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We consider perturbations of a first-order differential operator with matrix coefficients
known as the Dirac operator. These operators have one singular point which is allowed to
be either zero or infinity. Unitary transformations are used to apply results for an operator
with a singularity at infinity to one with a singularity at zero. After introducing notation
and several preliminary results, we give necessary and sufficient conditions for perturba-
tions to be relatively bounded or relatively compact with respect to the Dirac operator.
These conditions involve explicit integral averages of the coefficients of the perturbation.
Results are given for both limit point and limit circle type operators.
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1 INTRODUCTION

In this paper we develop a perturbation theory for the formal differential
expression

Ly(r) = W (0{1Q()y(1)] = Q5(0)y' (1) + Po(D)y(n)}, (1)

where the functions y are defined on the interval I=(a,b), co<a<
b<oo and the coefficients W, Py, and Qg are 2 x 2-matrix valued
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18 S.C. MELESCUE

functions on 7. Each coefficient is assumed to be locally Lebesgue
integrable on I, W(?) is positive definite, Po(?) is hermitian, i.e. Py = P,
and Qy() is nonsingular. In our considerations W(¢) is a diagonal matrix
and Qq(?) is frequently the constant matrix J = ((1) ‘01). An operator of
the form (1) is called a Dirac operator.

The expression I is formally self-adjoint, i.e., for “sufficiently smooth”
functions y, z : I — C* with compact support

/1 (W(O)Ty (1), 2(1)) dt = /1 (W(0)y(1), Tz(2)) dt

where (.,.) denotes the usual inner product in C2 Hence, I’ generates a
hermitian operator which is densely defined (i.e. symmetric) in the
separable, weighted Hilbert space £3,(7). This Hilbert space is the space
of (equivalence classes of ) Lebesgue measurable functions y : I — C2such
that [;(Wi|y1[* + Walya>) < 0o, where y = (ﬁ;), and W, and W, are
positive measurable functions on the interval. For y, z € £2,(I), define

(3,2 = /I z*(,)( (1) Wg(t))y(t) dr

and || y||%4, = (¥,¥)y- We will omit the subscript W when there is no
ambiguity.

Associated with the formal differential expressions I" are maximal and
minimal operators (T'; and Ty, respectively) on the Hilbert space £2,(I).
The maximal operator T, is the differential operator defined by I" with the
largest possible domain in £%,(I) which is mapped into £2,(I), i.e.,

D) ={ye ‘C%V(I): Y€ AC(I), Ty € ‘C%V(I)}a

where ACyoc(1) is the set of functions which are absolutely continuous on

compact subsets of 1. We define the minimal unclosed operator T'j to be

the restriction of I" to the functions with compact support in the interior

of 1. The minimal operator Ty is defined to be the closure of T, Similar

definitions may be made for the differential operators of arbitrary order.
We note several well-known facts [12, pp. 41, 46] for formally self-

adjoint I':

1. D(T;)is dense in £2,(I) and Ty is closed.

2.T;=Ty and T} =T.

3. Any self-adjoint extension A of I'y satisfies 'o C 4 C T'y.
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We say that I is regular at a if a> —oo and the assumptions on the
coefficients are satisfied on [a, b) instead of (a, b). We define regular at b
similarly. If T"is regular at a and regular at b, then we say that I' is regular.
Otherwise, T is singular.

Since Ty : D(T) € L£2,(I) — L3,(I) is a closed, symmetric operator,

D(T%) = D(To) & N(E —T%) & N(—iE —T}), 2)

where N(+iE —T}) = {y € D(T'§): +iEy —I'y = 0} and E denotes the
identity operator. Equation (2) is referred to as the first formula of Von
Neumann and can be rewritten as

D(T'y) = D(T'o) ® N(iE —I'y) & N(—iE —T), 3)

since I'y = T'y.

Deficiency indices play an important role in the study of self-adjoint
operators associated with the differential expression I' in that they
determine the number of boundary conditions necessary to construct a
self-adjoint operator [12, Chapter 4]. The deficiency indices of T,
denoted by d.(T'y), are defined by

d,(Ty) = dim R(iE — Ty)" = dim N(—iE — T)
and

d_(To) = dim R(—iE — Tp)* = dim N(iE — T}).

If the coefficients of Ty are real, we have d (I'g) =d_(T). It is well-
known [12, pp. 52, 55] that

d:l:(FO) S 2’ (4)

and if T is regular at a and singular at b, then
d;.(To) +d-(To) = 2. (5)

If T is regular at a and singular at b, we say that I is limit circle at b if
d(To)=2and T is limit point at bif d . (T'g) + d _(T'p) = 2. This notation
stems from the geometric method of Weyl for the second-order equation.
(See [5, Chapter 9].)
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As an example, we compute the deficiency indices for the minimal
operator I’y corresponding to the differential expression (1) with

W(t)=<tg g), Po() =0, and Qo(t)=%<,(i ~ga>

for some constants v and «. Since the coefficients are real, d (I'g) =
d_Ty).

We know that if there exists a A€ C such that each solution of
T'y(f) = My(t), t € 1, is square integrable, i.e., [7y*(?))W(9)y(¢) d < oo, then
for every A each solution of T'y(f) = Ay(f), t €1, is square integrable
[3, Theorem 9.11.2]. Thus, to determine d , (I'g) and d _ (') it is enough
to consider dim N(I";). Notice that inequalities (4) and (5) imply that the
deficiency indices are either one or two since d_ (T'g) = d _ (T'y). Now, we
determine conditions on + and a for which we have £3,(I)-solutions to
Ty(5)=0.

Two linearly independent solutions to the equation I'y(#) =0 are

Yi(f) = (t‘(‘;ﬂ) and Y(¢) = (r?!ﬂ)'

If we take the interval I=[a,o0), a>0, then Y;,Y,€ D(T,) iff
v—a < —1. Therefore, d (I'o)=d_(T')=2 (implying that T is limit
circleat oo)iffy — a < —1. Wealsohave, via[3, Theorem 9.11.2], that'is
limit point at oo iff y—a > —1.

On the other hand, if we take the interval 7=(0,a], a >0, then
Y1, Y€ DI)iffy— a > —1. Therefore,d . (T'p) =d_ (T'p) =2 (implying
that I'is limit circle at 0) iff y — o > —1. Moreover, I is limit point at 0 iff
v—a<—1[3, Theorem 9.11.2].

One importance of perturbation theory is that it allows the
decomposition of an operator into the sum of a simple operator and a
complicated operator which is, in some sense, small with respect to the
simple operator. Since some properties are preserved under certain types
of perturbations, knowledge about the simple operator is often enough
to gain some knowledge about the sum. For example, the essential
spectrum is preserved under a relatively compact perturbation. Also, a
relatively bounded, symmetric perturbation with relative bound less
than one preserves self-adjointness. (See [7-9].)
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In the case of a limit point operator, there is no difference in the
perturbation theory of minimal and maximal operators. This fact has
been proved in the case of a scalar operator by Anderson and Hinton
([2, Theorem 2.2]). In Theorem 2.6 we considerably simplify their proof
and extend it to differential operators with matrix coefficients. (The
proof does not depend on the order of the operator.) In Section 3 we
prove perturbation theorems for several operators of the form (1) which
are in the limit point case. In the simplest case of Theorem 3.1 with unity
weights, a result is obtained which is analogous to the Schrodinger
operator —y" result which states that the perturbing term V(x)y is
a relatively bounded (relatively compact) perturbation of —y” if and
only if

x+€ X+€
lim sup / V2(t) dt < oo, (lim / V() dt = 0)
x X200 i

X—00

for some £ > 0. (See[11, p. 53].) The perturbation theorems of this paper
may also be applied repeatedly to decompose an operator as is done
following Theorem 3.4.

For limit circle operators the results for perturbations of minimal and
maximal operators are quite different. In Section 4 we consider the limit
circle operator of the form (1) with power coefficients. For the minimal
operator the results are somewhat analogous to the limit point case.
However, for the maximal operator we have the surprising result that the
concepts of relative boundedness and relative compactness coincide.

2 PRELIMINARIES

The purpose of this section is to introduce notation and theorems which
will be used throughout this work. We use definitions given by Goldberg
[7] and Weidmann [12].

Let X and Y be Banach spaces and let G and Fbe linear operators, each
having domain in X and range in Y. Denote the domains of G and F by
D(G) and D(F), respectively. By definition the graph norm of F on D(F),
denoted ||-|| s is given by |[y||r=|ly|| + || Fy||. We say that G is relatively
bounded with respect to F (or F-bounded) if D(F)C D(G) and G is
bounded on D(F) with respect to ||-|| s, i.¢., there exist constants o, 3> 0
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such that ||Gy|| < a||y|| + B||Fy|| for all y € D(F). The infimum of all such
(s called the relative bound of G with respect to F (or the F-bound of G).
A sequence {y, } - is F-boundedif there exists a constant C > 0 such that
lyn]l 7 < C for each n. We say that G is relatively compact with respect to
F (or F-compact) if D(F) C D(G) and G is compact on D(F) with respect
to ||-||  i-€.,1f {yn },=; is an F-bounded sequence, then {Gy, },-, contains
a convergent subsequence.

Now, we establish some general properties of operators. As before
the subscript 0 denotes a minimal operator, and the subscript 1 denotes
a maximal operator.

THEOREM 2.1. Let F and G be closed linear operators in a Banach space
B with D(F) C D(G). Then G is F-bounded.

Proof Let G:graph F— B be defined by G(», Fy) = Gy. Then G is
linear since G is linear. Let {(yn, Fy,)}>>; C D(G) be such that
(Vs Fyn) = (3, 2) and G(yn, Fy,) — € as n— co. Now, we show that G
is closed, i.e., (¥, z) € graph Fand G(y, z) = (. Since Fis closed, graph F
is closed. Thus, ( y, z) € graph F where z = Fy; hence, (¥, Fy,) — (¥, Fy)
in D(G). Since G is closed, y, — y and Gy, = G(yy, Fy,) — ¢ imply that
Gy={(.So,wehave( = Gy = G(y, Fy). Thus, Gis closed. By the Closed
Graph Theorem, G is F-bounded.

THEOREM 2.2 Let F and G be formal differential expressions on an
interval I where F is symmetric, the order of G is less than the order of F, and
the coefficients of F and G are sufficiently smooth so that D(Fy) C D(Gy).

4. If G is Fy-bounded, then G, is Fo-bounded.
5. If Gy is Fy-compact, then G is Fo-compact.

Proof (i) Let y € D(F). Then there exists a sequence {y,},c; C D(F})
such that y,— y and Fyy, — Foy as n— oo. Since Gy is Fj-bounded,
{yn}pei € D(G}p) and there exists a constant C; >0 such that

1Goyn — Goymll = 1Gom — ym)Il < Cr(|[¥n = Ymll + 1 FGn = ym)1)-
(6)

Since {yn },o; and {Fjy},-, are convergent sequences, they are Cauchy.
Hence, by inequality (6), {Gyyn } o is @ Cauchy sequence in the complete
space E%,,(a, b) and, therefore, converges. By definition of Gy, y € D(Gy).
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Since y € D(F,) is arbitrary, we have D(Fy)C D(Gp). By applying
Theorem 2.1 we conclude Gy is Fy-bounded.

(ii) Since Gy is Fj-compact, G, is Fy-bounded. By part (i), Gy is Fo-
bounded. Let {y},-, C D(Fp) be an Fy-bounded sequence, i.e., there
exists a constant C, > 0 such that for each n

[yall + || Foynll < Ca. (7

Since Fy is the closure of Fy, there exists a z, € D(Fy) such that for each n
1
lyn = znll + || Foyn — Fyzall < e (8)

Then {z,},-, C D(F§) is an Fj-bounded sequence since, via the triangle
inequality and inequalities (7) and (8),
Izl 5 = llzall + [ Fozal
< (20 = yall + 1Fgzn = Foyall) + (Iyall + | Foyall)
1
< " +CL14+G,.

Since G} is Fj-compact, there exists a subsequence {z,, }ro; of {z},00
such that {Goz,, } -, converges as k — oo, say to ¢. Thus, via the triangle
inequality, the Fyp-boundedness of Gy, and inequality (8), we have that
{¥n}res C D(Gy) and for some constant C3 >0

”Goynk - C” < ”Goynk - Goznk” + “Goznk - C"
= |Go(m, — zn )|l + [|Gozn, — |
< Cs(llym — zm |l + | Foym, — Fozn,||) + |Gozn, — Cl|

§%+I|Goznk —¢|| = 0ask — oo.
&

Therefore, {Goyn},-, contains a convergent subsequence. By definition,
G, is Fy-compact.

THEOREM 2.3 Let F and G be as in Theorem 2.2 and let D(F;) C D(G»).
Then

(i) Gy is Fi-bounded,
(ii) Gy is Fy-bounded,
(iii) Gq is Fo-compact if G, is Fy-compact.
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Proof
(i) Apply Theorem 2.1.
(i) Lety e D(Fy).

Then via part (i), there exists a constant C > 0 such that
Gyl = Gyl < ClIyll + [1F1x1l) = C(lIyll + [ Foyl)-

Since y € D(F;) is arbitrary, we have that G{ is Fy-bounded. Apply
Theorem 2.2 (i) to complete the proof.

(i) Let {yn}o; CD(Fp) be an Fy-bounded sequence. Then
{yn}re; € D(Fy) and is an F;-bounded sequence. Since G, is Fi-
compact, there exists a subsequence {yy, }yo; of {¥n},o; such that
the sequence {G1yy, }1-, converges as k — co. Now, part (ii) implies
that D(F,) C D(Gy). Hence, Goy, = Gy, for any n. Therefore, the
sequence {Goyn, }re; converges as k— oo. By definition, Gy is
Fy-compact.

The following lemma is stated and proved in [2, Lemma 2.1]:

LEMMA 2.4 Let X and Y be subspaces of a Banach space B, where X is
closed, Y is finite dimensional, and XN Y={0}. Then there exists a
constant K > 0 such that

lx+y|l > K|yl forallxe X and y € Y.

THEOREM 2.5 Let F and G be as in Theorem 2.2, Gy be Fy-compact, and
D(F,) C D(G,). Then G, is Fy-compact.

Proof Let {yn},ey C D(F;) be an Fj-bounded sequence, i.e., there
exists a constant C; > 0 such that for each n

yall + 1 Faynll < C1. ©)

Since D(F)) = D(Fy)® S where S is finite dimensional [see Eq. (3) and
inequality (4)], y, can be written as y,, = ¥, o + ¥, Where y, o € D(Fp) and
Yn,c € S for each n. Thus, we have

Giyn = Glyn,O + Glyn,c = Goyno + Glyn,c

for each n since D(Fy) C D(Gy) C D(G,). Since Fy C Fy and F| is bounded
when acting upon a finite dimensional space, there exists a constant



DIRAC OPERATOR PERTURBATION THEORY 25
C, > 0 such that for each n
IF1ynell < Callynell- (10)

Thus, via the triangle inequality and inequalities (9) and (10), we have
for each n

1Fiynoll = |Fiyn — Fiynell < |Fiyull + [|[Fiynell < C1 + Collyncll-

(11)
Via Lemma 2.4,
1 1
el < HJ%C”F, < E”J’n,o +yn,6”F1 = “IEHJ’n”F]- (12)
Thus, via inequalities (9), (11), and (12), we have that for each n,
&)
1Foynoll = | F1ynoll < C1 +—=Ci, (13)

K

ie., {Foyno}oe, is bounded in £2(I).
Also, via the triangle inequality and inequalities (9) and (12), we have
that for each n

noll = 11¥n = Yuell < yall + 1ynell

1 1
< lyall +E”yn“F1 <G +EC1' (14)

Thus, {y.0}2, is bounded in £2(I). Via inequalities (13) and (14),
{¥n0} ey isan Fo-bounded sequence. Since Gy is Fo-compact, {Goyn0} ey
contains a convergent subsequence, say {Goyn,0}rq- When acting on
a finite dimensional space, G, is bounded. Thus, there exists a constant
C3> 0 such that for each k, ||G1yn,c|]l < C3||yn |l Via this inequality
and inequalities (9) and (12), we have that ||Giyy,, .|| < (C3/K)C; for
each k, i.e., {G1Yn, ¢}z is bounded in a finite dimensional subspace of
L‘fv (I). Hence, {G1n, ¢ }5o; contains a convergent subsequence. There-
fore, {Giyn},; contains a convergent subsequence since Giy,=
GoYn,0+ G1Yn,c. By definition, G, is Fj-compact.
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THEOREM 2.6 Let F and G be as in Theorem 2.2. If F is regular at a and
limit point at b, then Gy is Fy-bounded (G is Fo-compact) if and only if Gy is
Fy-bounded (G, is Fi-compact).

Proof Via Eq. (3) and inequality (4), we can write D(F;) = D(Fp) @ S,
where S is finite dimensional. Since F is regular at a and limit point at
b, dim S=n x m. We know [12, p. 62] that there exists n x m-functions
which are in the domain of F;, have compact support in (a, b), and are
linearly independent modulo D(Fy). Let us call this span of functions Sp.
WLOG, we can take S = S,. Since the order of G is less than the order of
F, we have Sy C D(G,). Thus, D(F,) C D(G,) implies that D(F;) C D(G)).
Suppose that Gy is Fy-bounded. Then D(Fy) C D(Gy). Hence, G, is
Fi-bounded via Theorem 2.3 (i). Suppose that G, is Fp-compact. Then
D(Fy) € D(Gyp). Hence, G, is Fj-compact via Theorem 2.5. Moreover,
if G, is Fi-bounded (G, is Fj-compact), then Gy is Fy-bounded (G is
Fy-compact) via Theorem 2.3 (ii) (Theorem 2.3 (iii)).

The following theorem and lemma [4, pp. 570, 575, 576] are important
in the proofs of later theorems.

THEOREM 2.7 Let I=]a, oco) andlet N, W, and P be positive measurable
functions such that N, W=, and P~ € L,oo(I). Suppose there exists an
€o > 0 and a positive continuous function f=f(t) on I such that

s ]} <o

and

s =gl [ o]} <o

Jor all e €(0,ep). Then there exists a constant k>0 such that for all
e€(0,eq)andy e D,

[ < k{Sz(E) [wokrasie [ 2y}
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where

D={y:y€AC100(I),/ Wyl < oo, and/ Ply’|2<oo}.
i 1

Note that if S;(g), Sa(e) < oo for € =g, then Si(¢), Sa(e) < oo for all
e€(0,&]).

LEMMA 2.8 Let f,g€ ACo(I) be positive functions on an interval 1
satisfying | f'(1)] < No and | ()g'(t)| < Mog(?) a.e. on I for some constants
Noand My. Then for fixedt € I,0 < e < 1/Ny,andt < 1 <t +gf(t), we have
that

(1 —eN)f(t) < flr) < (1 +eNg)A2)
and
e—Mo/Nog(t) < g(T) < CM°/N°g(t).

This lemma implies that both positive and negative powers of f{(7)
and g(7) are essentially constant for 1 < 7 <+ ¢f(¢) and fixed ¢.

In the proofs of several results in this work, we will use unitary
transformations. Here, we develop sufficient conditions for a unitary
change of dependent and independent variables for a maximal (or
minimal or self-adjoint extension of a minimal) operator of the form

Mz=<"§1 W%I){%[(Oz)'—i—ez']-{-./\/’z}, xex, (15

where
_ (0 6 _(m n
8—(—0 0)’ N"(n nz)
and ‘=d/dx.

Let t=f{x) where f: X — T is a strictly increasing (decreasing) C"-
function, and let

Us(t) = (“‘(()") 0 )(Z‘(x)) for z = (zl(")) € £2,(X),

p2(x) ) \ z2(x) z3(x)

where p; € C(X), for i=1, 2, are never zero on X.
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If the weight functions w; satisfy on T’

PO 41C) B 6
M= iim 19

then after some calculations we have for 7, z € £2,(X)
wil(t 0
r [Uz(1)] dt
0 wy'())
= E)au (17

(UZ,Uz) g2y = /T [UZ(t)]*<

Thus, U is a unitary map from £%,(X) onto £L%,(T). Let L=UMU"",
y=Uze D(L) for ze€ D(M), and ' =d/d¢. Then

MU y(x) = w™! { %{(eu“y)'f(X) +O[(u™)y
+u”' Y ()} +N#_1J’}’

where

= (M9 48 = (0

Hence, suppressing independent variables and carrying out the indi-
cated operations, we have that

Ly=UMU"y
1 . . Lo _ .
= uW"{E{@u“ly’H ©u 'y f-eu iy +6euly f}
, 1 ~ - -
+N;f1y} = usz“{5 By’ + (6y)] +Ny},

where

6(1) = (u'ep™)(x) (18)
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and

N(@) = T 2 {1 e 'op™) = (utep ™)™ + p Ny }(x)-

(19)

Thus, via Eq. (16)

n=eh(" 0 3ie +ey+ iy} rer
(20)
Also, for y = Uz, Z € D(M ) we have
(Ly, L) g2r) = (UMU™'y, UMU™'§) 2,
= (UMz, UMZ) 2 g
= (Mz,M2) 3 5, 1)

where the last equality follows by Eq. (17). Therefore, if we have the
conditions on the weight functions (16) and on © and A/, which are given
by (18) and (19), then

lzll 2 x) = ¥l 2y and [ Mz]| gz 5y = 1Ll 21

via Egs. (17) and (21).
3 PERTURBATIONS OF T: LIMIT POINT CASE

In this section, we consider perturbations B of a higher-ordered
differential operator T. These operators T and B are defined on I by

the equations
10 0 —-1\/y
- 1 1
n=(h )00 @

o Q1 q4)(y1
By=(" 23
Y (0 Wz"])(% @2)\»n) (23)

and
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where the coefficients ¢, 2, 3, and g4 are assumed to be real, locally
Lebesgue integrable functions. Since B is a multiplicative operator,
By =By, If g3 = q4, then B, is self-adjoint.

We develop necessary and sufficient conditions for the perturbations
to be relatively bounded or relatively compact with respect to T. These
conditions involve explicit integral averages of the coefficients of B. In
Theorem 3.1 we consider the maximal operators T, and B, associated
with the differential operators (22) and (23), respectively. The proof
relies heavily upon Theorem 2.7 and Lemma 2.8. Corollaries 3.2 and 3.3
apply Theorem 3.1 to perturbations of an operator of the form (1) with

we = (7 ) mw=0 md aw=3( )

xa

for some constants v and «. Each proof makes use of a unitary
transformation. Corollary 3.2 considers the operators on the interval
[a,00), a> 0, with v — a > —1 so that the unperturbed operator is limit
pointat co; whereas, Corollary 3.3 considers the operators on the interval
0, a], a>0, with v —a < —1 so that the perturbed operator is limit
point at 0.

THEOREM 3.1 LetI=[a,00) for somea>0,letq = (Z:.‘:l q%)l/ 2 andlet
wi=w,=f"" where fe ACio(I) is positive and | f'(t)| < Ny a.e. on I for
some constant No. Then the following statements hold:

(i) B, is T1-bounded if and only if

t+ef(t)
sup ]—,(17) /t FH1)g* () dr < oo, (24)

tel

for some € € (0, 1/2Ny). Further, when (24) holds, the relative bound
of Bywith respect to T is zero.
(ii) By is Ty-compact if and only if

t+ef (1)
im = [ Podmar=o, 25)

for some € € (0, 1/2Ny).
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Proof By applying Lemma 2.8 with g =1, we know that positive and

negative powers of f are essentially constant on intervals of length &f.
Thus, we may replace

t+ef (1)
f-% JRRACTICE

with either
t+¢f(1) t+ef(t)
f() / q2 (r)dr or f(T)qZ(’T) dr.
t t

(1) Sufficiency Let us consider any y€ D(Ty). Then we have,
suppressing the independent variable,

I = / S i + P, (26)

ITy|? = / SR+ 1P, (27)

and

1817 = [ Ala? + Al + lavgs + draaloiza
+ 9194 + Q29317132 + a3 + a3y}
< /1 f{la? + a2lnl® + 2|19 + gaasllyiya) + (a2 + @211y}
(28)

We make use of the inequalities 2|y;yo| <|y|*+|y2f* and
|4194 + ¢243| < 2¢* in inequality (28) to obtain

I1By|* < /1 )G () (DF + ya(7) ] dr. (29)

Now, we show that the hypotheses of Theorem 2.7 hold for some
g€ (0,1/2N,) with N=fg?, W=f"", and P=f. Since positive and
negative powers of fare essentially constant on intervals of length &f, we
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have for some constants C;, C, >0

t+ef(t) t+ef(t)
S]——-Stlel?{l [:+ fl(T)dT} [/; (T)qz(T)dT]}

t+¢f(t)
g%stg?{ [ e dT} (30)
and
t+ef(1) t+ef(t)
Sy = sup{ 27307 [ f(T)dT] [ t f(T)‘IZ(T)d”']}
t+ef(1)
< %stg?{ [ FDG(r) dT]} (31)

forsome e € (0, 1/2Ny). Inequalities (24), (30), and (31) give us Sy, S, < 00
for some £ € (0, 1/2Ny). Therefore (via Theorem 2.7), there exists a
constant C3 > 0 such that

/, SOEE IO + 2] dr
< Cs{ [ O OP + ()P dr
12 [ AR + b3 df}. (32)

By substituting (26), (27), and (29) into (32), we obtain for some constant
Cy4>0

IByII” < Calllyll® + N TyI1)-

Thus, y € D(B,). Since y is arbitrary, the above inequality implies that B,
is Ti-bounded and that the relative bound of B; with respect to T
is zero.

Necessity Let ¢ be a function in C§°(R) such that ¢ =1 on [0, 1] and
supp(¢) =[—2,2]. Fix £ € (0, 1/2Ny). For each r > a we define

o,(t) = (f( )) for t > a.
Then, ¢,=1 on [r,r +ef(r)] and supp(¢,) =[r — 2f(¥), r + 2&f(r)].



DIRAC OPERATOR PERTURBATION THEORY 33

For each r > a we define

(1) = (¢'(§t)) and W, (1) = ( q& t)), fort>a  (33)

Via Lemma 2.8, a change of variables, and the continuity of ¢, there
exist constants C;, C, > 0 such that for each r > a

2
o) = [ Os0a<ce [ Fwase. (4
1 -2
Similarly, for each r > a
”‘I’r”2 < G (35)

Via Lemma 2.8, a change of variables, and the continuity of ¢/, there
exist constants Cs, C4 > 0 such that foreachr >a

2 2
i7e = [0 [%¢,(,)] ars et [ WwPausc (66

Similarly, forr > a
IT%,|* < Ca. (37)
Since ¢, =1 on [r, r + f(r)] and supp(¢,) =[r — 2&f(r), r + 2¢f(r)],

ef(r

r+¢f(r) r+2¢ef(r)
/ AOIE@) + (0] de < / AR + E0)63(1) dr
r r—2¢f(r)

= || B%,||*. (38)

Similarly,

r+2¢f{

r+ef(r) r)
[ AOBO +E(0)] de < / AOBO + RO () di

—2¢f(r)

= ||BY,|. (39)
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Thus, via the Tj-boundedness of B; and inequalities (34)—(39), there
exists a constant Cs > 0 such that

r+ef(r)
f)g*(#)de < Cs.

r

Since the right-hand side of the above inequality is independent of r,
inequality (24) holds.

Note that the proof of necessity shows that (24) holds for every
e €(0,1/2Ny).

Sufficiency By the previous argument B; is Ti-bounded. Thus,
D(T,) C D(By). For every positive integer N > a, define By on D(T;) by

_ [ By ona,N],
By = {0 on (N, 00).
In order to simplify the proof, we break the argument into two claims.

CLAamM 3.1.1 By — By in the space of bounded operators on D(T;) with
the Ty-norm.

Proof of Claim 3.1.1 By anotein Section 2, we know that T is closed
since it is a formally self-adjoint maximal operator of the form (1).
Therefore, D(T}) is complete under the 7-norm.

Supressing the independent variable and using the inequalities
2{y1p2] < [p1* + [p2f* and |g194 + 9243] < 24°, we have for y € D(T})

18y~ ol = [ AL+ Al + s + s
+ 9194 + 24317132 + [ + )2}
< [ At + BInF + s+ sl
+ g3 + g}

<3 /N " Il + ). (40)

We apply the sufficiency argument in part (i) with Iy =[N, co) to the
last inequality in (40). Via Theorem 2.7 and inequalities (30) and (31),
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there exist a constant k; > 0 such that

2 ) kl t+ef(1) ) ) ) 5
|By — Bwy|| < — sup fq Sl + 12l
tely t Iy

+é [ i+ baf ) @
N
Via inequality (41) there exists a constant k, > 0 such that

t+ef(t)

1By — Bwyll* < ks fglp{ f(T)qz(T } () + 1T (42)

t

Therefore, inequality (42) implies that for y 0

18y~ Byl 0 .
__y___ﬂ<k;/2<sup{ /, f(T)qZ(T)dT}) . 43)

”y||T| tely

Since Iy =[N, 00), Eq. (25) implies thatsup,¢;, { f,'+€f(') fAN)g¥(r)dr} =0
as N — oo so that, via inequality (43), we have

||B— By|| — 0 as N — oc.
CrLAM 3.1.2  Each By is T-compact.

Proof of Claim 3.1.2 Let {yn},o; C D(T1) be a T1-bounded sequence
where y, = (y"') for each n. We need to show that for each N the
sequence {BNy,,}n_l has a convergent subsequence. We make use of
the Arzela—Ascoli Theorem.

Let us consider the sequence of the first component functions
{¥n1}=;- Using the following well-known inequality, we show that this
sequence is uniformly bounded on [a, N].

If geACla,b] and h({t)>0 is Lebesgue measurable with
JP k(1) dt < oo, then for 1 € [a, b]

Jon (n)lg(r)2ar\
wors (M)
1/2

+ (/abh'l( )1/2</ h(r)|g' ()] d’T) . 44
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Since f'is a positive, continuous function on [a, 00), £~ is bounded
above and below on [a, N]. This fact along with the above inequality
implies that there exists a constant k3 > 0 such that for ¢ € [a, N]

1/2

[yn1(0)] < ks{(/aNf'l(T)|yn,1(7)|2 dr) +(/aNf(fr)|y;’] ()P dT)l/z}

< ks(||lynll + 11 Tyall)

for each n. Since {yn } o is a T1-bounded sequence, the above inequality
implies that the sequence {yn,1 },-, is uniformly bounded on [a, N].

‘Now, we show that {y,1},., is equicontinuous on [a, N]. Via the
Cauchy-Schwarz inequality and the boundedness of f~! on [a, N],
there exists a constant k4 > 0 such that for s, t € [a, N]

5
/ yiy(r)dr
t

/tsf“l(r)d'r

lyn,l (S) — Yn,1 (t)l =

1/2 1/2

<

/ A ()P dr

1/2
< kgls — 1]/

/ Ayt ()P dr

1/2
< kals — t|"||ynll 7, -

Since {yn},c is a T1-bounded sequence, the above inequality implies
that the sequence {y»,1},- is equicontinuous on [a, N].

Therefore, via the Arzela—Ascoli Theorem we conclude that there
exists a subsequence {yn, 1}e; Of {¥n1},e Which converges uniformly
on [a, N]. By repeating the above arguments on the subsequence
{m2}iey Of {¥n2},ey> We conclude that there exists a subsequence of
{¥m.2}rey Which converges uniformly on [a, N]. Hence, there exists a
subsequence of {y, } -, which converges uniformly on [¢, N]. WLOG, we
assume the sequence {y, },., converges uniformly on [a, N].

Now, using an argument similar to the one in (40), we have for each N

N
|Bryn — Byl < 3 / SO 9 — yml2 dr

N
<3 sup [y, —ymni{ | oo df},
a<t<N a



DIRAC OPERATOR PERTURBATION THEORY 37

where

170 = ymll3 = [Pn1(®) = Ym1 (O + [pn2(t) — yma(B)]*-

Since the integral on the right-hand side is finite, there exists a constant
ks> 0 such that

| Bvyn — Buyml® < ks sup |y — ymll>-
a<t<N

Since {yn},o; is a Cauchy sequence in the uniform norm, the above

inequality implies that the sequence {Bwy,}5; is Cauchy in £2(I) for
each N. Therefore, { Byyn }o.; converges foreach N asn — oo since Lfv (N
is complete. Hence, each By is Tj-compact.

Since B; is the uniform limit of Tj-compact operators, B is
T;-compact.

Necessity We use contradiction arguments to show that (25) must
hold.

Suppose that for some e € (0, 1/2Np) there exists a p > 0 and a sequence
{rn}pe; of positive numbers such that r, — oo as n — oo and for each n

rn+ef(rn)
[ @0+ doar .

Let{®,},> ,bedefined by (33). Then via inequalities (34) and (36) there
exist constants C,, C4 > 0 such that for each n

2 1/2 1/242
195,113, = (12,1l + 1T, 1) < (G + C7).
Thus, {®,,},2, is a T)-bounded sequence. Since B; is Tj-compact,

{B®,,},2, has a convergent subsequence. WLOG, we assume {B®,,}
converges, say to some y,. Via the properties of ¢,, we have for each n

rnt+ef(rn)
p< / AR + (1) de

rn+26f(rs)
< / AR + BN (1) de
rn—2¢6f(ry)

= ”Ban "2'
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Notice that a contradiction is reached if we show that yo=0 a.e. in
[a, 00). Let Jy be a finite subinterval of [a, 00). Since r,,— 0o as n— oo
and supp(¢r,) = [rn — 2&f(r), rn + 2¢f(rs)], we conclude that ¢,, =0
on Jy for sufficiently large n. Hence, ®,, =0 and B®, =0 on J, for
sufficiently large n. For such n

Iyollz, = llyo = B®s, |4, < llyo — B |l-

Since B®,, — yp as n — 0o, and the left-hand side of the above inequality
is independent of n, we have |yo||;, = 0. Thus, yo =0 a.e. in [a, c0) since
the interval Jj is arbitrary. This contradiction implies that

t+ef(t

)
lim SO (7) + g(r)]dr =0, (45)

1—00 t

for some € € (0,1/2Ny).

Moreover, by repeating the above argument with ¢, and g3 replaced
by ¢, and g4, respectively, and ®, replaced by ¥, (as defined by (33)),
we conclude that

t+ef(t)
lim A)lg5(7) + gi(r)] dr = 0,
t

for some €€ (0,1/2Np). This equation along with Eq. (45) implies
(25) holds.

Note that the proof of necessity shows that (25) holds for every
€ €(0, 1/2Ny).

Next, we prove two corollaries of Theorem 3.1. We consider the
maximal operators associated with the following differential expressions
on the interval I

=0=3(% S5 f)(il)]
)

a=(% ) w)(3E) @

and
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where the coefficients b;, by, b3, and b4 are assumed to be real, locally
Lebesgue integrable functions and * = d/dx.

COROLLARY 3.2 Let I=[a,c0) for some a>0, letb = (3¢, b2)'?, and
let Y —a>—1 and No=|o.—~|a®~"~". Then the following statements
hold:

() Biis Ty-bounded if and only if

X+ex*7
sup x’¢ / w b (u) du < oo, (48)
xel x
for some ¢ € (0, 1/2Ny). Further, when (48) holds, the relative bound
of By with respect to T is zero.
(i) B is T1-compact if and only if

x+ex*Y
lim X" / Wb (u) du = 0, (49)
X

X—00

for some ¢ €(0,1/2Ny).

Proof We begin by applying an argument in Section 2 to transform the
differential expressions unitarily. Notice that 7'is of the form (15) with
Wi(x)=Wax)=x",0 = (%), and N =0. Let 1 (x) = po(x) = x*/2
so that y(x) = x*/2z(x) and, via Egs. (16), (18), (19), and (20),

b= (5 2)0 @)

(x>0 X"%by x%by i
By(x) - ( 0 xa—-v)(x—ab3 x""bz)<y2>' (51)

Now, we apply Theorem 3.1 (with f{x) = x® ~ " and g(x) = x ~ *b(x)) to
the maximal operators T and B, associated with the transformed
differential expressions (50) and (51), respectively. Notice that for x € I,
IA(x)| = Ja — 4]x* 1 < | — 4]a*7"! since o — —1<0. Thus, the
sharpest constant N in Theorem 3.1 is given by Ny = | —y]a® ="~ L.

Hence, B, is T-bounded if and only if

and

x+ex*™7
sup x7* / w20 b(u))* du < oo,
xel x
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for some € € (0, 1/2Ny), i.e., B; is T1-bounded if and only if

X+ex*™Y
sup x?7¢ / ™ b (u) du < oo,
xel x
for some € € (0, 1/2Ny). Since the transformation is unitary, inequality
(48) holds if and only if B, is T;-bounded.

Similarly, B, is Tj-compact if and only if

x+ex*™Y
lim x"¢ / w2 b (u) du = 0,
X—00 x

for some € € (0, 1/2N0) Thus, via the unitary transformation, Eq. (49)
holds if and only in B, is 71-compact.

COROLLARY 3.3 Let I = (0,1] for some a>0, let b = (Y4, b?)'/%, and
let y—a< —1 and No=|y—a+2|a"~*"'. Then the following state-
ments hold:

() B is Ty-bounded if and only if

X
sup x77o*2 / w72 p2(u) du < oo, (52)
xel x—e!xo=
for some suﬂ" ciently small €'. Further, when (52) holds, the relative
bound of By with respect to T, is zero.
(i) B, is T-compact if and only if

X
lim x"~2+2 / w2 (u) du = 0, (53)
—g!xo—

X—00

for some sufficiently small €'

Proof We prove this result by using a unitary transformation to
transform the singularity at 0 to a singularity at co and then applying
Theorem 3.1 to the new operators.

Again, we use the argument in Section 2 to transform the operators T
and Bunitarily. Let 4 (x) = pa(x) = x*/?sothat y(f) = x*/?z(x),t=1/x
and, via Egs. (16), (18), (19), and (20),

-no=("" )0 )() e
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and

tfy—a+2 0 ta—2b1 toz—2b4 7
By(t) = ( 0 t’Y—a+2) (ta——2b3 ta—2b2 ¥ . (55)

Now, we apply Theorem 3.1 (with f{r) = " ~**2and ¢(r) = x> ~ *b(x),
t=1/x) to the maximal operators 7; and B; associated with the
transformed differential expressions (54) and (55), respectively. Notice
thatfor z € [a, 00), | f'(t)| = |y — a + 2| >+ < |y — a+2|a” ~**!since
~—a+ 1 <0. Thus, the sharpest constant Ny in Theorem 3.1 is given by
No=ly—a+2la" """,

Hence, B, is T1-bounded if and only if

t+errot? 2
sup 127772 / 2r-et2) [7-”“2 b(%)] dr < oo,
t

a<t<oo
for some € € (0, 1/2Ny), i.e., B; is T1-bounded if and only if

tet"o+? 1
sup 272 / 7 b? (—) dr < oo, (56)
ast<oo t T

for some € € (0, 1/2Ny).

Viaa change of variables and some analysis (See [6, pp. 34—35]), we can
show that (56) is equivalent to (52). Since the transformation is unitary,
inequality (52) holds if and only if B; is 77-bounded. Using a similar
argument, wecan show that Eq. (53) holdsifand onlyif B, is T}-compact.

The following theorem is a well-known result, e.g., see [1, p. 59] and
[11, pp. 52, 53].

THEOREM 3.4 Suppose A, C and D are linear operators such that D is
C-bounded with relative bound less than one.

() If A is C-bounded, then A is (C+ D)-bounded. Moreover, if the
relative bound of A with respect to C is zero, then the relative bound
of A with respect to (C + D) is zero.

(ii) If A is C-compact, then A is (C + D)-compact.

Theorem 3.4 may be applied to successive perturbations B and C
of T. For example, if —7 is given by (46) with a==2 and B and C
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. 1 [(=x* kx\ [z1(x)

-3 @) () =

. 1 /-6x O z1(x)

em=3(%" ) (o)
for 0 < x < o0, then T+ B + C is the energy operator of the relativistic
hydrogen-likeatom[10, pp. 218-21]. The -terms represent the Coulomb
field. By an argument of [7, pp. 169, 170}, it follows that (7 + B), =
T1 + B, so that Theorem 3.4 combined with Corollary 3.2 yields that
towards infinity, i.e., on [a,00),a>0, C is a relatively compact
perturbation of (7' + B),.

We conclude this chapter with an argument to show that the operator

T of Theorem 3.1 is limit point at co. Since T is a formally self-adjoint
operator of the form (1), T is limit point at oo iff d (Tp) +d _(Tp)=2.
Hence, T'islimit point at oo iff d_ (Ty) =d _ (T) = 1 since the coefficients
of T are real. In order to determine d_ (7o) and d _(Ty), it is enough to
consider dim N(T}) (see [3, Theorem 9.11.2]). Note that inequalities (4)
and (5) imply that the deficiency indices are either one or two since
d_ (To)=d_(Ty). Suppose that d_ (To) =d_ (Tp) = 2. Then every solu-
tion to Ty =0 is a linear combination of

mo:(é) and Yz(t)=((1))

and is in £2(I). Let Y3 be a nontrivial solution of Ty=0. Then for
some constant C >0

00 —1
e 10T (NI FEICE
=c/°°r‘(t)dz.

are given by

Via the hypothesis on f, we conclude that f{f) < Nyt + b for some con-
stant b. Hence,

/oof‘l(t)dtz /00(N0t+b)_1 dt =0
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so that Y3¢ D(T}). Since Y3 is arbitrary, there exist no nontrivial £2(I)-
solutionsto Ty =0,i.e.,d (To) = d _(Tp) # 2. This contradiction implies
that the deficiency indices are one. Therefore, T is limit point at co.

4 PERTURBATIONS OF T: LIMIT CIRCLE CASE

In this section, we consider perturbations B of the higher-ordered
differential operator T, where T and B are defined by (46) and (47),
respectively. In Theorem 4.1 we consider the minimal operators 7 and
By associated with the differential expressions (46) and (47), respectively,
on the interval [, 00), a > 0, with ¥ — @ < —1. The proof follows a similar
argument as that of Theorem 3.1 and applies the Hardy inequality:

4
(B+1)°

b b
/z%@Wms /t“%«m%u (57)

where —oo <a<b< oo, 8#—1, and y(a) = 0= y(b).

As an application of Theorem 4.1, Theorem 4.2 deals with the
maximal operators 77 and B, associated with the differential expressions
(46) and (47), respectively, on the interval [a, 00), a > 1, withy —a < —1.
In this section we let ' = d/dx.

THEOREM 4.1 Let I=[a,00) for some a>0, b= (Z?:l b,?)l/z, and
y—a<—1.Then

() By is Ty-bounded if and only if
1 X+EX
sup —/ w2 b (u) du < oo, (58)
X

xel X

JSor some e = (0,1)
(i) By is To-compact if and only if

X+

1 EX
lim — W22 b2 (u)du =0, (59)

x—00 X [

for some e = (0, ).
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Proof (i) Sufficiency As in Corollary 3.2, we make a unitary
transformation. Thus, we can consider 7 and B to be of the form (50)
and (51), respectively. We begin by showing that l% is Té-bounded if
inequality (58) holds. Let us consider y € D(f‘(;). Since y has compact
support in the interior of I, there exists a b < oo such that the support
of y; and the support of y, are contained in [a,b]. Then we have,
suppressing the independent variable,

b
I = / (i + 2l (60)
a
b
Ty = / ! + AP, (61)
a

and

|1 Byl|> = /a ’ W { (B} + B33 [* + [Baba + babs]yi
+ [bibs + babslyy: + b3 + b1z}
= /j w " {[6} + B3][y1* + 2|b1ba + babs| |1y
+ (B3 + Bllyal}- (62)

We make use of the inequalities 2|y1y2| < |y1|* + |p2|* and |b1bs+ bobs| <
2b? in inequality (62) to obtain

b
I1By|* <3 / w7 ) [[y1 () + |2 () '] due (63)

Now, we show that the hypotheses of Theorem 2.7 hold for some
e € (0, 1) with N=x""7"°2 W=x*"7"2 P=x*"7, and f=x. By
applying Lemma 2.8 with g=1 and f=x, we know that positive and
negative powers of x are essentially constant on intervals of length ex.
Thus, we have for some constants C;, C, >0

1 X+ex X+ex
S = sup{ [ / we du} [ / u b (u) du] }
x€l x x

<———sup{ / 2 2"‘b2(u)du} (64)

€ xel
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1 X+EX X+ex
Sy = sup{—-2—2 [ / urmot? du} [ / uTTeb2 (u) du} }
xel (E°X x x

< & sup{1 /x e w202 (u) du]} (65)

x
for some ¢ € (0, ). Inequalities (58), (64), and (65) give us Sy, S» < o0

for some e € (0, 1). Therefore (via Theorem 2.7), there exists a constant
C3 > 0 such that

b
/ w7 B 1 ()P + [y2() ] du
b
< Cs{/ w2y () + [y2(u)|*] du
b
42 [Lu W + b du}. (66)

Applying the Hardy inequality (57) to the first integral on the right-hand
side of the above inequality gives

b
[ @ + awi
b
ca{ieg [ v AW + bGP au
b
s [P + b du}.

By substituting (60), (61), and (62) into the above inequality, we obtain
for some constant C4 >0

1By|> < Cal| Ty|1* < Calllyll + | Toll)> (67)

Thus, yE€ D(B}). Since y is arbltrary, the mequahty above implies that
Bo is To-bounded Via Theorem 2.2, By is Ty-bounded.

Necessity Fix e € (0,3). For each r> a define ®, and ¥, to be the
vector-valued functions with compact support given by (33), where
fir)=r. Then via Lemma 2.8, a change of variables, and the continuity
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of ¢, there exist constants Cy, C, > 0 such that for each r > a
2
|, = / X% (x)dx < Crer’ ™ / #*(u) du < Cur1=ot1, (68)
1 -2

Similarly, for each r > a

1% |)* < Corr=et, (69)

Via Lemma 2.8, a change of variables, and the continuity of ¢', there
exist constants Cs, C4 > 0 such that foreachr >a

. d 2
”Tc]:)r”2 = /;;ﬂ"Y [a'; ¢’r(x)] dx
2
< Cyetpar1 / [0 WP du< Co*t. (70)
)

Similarly, for each r > a

|7, < Car*". (71)

Since ¢, =1 on [r, r + er] and supp(¢,) =[r — 2er, r + 2¢r],
r+er
[ 7wl + el ax

r+42er
< / KRR (x) + B(0)]62(x) dx = B, 2. (72)

—2er

Similarly,
r+er
[ nm + e
r

< / e X705 (x) + B0 (x) dx = | BY, . (73)

—2er

Thus, via the Ty-boundedness of By and inequalities (68)—(73), there
exists a constant Cs > 0 such that

r+er
/ X772 (x) dx < Cs(rrot! 4 o),
r



DIRAC OPERATOR PERTURBATION THEORY 47

After multiplying the above inequality by ¥ ~** !, we apply Lemma 2.8
to the left-hand side and obtain a constant Cg > 0 such that

1 r+er
- / X322 (x) dx < Ce(rP0—otD) 1),

Since v — a+ 1 <0, the right-hand side of the above inequality is
bounded on I. Hence, inequality (58) holds.

Note that the proof of necessity shows that (58) holds for every
e€(0,1).

(ii) Sufficiency By the previous argument By is Tp-bounded. Thus,
D(Ty) C D(By). For every positive integer N > a, define By on D(T}) by

By — By on[a,N],
By {O on (N, 00).

Notice that each By is Tp-bounded with the same norm as By since
|Bny|l < ||By]|. In order to simplify the proof, we break the argument
into two Claims.

CLAIM 4.1.1 By — By in the space of bounded operators on D(Ty) with
the Ty-norm.

Proof of Claim 4.1.1 By definition T} is closed. Therefore, D(T)) is
complete under the Tp-norm.

Let y € D(To). Since T is the closure of T}, for each integer n> 1
there exists a y, € D(T}) such that

. 1
ly = ynll + 1Ty — Tyl < (74)

where y, = (i:; ) for each n.
For each y, € T we have, suppressing the independent variable,

I3n = Brsal? = [ o8+ Bl + b + babiloniia
+ [b1b4 + b2b3]Fmiynz + b5 + b3]ymal’}
< /N w82 + B2y + 20614 + babsllym iyl
+ b3 + B3)lynal’}

<3 / W B[y + [l (75)
N
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Since each y, has compact support in the interior of 7, there exists a
b < oo such that the support of y,,; and the support of y, , are contained
in [a, b]. Thus, we can apply the sufficiency argument in part (i) with
Iy=[N, oo) to the last inequality in (75).

Via Theorem 2.7 and inequalities (64)—(66), and (75), there exists a
constant k; > 0 such that

N ~ 1 x+ex
I85n = Bl < ksup {2 [ 207y
X

x€ly

b
x { | @ + b a
b
42 [y + b du}.

We apply the Hardy inequality (57), as before, to obtain a constant
k> > 0 such that

~ ~ 1 X+ex
I3~ Bl < dasup{ 3 [ a0y
X

x€ln

b
{ [ a0 + bR du
a
1 X+Ex
<tasupl L[ au) -l
X

xely
Therefore, via the triangle inequality, the T o-boundedness of f?o, and
inequalities (74) and (76), we have for each n

1By — Bayll < || By — Byull + ||Byn — Buyull + || Bxyn — By
< 2k3([ly = yull + 1Ty = Tyall) + [|1Byn — Buynl
2k 1 X+€EX 1/2

<21 K)? (sup{— / w2722 (u) du}) 1l 40-

n xJ 0

xely

for some constant k3 >0. By applying the triangle inequality and
inequality (74) again, we obtain for each n

B B 2ks 1/2 1 [ 2-20}2 2
1By — Byl < —=+ k" supq~ w202 (u) du
X

x€ly
2ks3
n

5 1 X+eXx 1/2 1
w2 (supf2 [T ad) (24 i)
xely (X Jx n 0

X (lyn =iz, +I¥ll7,) <
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We let n — oo to obtain for each N
N R 12 1 x+ex 2012 1/2
Iy~ ol < (sup{5 [ @250 au} ) ol
xely (X Jx
Since Iy =[N, 00), Eq. (59) implies that
1 X+ex

sup{—/ w222 (u) du} — 0 as N — oo.

x€ly XJx
so that, via the above inequality, we have for y #0

|B— By|| — 0 as N — oo.

CLAM 4.1.2  Each By is To-compact.

Proof of Claim 4.1.2 Let {y,}>2, C D(Tp) be a To-bounded sequence
where y, = (y"‘) for each n. We need to show that for each N the
sequence {BNyM}n_1 has a convergent subsequence. We make use
of the Arzela—Ascoli Theorem.

Letus consider the sequence of the first component functions {yn 1 } -
We show that this sequence is uniformly bounded on [a, N]. Via
inequality (44) there exists a constant k4 > 0 such that for each x € [a, N]

N 1/2 N 1/2
|yn,,<x)|szc4{( [ uv*alyn,l(unzdu) +( / ua-ny,',,l(unzdu) }

< ka(llyall + (| Zyall)-

Since {y,}2, is a To-bounded sequence, the above inequality implies
that the sequence {yn 1},.; is uniformly bounded on [a, N].

Now, we show that {y,},; is equicontinuous on [a, N]. Via the
Cauchy-Schwarz inequality and the boundedness of ¥~ on [a, N],
there exists a constant ks > 0 such that for s, 1 €[a, N]

s (5) = s (9] = ] JEACE”

5
/ u*du
t

§
/ 1y () du
t

1/2 1/2

<

5
/ w1y ()P du
t

1/2

< ks|s — 1|'/?

1/2
< ksls = 1'*||yall7,-
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for each n. Since {y,},-, isa To-bounded sequence, the above inequality
implies that the sequence {yn1}oo, is equicontinuous on [a, N].

Therefore, via the Arzela—Ascoli Theorem we conclude that there
exists a subsequence {yn, 1}5e; Of {¥n1}ne; Which converges uniformly
on [a,N]. By repeating the above arguments on the subsequence
{¥m2}rey Of {¥n2}ney> We conclude that there exists a subsequence of
{¥m.2}re; Which converges uniformly on [a, N]. Hence, there exists a
subsequence of {y, } - ; which converges uniformly on[a, N]. WLOG, we
assume the sequence {y, },., converges uniformly on [a, N].

Now, using an argument similar to the one in (40), we have foreach N

N
1 Bnys — Bayml® <3 / OB () [|Yn,1 () — Y1 ()]
a
+ |yn,2(u) "meZ(u)IZ] du

N
<3 sup yn - ymll / 4B () du
a<x<N a

Since the integral on the right-hand side is finite on [a, N], there exists
a constant C > 0 such that

| Bxyn — Bayml> < C sup |yn = yml-
a<x<N

Since {yn},.; is a Cauchy sequence in the uniform norm, the above
inequality implies that the sequence {Byy,}22, is Cauchy in £2(I) for
each N. Therefore, { By}, converges foreach N asn — oo since £2 (1)
is complete. Hence, each Byis To-compact.

Since By is the uniform limit of To-compact operators, By is
To-compact.

Necessity We use contradiction arguments to show that Eq. (59)
must hold.

Suppose that for some ¢ € (0, 1) there exists a p> 0 and a sequence
{rn}sey of positive numbers such that r,—oo as n—oo and for
each n

L[ a2 + Bl dx > . (76)

nJy,
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Let {®,},>, be defined as in (33) with f{r)=r. Then via inequalities
(69) and (71) there exist constants C,, C4 > 0 such that for each n

12,117, = (125,11 + 172, 1)* < 2(12,,I* + 1 72,, %)
<2Cor 1ot 4 2C e (77)

For each r > a define
&,(x) = A2, (x) for x > a.
Via inequality (77) we have for each n
1,117, = 71712117, <2607 4 2C,.

Since y— a+1<0, the above inequality implies that {®,,}%°, is a
To-bounded sequence. Via the To-compactness of By, {B®,,}2, has a
convergent subsequence. WLOG, we assume {Bérn }.2, converges, say
to some y,. Now, via inequality (76), properties of ¢,,, and Lemma 2.8,
there exists a constant C > 0 such that for each n

1 rptery
p<— X7 (b3(x) + b3(x)] dx

nJr,

rnt2ery
<1 X2 (x) + BA(x)] 6 (x) dx

In rn—2¢ery

rp+2ery
<t [ B + B (o) d
Fa—26ry

= C||B&,|".

Hence, || B, || > (p/C)"* > 0 for each n.
By an argument similar to the one used in the proof of Theorem 3.1 (ii),
we conclude that yo =0 a.e. in [a, 00). This contradiction implies that

1 xX+ex
lim — u¥22[b2 (u) + b3 ()] du = 0, (78)

X—00 X x

for some £ € (0, 1).
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Moreover, by repeating the above argument with b, and b; replaced
by b, and by, respectively, and ®, replaced by ¥, (as defined by (33)), we
conclude that

.1
lim —
xX—00 X

/ e W2 [b%(u) + bﬁ(u)] du =0,

for some € € (0, %). This equation along with Eq. (78) implies that (59)
holds.

Note that the proof of necessity shows that (59) holds for every
e € (0,).

THEOREM 4.2 Let I=[a,00) for some a>1, b= (¥t %)%, and
v — a < —1. Then the following three statements are equivalent:

(@) [rx™ 7" b*(x)dx < oo;
(ii) B is T1-bounded,
@ii) B is Ty-compact.

Proof We break the proof into two cases.

Case I o=0.

We consider the maximal operators, T, and By, and the minimal
operators, 7o and By, associated with the following differential
expressions on the interval I:

and
A _ x77 0 by by Z1
frlx) = ( 0 x’”)(”s bz)(zz)'
(i) = (iii): Sincey< —1and x>a>1, we have

/1 xb*(x)dx < /1 x77h%(x) dx.

Hence, (i) implies that B, is To-compact via Theorem 4.1. Therefore,
D(Ty) € D(By).
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Via Eq. (3) we can write
D(Ty) = D(Ty) @ S, (79)
where S has dimension four since 7'is regular at a and limit circle at co.
CLamM 42.1 SC D(B)).

Proof of Claim 4.2.1 Let z; and z, be functions in CV(R) such that
zi(@)=1, supp(z)) =[a—1, a+ 1], za(x) =0 for x <a, and z,(x) =1 for
x>a+ 1. We define

0= (1) 0=(.2)

o= (%) w0 )

for x > a. Notice that these four vector-valued functions are linearly
independent. Since z; has compact support,

a+1
2 2 2
1Z1]? = 1 Za = / Mz ()P dx,
a

which is finite since z; is continuous. Moreover,

2 2 00 ) a+1 ) oo
1Z3) = | Ze|? = / Wza(x) P dx = / Xz dx + /Hx"dx,
a a

a

which is finite since z, is continuous and y< —1. Thus, each Z; € £2(1),
with weights x”.

We show that each 7Z; ¢ Lfv(l ), with weights x7, so that each
Z; € D(T). Since z; has compact support,

1721 = 12| < oo.
Moreover, since z;(x) = 0 on [a+ 1, ),
R ) . ) a+1 )
11221 = 17ZelP = [ "Iz P d,
a

which is finite since z; is continuous.
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Define S'=span{Z;, Z,, Z3, Z,}. We now prove that
D(Ty) = D(To) ® S,

i.c., we show that no linear combination of the Z; is in D(7)). Suppose
to the contrary that there exist constants cy, ¢y, ¢3,cq4 (nOt all zero)
such that

Z =121+ 2 Zr+ 323+ c4Z4 € D(To).

Since 7 is regular at a and Z € D(T1), we have that Z € D(Ty) if and
only if Z(a) =0 and [Z, Y](x) — 0 as x — oo for every Y € D(T}), where
the Lagrange identity is defined by

[Y, Y](x) = (y192 — y2J1)(x)

for real vector-valued functions Y and ¥ (see [12, Theorem 3.12]). Since
z1(a) # 0, we must take ¢; = ¢, =0. Therefore, Z = ¢3Z3 + c4Z4.

In order to satisfy the second condition of [12, Theorem 3.12], we
must have [Z, Z;](x) — 0 as x — oo and [Z, Z,](x) — 0 as x — oo, where

(Z, Z3)(x) = ¢3[Z3, Z5](x) + calZa, Z3)(x) = ca|Za, Z5](x)
and

(Z, Zs)(x) = ¢3(Z3, Z4](x) + ca[Z4, Z4](x) = c3[Z3, Z4] ().

tim (22,2419 = i [ (). (9)] = 1.

we must have ¢3 =0. Similarly, ¢, =0. Hence, no linear combination of

Since

the Z;is in D(Ty).
Since z; has compact support, | BZ1|| = ||BZ,|| < oo. Moreover,

1BZ3)? = /:o (B (x) + B (0)]|z2(x) 2 dx
a+1
- / X B() + B2 () dx

-+ / oox‘“’[b%(x) + b3(x)] dx

+1
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and
182017 = [ 53 + B Nla(w)f
a+1
= / X BR(x) + ()l () dx

o0
+ / X B3 (x) + B (x)] dx,
a+1

which are finite by (i). Therefore, each Z; € D(Bl).

Equation (79) and Claim 4.2.1 imply that D(7}) C D(B;). Via
Theorem 2.5 B; is T} -compact.
(iii) = (ii): Since By is T -compact, D(T 1) C D(l§1 ). Via Theorem 2.3 B
is T1-bounded.

(ii)= (i): Since B, is Tj-bounded, D(T)) C D(B;). Via Eq. (79)
S C D(By). Therefore, || BZ;|| < oo for each i, i.e.,

/ x 7% (x) dx < oo.
I

Case I a#0.
As in the proof of Corollary 3.2, we transform the differential
expressions 7 and B unitarily into T and B, respectively, where

meo= (%" 2 (0 ) ()

_ x> 0 X"%; x by »1
weo= (% ) (o o) G)
Replacing v with v — «, b with x ~ ®b, and z with y in Case I, we have
that the following three statements are equivalent:
i) f]x"v““bz(x) dx < oo;
(ii") B;is T -bounded;
(iii") B;is Ti-compact.

and

Since the transformation is unitary, (ii’) holdsiff B, is 7} -bounded, and
(iii") holds iff B, is 7)-compact.
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