulle < CIVUll IV Aull2?.

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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J3 only involves lower derivatives of d and is easy to handle, so we omit it here:

J5 < ClIAd|[Z]|V Aull
< ClAd|BA AL IV Al (2.29)

< el VAl + el Al + CllAdIS,
for any e > 0. Here we have used

3/8
1Adl|s < ClAIZ 1A 2

Jo < ClIVdl|slIVAd| 2|V Aue]| 2

(2.30)
< CllAd]l - 1A A% IV Aull 2
< el VAulZ, +ellA*dllL> + CllAd] L,
for any e > 0. Where we have used the following inequality
IVAd|» < CllAd]4 A% (2.31)
By using (2.20), we estimate J; as follows:
J7 < ClIVull 1A%l Ls + CIA Ul 2|Vl A%
< ClIVull 2| AdI A" + CIASul 21V Al | Al A% (2.32)
< ellA%ullps + el A*dl1: + CllAdIR | Vul: + CllACIE VAL,
for any e > 0. Here we have used
IA%d] .« < CllAd] A (2.33)
The term Js is trivial, and we omit it here:
Jio < ClIA| o | Va2 IA*d]
< ClIVull2 - |Ad] 1 - [ A*al7 (2.34)

< ellA%dlz: + ClIVul} | Ad],
for any € > 0. Where we have used the following inequality:

3/4
[Ad]|. < CllAd| S IAYL (2.35)
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Finally, using (2.26), J11 can be bounded as follows:

Ju < ClIVAll ol Aull s |A*dl 2

3/4
< CllAd] - [Vulls* - [A%ull A (2.36)

3 2 4 2 2 8
< el N ullra + el A%dl[2 + ClIVull | Ad] 2,

for any € > 0. Now, inserting the above estimates for J;s into (2.24), using (2.19), and taking e
be small enough, we get

ol o,7m2) + Null 2o 1;m3) < G
(2.37)
Il 0,702 + 1|20,y < C.

This completes the proof.
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