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Let Xl x, be positive numbers and a>2. It is known that if ,i= xi < A,
-in__l X? Ba, then for any k such that k > (A/B)1/(- 1), there are k numbers among
Xl,...,x, whose sum is bigger than or equal to B. We express this statement saying
that a pair of functions (x, x1/( O) is a Steffensen pair. In this paper we show how to
find many Steffensen pairs.
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1. INTRODUCTION

Classical Steffensen’s inequality [2] states:

THEOREM A Letfandg be integrablefunctionsfrom [a, b] into such
thatfis decreasing, andfor every x E [a, b], 0 < g(x) < 1. Then

b lab f
a+)

f(x) dx < f(x)g(x) dx < f(x) dx,
-A ,a

where A fa g(x) dx.
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In [1], the following discrete analogue of Steffensen’s inequality was
proved:

X
nTHEOREM B Let i)i=1 be a decreasingfinite sequence ofnonnegative

real numbers, and let (Yi)in=l be a finite sequence of real numbers such
that for every i, O<_yi<_l. Let kl,k2E{1,...,n} be such that

k2 <_ Yl +’" + Yn <_ kl. Then

n n kl
XiyxiYi ZXi"

i=n-kz+ i= i=

As an immediate consequence of Theorem B, the following proposi-
tion was proved in [1]:

PROPOSITION A Let x1,..., Xn be nonnegative realnumbers such that the
following two conditions are satisfied." (i) yin=l xi <_ A, (ii) -in__l x/2 _> B2,
where A and B are positive real numbers. Let k { 1,..., n} be such that
k >_ A/B. Then there are k numbers among xl,..., Xn whose sum is bigger
than or equal to B.

To prove Proposition A we can assume that B> xl _>... > xn. Set
yi xi/B. Then Ein=l Yi A/B < k. By Theorem B,

Z Xi >__ xiYi-- "- >__ B.
i= i= i=

Proposition A shows that under certain conditions, a relatively small
portion of Xl,...,xn has a relatively large sum. For example, if

in=l xi <_ 300 and yin=ix2i >_ 10000, then there are three numbers
among Xl,...,xn, say xj, xk, Xm, such that Xj+Xk+Xm>_ 100, i.e.

Xj -[- Xk -[" Xm 1/2 Ein=l Xi.

We will restate Proposition A using the following definition:

DEFINITION Let qo" [c, oo) + [0, oo), c _> 0, and r’(0, oo) + (0, oo) be
two strictly increasingfunctions. We say that (qo, r) is a Steffensenpair on
[c, )/fthefollowing is satisfied:

If x1,..., x, are real numbers such that xi >_ c for all i, A and B are

positive real numbers, and (i) in=l xi < A, (ii) i=l q(xi) >_ qo(B), then
for any k { 1,... ,n} such that k >_ r(A/B), there are k numbers among
xl,..., x, whose sum is bigger than or equal to B.
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Now Proposition A can be reformulated as follows:

PROPOSITION A (X2, x) is a Steffensen pair on [0, cxz).

The following more general result was proved in [1]:

PROPOSITION B Ifo >_ 2, then (x, x1/-1) is a Steffensenpair on [0, c).

The purpose ofthis paper is to find more examples ofSteffensen pairs.

THEOREM Let 42" It,) [0,) where c >_ O, be increasing and con-
vex. Assume that p satisfies thefollowing condition."

b(xy) > 4/(x)g(y) for all x >_ c, y >_ 1,

where g[1,)[0, o) is strictly increasing. Set (x)=xb(x),
-(x) g-(x), where g- is the inverse function for g. Then (q, -) is a

Steffensen pair on [e, cx).

Example Let a>2, p(x)-x-1. Then b(xy)=b(x)b(y). Hence
(x) x, -(x)= x1/-1, and we arrive at Proposition B.

THEOREM 2 Let f’[0,)N be a twice differentiable function on

[0, cx) such thatf’(x) >_ andf"(x) >_ Ofor all x >_ O. Assume thatf(O) O.
Then thefunctions andgfrom [1, cxz) into [0, cxz) given by

b g exp o fo In

satisfy the conditions of Theorem 1.

Remark There are many functions satisfying the conditions of
Theorem 2. For example, iff(x) y]i=l aix is the sum of a series con-
verging on [0,) and if a >_ 1, ai >_ 0 for i= 2, 3,..., thenf(x) satisfies
the conditions ofTheorem 2.

PROPOSITION Ifo >_ 1, then (x exp(x- 1), (1 + lnx)0/) is a Steffen-
sen pair on [1, cz).

PROPOSITION 2 Let a and b be real numbers satisfying the conditions
b > a > and v/- >_ e. Set

(Xl+lnb xl+lna)/lnx, /fx > 1,
qo(x)

In b In a, /fx 1,

7"(X) X1/lnx/.

Then (qo, -) is a Steffensen pair on [1, o).
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Remark Since x/ _> e, x _> X1/ln x/a for x_> 1. Therefore it is
possible to take -(x) x in Proposition 2.

2. PROOF OF THEOREMS 1, 2 AND PROPOSITIONS 1, 2

Theorem can be deduced easily from Theorem 6.5 in [1]. However the
proof of Theorem 6.5 in [1] uses the integration over a general measure
space. Because of this reason we give here a direct and elementary proof
of Theorem (although it follows closely the ideas of the proof of
Theorem 6.5 in 1]).

LEMMA Assume that 42[c, oo) [0, oo), c > O, is increasing andconvex.
Set qo(x) xb(x). Let xl, Xr be positive real numbers such that xi > c,

1,..., r. Set m min{xl,..., xr}. Then

Proof Since b(x) is convex, it is well known (and easy to prove) that if
x < x2 and 6 _> 0, then

(X2) (Xl) (X2 + t) (Xl +

Using this fact we obtain
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Proof of Theorem 1 Let X1,... ,Xn be real numbers such that xi>_ c

for all i. Without loss of generality we can assume that
Let A and B be positive real numbers, and (i) ,i=lxi <_ A,
(ii) il qo(xi) >_ p(B). Assume that k >_ T(A/B). We will prove that
X -n-...-nt-Xk B.
The inequality k >_ -r(A/B) implies that g(k) >_ A/B. Hence

A
Ab(xk) (Xk) -B _

(xk)g(k)B.

Since (xy) >_ (x)g(y), we obtain

(x) <_ (kx)a. (1)

Now we have

,(B) <_ () (x) + x(x)
i= i= i=k+

k

<_ ,(xl + (xl x
i= i=k+

(x/+ (x/ x- }2x
i=1 i=1 i=1

k k

< (x) (x) x, + A(x).
i= i=

Lemma implies that

qo(B) < xi )(kxk) xi-- A)(Xk).
i=l i=1

By (1), we obtain that

(e) _< -(/} +(x)
i=1 i=1

(kxk) B- xi
i=1
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Assume that the conclusion ofthe theorem is wrong, that is, assume that
B- Y’fi-1 xi > O. Then we have

B kThis implies that qo(B)_< 3(Ei= Xi). Hence b(B)_< b(y/k=l xi). It
follows that B <_ -./k=l xi, which contradicts the above assumption.

Proof of Theorem 2 For x > 1,

b’ (x) b(x)f’ (ln x)
x

"(x) b(x)f’ (ln x) - f’ (ln x) 1] + b(x)f" (ln x) - >_ O.

Therefore is increasing and convex. Let y > 0, be a fixed number. For
x>0, set

F(x) f(x + y) f(x) f( y).

Then

F’ (x) f’(x + y) f’ (x) >_ O,

Hence F(x) >_ 0 for all x _> O. Thus

f(x + y) >_ f(x) +f( y)

F(O) O.

for all x, y _> O. Therefore, for x, y _> 1, we obtain

g,(xy) exp(f(lnxy)) exp(f(lnx + lny))

_> exp[f(lnx)+f(lny)]

exp(f(lnx)), exp(f(lny)) !b(x)b(y).

Proof of Proposition 1 For a > 1, setf(x) e’x 1. Thenf(0) 0 and
for all x > O, f’(x) > 1, f"(x) > O. Therefore by Theorem 2, functions
and g from [1, oo) into [0, oo) given by b(x)=g(x)=exp(enx- 1)=
exp(x- 1) satisfy the conditions of Theorem 1. It follows by
Theorem 1, that (, r), where (x)= xb(x)= x exp(x- 1) and r(x)
g-a(x) (1 + lnx)a/ is a Steffensen pair on [1, oo).
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ProofofProposition 2 We prove this proposition using Theorem 1 and
recent results from [3]. Let b > a > and x/ > e. Set

(bx aX)/x,h(x)= lnb-lna,
if x#0,
if x=0.

By Proposition 3 in [3], h’(x) > O.

LEMMA 2 h"(x) >_ h’(x)for x >_ O.

Proof It is easy to see that

b

h(n)(x) (In t)ntx- dt. (2)

We will use the following Tchebycheff inequality.
Let p, q’[a, b] be integrable increasing functions and let

r" [a, b] [0, ) be an integrable function. Then

r(t)p(t) dt fab fa fabr(t)q(t) dt <_ r(t) dt r(t)p(t)q(t) dt.

Taking p(t) q(t) In t, r(t) x- 1, we get

(fab Int. x-1 dt)
2

<_ x-1 dt (ln t)2tx-1 dt.

By (2), we obtain that for all x,

[h’(x)]2 < h(x)h"(x). (3)

By Proposition 4 in [3], for every y > 0, F(x)= h(x + y)/h(x) is increas-
ing as a function of x. Therefore

F’ (x) h’(x / y)h(x) h(x + y)h’ (x) > O.
[h(x)]2

Hence

h’(x + y)h(x) h(x + y)h’ (x) >_ 0 (4)

for all x and all y >_ O.
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Taking x 0 in (4), we obtain

h’ y)h(O) h( y)h’ (0) >_ 0

for all y > 0.

h(0) In b In a

[bY ] [(lnb): (lna)2]h’(O)=liml -ay
(lnb lna)

x0 x x

Hence h’(O) h(0)In x/. Since x/ > e, we obtain that h’(O) >_ h(O).
It follows from (5) that h’(y) > h(y) for y _> 0. Therefore, by (3) and (5),

h(x)htt(x) >_ [ht(x)]2 >_ h(x)ht(x)

for x _> O. Thus h"(x) >_ h’(x) for all x _> O. That proves the lemma.
Set b(x)=h(lnx) for x_> 1. Then b’(x)=h’(lnx)(1/x)>O, b"(x)=

(1/xE)[h"(lnx)-h’(lnx)]>_O. Hence (x) is increasing and convex. In
addition,

b(xy) h(ln(xy)) h(ln x + In y)
O(x) h(ln x) h(ln x)

By Proposition 5 in [3], we have that for x, y _> 0,

h(x + y)
h(x) >- (v)

Therefore, for x, y _> 1,

)(xy)> (V/-)lny
(x)

Set g(x) (--)lnx. Then g-1 (X) X1/ln x/’.
By Theorem (, -), where

(x) x(x)

f x(blnx alnx)/lnx (Xl+lnb xl+lna)/lnx,
In b In a,

7"(X) X1/lnx/,

if x> 1,

if x-- 1,

is a Steffensen pair.
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