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This paper presents an analysis of ignition and burn risk due to wildfire in a region of Ontario,
Canada using a methodology which is applicable to the entire boreal forest region. A generalized
additive model was employed to obtain ignition risk probabilities and a burn probability map
using only historic ignition and fire area data. Constructing fire shapes according to an accurate
physical model for fire spread, using a fuel map and realistic weather scenarios is possible with
the Prometheus fire growth simulation model. Thus, we applied the Burn-P3 implementation of
Prometheus to construct a more accurate burn probability map. The fuel map for the study region
was verified and corrected. Burn-P3 simulations were run under the settings (related to weather)
recommended in the software documentation and were found to be fairly robust to errors in the
fuel map, but simulated fire sizes were substantially larger than those observed in the historic
record. By adjusting the input parameters to reflect suppression effects, we obtained a model which
gives more appropriate fire sizes. The resulting burn probability map suggests that risk of fire in
the study area is much lower than what is predicted by Burn-P3 under its recommended settings.

1. Introduction

Fire is a naturally occurring phenomenon on the forested landscape. In Canada’s boreal forest
region, it plays an important ecological role. However, it also poses threats to human safety
and can cause tremendous damage to timber resources and other economic assets.

Wildfires have recently devastated parts of British Columbia, California, and several
other locations in North America, Europe, and Australia. The economic losses in terms of
suppression costs and property damage have been staggering, not to mention the tragic
loss of human life. Many of these fires have taken place at the wildland-urban interface—
predominantly natural areas which are increasingly being encroached upon by human
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habitation. As the population increases in these areas, there would appear to be potential
for increased risk of economic and human loss.

A wildland-urban interface is defined as “any area where industrial or agricultural
installations, recreational developments, or homes are mingled with natural, flammable
vegetation” [1]. The Province of Ontario has several areas which could be classified as
wildland-urban interface. These areas include the Lake of the Woods region, the Thunder
Bay region, the region surrounding Sault St. Marie, and North Bay among others. One of the
most significant of these is the District of Muskoka which is a popular recreational area. This
district, located in Southern Ontario (Figure 1), is commonly referred to as “cottage country”.
It spans 6,475 square kilometers and contains over 100,000 seasonal properties or cottages.
Many of these properties are nestled in forested areas, which make up most of the region.
This concentration of values is of particular interest to the Canadian insurance industry due
to the risk of claims from damage caused by wildfire.

Unlike British Columbia and California where topography plays a major role in the
rate of spread of wildfire, Ontario is relatively flat but is dominated geographically by the
Boreal and Taiga forests, where some of the largest fires in Canada have burned [2]. The
Boreal forest has a large percentage of coniferous trees which are susceptible to high intensity
crown wildfires. The Muskoka region is on the southern edge of the Boreal forest, and thus
there is potential for substantial property damage from fires originating further north.

We are focusing on the Muskoka region to provide an illustration of how the tools
that have been developed by the forest management community can be applied to assess fire
risk. The methods described here can be adapted easily to other wildland-urban interface
locations. The Muskoka area presents some technical challenges which do not exist to the
same degree in most other wildland-urban interface settings.

Although there have not yet been substantial losses due to wildfire in the Muskoka
area, it is important to assess the risk because of what is being observed elsewhere (e.g.,
British Columbia and California) and because of possible climate change effects which could
ultimately lead to increased fire activity across Canada.

Wildfires usually start from point ignitions, either by people or by lightning, and if
not detected immediately, they can spread rapidly under appropriate weather conditions.
Approximately half of the forest fires in Canada are ignited by lightning. Such fires account
for approximately 80 percent of area burned [3].

The spread of a wildfire in a particular area depends on many factors but most
importantly, it is influenced by local weather, vegetation, and geography [2]. Of these three
factors, the geographical features remain static, while vegetation changes gradually over
time. In addition, changes in human land use patterns, such as industrial forestry, or urban
expansion can lead to changes in vegetation. Weather is the most dynamic factor affecting
fire risk. The unpredictable nature of weather makes modelling forest fire spread a difficult
task. Nonetheless, the risk of wildfire in a region can be estimated using the methodology
described in this paper.

In Canada, the fire season can last from early April through October each year. During
this period, the probability of fire ignition and fire spread potential changes depending on
the time of year, primarily influenced by seasonal weather patterns. Each year an average of
2.5 million hectares are burned by 8,500 individual wildfires.

Most regions which are within the Boreal and Taiga zones have very accurate and
up-to-date fuel information because the provincial fire management agencies maintain these
records rigorously. The forest resource inventory information in our study area, and hence
the fuel map which is based upon it, is not updated as frequently by the Ontario Ministry of
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Figure 1: Location of the District of Muskoka within the Province of Ontario.

Natural Resources in this region because there is a higher proportion of private land under
municipal fire protection agreements with the province and relatively little area under forest
management planning. Thus, it was necessary for us to validate the fuel map by doing a field
survey. To apply the methodology in other instances would be straightforward, not requiring
this kind of fieldwork.

The remainder of this paper will proceed as follows. The next section provides a
description of the study area and the fire data for that region. Section 3 contains results of
an ignition risk assessment which uses historic fire data only. This section also contains a
crude burn risk assessment.

In Section 4, we briefly describe the Prometheus fire growth model [4] and how it
is used in the Burn-P3 simulator [5] to generate a burn probability map. This section also
provides a description of the required data inputs and the procedure that was used to obtain
and verify this data. In Section 5, the results of the analysis are presented along with a
summary of the limitations of this study.

2. The Data and Study Area

2.1. Study Area

Of the properties in the Muskoka District, the most expensive are concentrated along the
shores of the three major lakes: Lake Joseph, Lake Muskoka, and Lake Rosseau. A 25 × 35 km
rectangular study area that encompasses a large portion of these lakes was selected (Figure 2)
for the our study. In order to reduce possible biases near the boundaries of this region, we also
considered a 5-km wide “buffer” zone which surrounds the study area. Fires originating in
this zone could spread into the study area, and this possibility needs to be accounted for.

2.2. Description of Historic Fire Data

Fire data for over 12,200 fires from 1980 through 2007 were obtained for a region
encompassing the study area. For each fire, a number of covariates were recorded including
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Figure 2: Map illustrating the 25 × 35 km study area which is enclosed in the red box as well as the buffer
zone used in the Burn-P3 modelling denoted by the blue box.

the date, ignition location, and final area. Figure 3 shows an estimate of the density of the
natural log-transformed fire sizes of escaped fires from this dataset. Here, we use the Ontario
Ministry of Natural Resources definition of an escaped fire: any fire where final area exceeds 4
hectares. The fuel composition, weather conditions, and fire suppression capabilities for this
region are relatively homogeneous and hence are representative of our smaller study area.
Within this dataset, 319 fires were located in the study area. Figures 4 and 5 show locations
of human-caused and lightning-caused ignitions

3. Ignition and Burn Probability Modelling Using Generalized
Additive Models

3.1. Ignition Modelling

Brillinger et al. [6] provide a method for assessing fire risk in a region using generalized
additive models. Their technique uses pixellated data on a fine scale where each pixel is
assigned a 1 or a 0 depending on whether or not a fire was ignited at that location. (To be
precise, they considered temporal effects as well, while our focus will be to produce only a
spatial risk map.) The resulting data set is very large with an overwhelming proportion of
1×1 km pixels (sites) without a fire ignition between 1980 and 2007, indicated by a value of 0.
However, a simple random sample of these 0-sites can be analyzed in the same way as the full
dataset with the addition of an offset of the form log(1/πs). Here πs denotes the (constant)
inclusion probability for site s = (s1, s2), where s1 and s2 refer to the easting and northing
geographic coordinates, respectively.
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Figure 3: Estimated density of natural log-transformed fire sizes of historic escaped fires (1980–2007).
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Figure 4: Map of human ignition locations in study area (1980–2007).

We have explored our data set with a simple model from within this family of models:

logit
(
ps
)
= f(s1, s2) + log

(
1
πs

)
, (3.1)
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Figure 5: Map of lightning ignition locations in study area (1980–2007).

where ps = probability of ignition at site s and f(s1, s2) is a penalized tensor product spline
smoother using the cubic B-spline basis in each dimension [see 19, Chapter 4]. We have taken

πs =

⎧
⎨

⎩
0.01 if sites do not contain an ignition (i.e., a “0”)

1 if sites contain an ignition (i.e., a “1”).
(3.2)

We chose this value for πs in order to have a manageable data set which has sufficient
covariate information for inference. The resulting ignition risk map is shown in Figure 6. We
note that there is a relatively high risk of ignition in the southeast region. This is the region
closest to the town of Gravenhurst. The rest of the region is less heavily populated, and thus
less likely to be subject to human-caused ignitions.

3.2. Simple Burn Probability Map

We also used the above modelling approach to assess the probability of burning by applying
the same methodology but instead of assigning a value of 1 to a pixel that had an ignition, we
assign a value of 1 to pixels that have burned, either directly by an ignition or spread from an
ignition point. Unfortunately, actual final fire shape was not available in the database, so we
made a crude approximation based on the observed final burned areas. The resulting burn
probability map is pictured in Figure 7. Notice the decreased fire risk near the town and the
increase in fire risk to the north and to the west. Because of the proximity to town, it may be
that the ignited fires in the southeast may be suppressed relatively quickly, leading to smaller
burned area. This phenomenon has been well documented (e.g., [2]).
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Figure 6: Model of ignition risk using generalized additive models with historic ignition data.

In addition to the loss of accuracy due to incorrect fire shape, the presence of relatively
large lakes in the study area causes some difficulties for the smoother; essentially, boundary-
like effects are introduced into the interior of the region. Furthermore, vegetation type and
presence of other nonfuel fire barriers is not accounted for in this model.

For these reasons, we are motivated to consider a different modelling approach which
is based partially on a physical model for wildfire growth and which incorporates fuel and
fuel breaks. However, this map, based on historic records, can serve as a partial check on the
reasonableness of the model we will propose next.

4. Burn Probability Modelling Using a Fire Growth Model

4.1. The Prometheus Fire Growth Model

Another method of forest fire risk assessment is based on computer simulation of fires, taking
account of fuel information and local weather patterns. To model fire growth, we will employ
the Prometheus Fire Growth Model [4].
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Figure 7: A simple burn probability map using generalized additive models with historic ignition data.

The evolution of a fire front simulated by Prometheus relies on the theory developed
by Huygens for wave propagation: each point of a fire front at a given time acts as an ignition
point for a small fire which grows in the shape of an ellipse based at that point. The size
and shape of each ellipse depend on fuel composition information, weather, and various fire
growth parameters as well as the time duration. The envelope containing all of the ellipses is
taken to be the fire perimeter at the next time step (Figure 8).

In the absence of topographic variation, the orientation of each ellipse is aligned with
the direction of the wind. The shapes of the ellipses at each time step are calculated from
empirical models based on the Canadian Fire Behaviour Prediction (FBP) system which is
described in the next subsection. The length of each ellipse is related to a local estimate of
the forward rate of spread plus an analogous estimate of the back rate of spread, while the
width of an ellipse is related to a local estimate of the flank rate of spread. These local rates of
spread are, in turn, inferred from the empirical FBP models which relate spread rate to wind
speed, fuel moisture, and fuel type. The measurements required for this calculation are based
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on local estimates of the weather conditions which have been extrapolated from the nearest
reliable weather station. Diurnal changes in fuel moisture (as it is affected by temperature
and relative humidity) and wind speed are also incorporated into the model.

4.2. Canadian Fire Behaviour Prediction System and Fire
Weather Index System

In Canada, forest fire danger is assessed via the Canadian Forest Fire Danger Rating
System (CFFDRS). As described by Natural Resources Canada [7], the current form of this
system has been in development since 1968. The structure of the CFFDRS is modular and
currently consists of four subsystems. Two of these subsystems are of interest in our study:
the Canadian Fire Weather Index (FWI) System and the Canadian Forest Fire Behaviour
Prediction (FBP) System, both of which are fully documented and are used operationally
across Canada.

Many parts of the CFFDRS rely on information obtained using the FWI System. This
system is comprised of six components which summarize aspects of the relative fire danger
at its midafternoon peak [8]. All calculations are based on locally observed weather readings
recorded at local noon: temperature, relative humidity, wind speed (usually a 10-minute
average), and rainfall (over the last 24 hours). Three fuel moisture codes are calculated, each
representing the dryness in a different layer of the forest floor. Three fire behaviour indices,
estimating the risk of fire spread, the fuel available for combustion, and the potential intensity
of a fire, are also calculated. For a recent exposition on the CFFDRS, see the account by Wotton
[9] which is a review designed for modellers who require an understanding of this system
and how it is to be interpreted.

The FWI System is used to estimate forest fire potential. Its outputs are unitless
indicators of aspects of fire potential and are used for guiding fire managers in their decisions
about resource movements, presuppression planning, and so forth. However, this is only
a part of fire management. There is also the need, once fires have begun, to estimate
characteristics of fire behaviour at a point on the landscape; this is done with the FBP System.

Given inputs that fall into one of five categories—fuels, weather, topography, foliar
moisture content, and type and duration of prediction—the FBP System can be used to
estimate fire behaviour quantitatively [10]. The FBP System calculations yield four primary
and eleven secondary outputs as fire behaviour indices. It gives estimates which can be used
as the basis for predictions.

The primary outputs are Rate of Spread, Fuel Consumption (as either the surface or
crown consumption, or total), Head Fire Intensity, and a fire description code (crown fraction
burned and fire type). The secondary outputs are Flank and Back Fire Rate of Spread; Flank
and Back Fire Intensity; Head, Flank, and Back Fire Spread Distances; Elliptical Fire Area;
Fire Perimeter; Rate of Perimeter Growth; and Length-to-Breadth Ratio. The primary outputs
are based on a fire intensity equation and the secondary outputs are determined by assuming
elliptical fire growth. All underlying models and calculations are based on an extensive 30-
year field experimental burning program and are fully documented [10].

4.3. Burn-P3 Simulation Model

A burn risk probability map can be generated using the Burn-P3 simulation model software
developed by Marc Parisien of the Canadian Forest Service [5]. P3 stands for Probability,
Prediction, and Planning. Burn-P3 runs repeated simulations of the Prometheus Fire Growth
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(a) (b)

Figure 8: Illustration of fire perimeter growth under uniform burning conditions for homogenous fuels (a)
and nonhomogenous fuels (b) [11].

Model, under different weather scenarios, to give estimates of the probability distribution of
locations being burned during a single fire season.

In each iteration of a Burn-P3 simulation, a pseudorandom number is generated
and used to sample a number from the empirical distribution of the annual number of
escaped fires in the region. This empirical distribution is based on historic data. This number
represents the number of simulated fires for one realization of one fire season.

For each of these fires, a random cause, season, and ignition location combination
is selected from an ignition table. Burn-P3 creates an ignition table by combining ignition
grids for each cause/season combination. Ignition grids partition the study area into coarse
cells and represent the relative likelihood of a fire occurrence of an ignition in each cell.
This spatial distribution can be empirically based on historic ignition patterns or it can be
a uniform distribution, for example. The probability of selecting a certain row in the ignition
table is proportional to the ignition probability of that particular cell specified in the matching
ignition grid.

The duration of each simulated fire is also randomly drawn from an empirical
fire duration distribution based on historic data. Given the location and fuel conditions,
the Prometheus program is then used to simulate the growth of each fire individually
given a random weather stream consisting of conditions conducive to fire growth from
the appropriate season. All simulated fires in a single iteration are collectively used as an
independent realization of a fire season.

Repeatedly simulating such fire seasons allows for construction of a burn probability
map. Specifically, dividing the number of times each cell in the rasterized map of the study
region has been burned by the number of simulations run gives an estimate of the probability
that the particular cell will burn in a single fire season. See Figure 9 for a step-by-step
illustration of this process.

The version of Burn-P3 used in this paper is not programmed to handle vectorized
fuel breaks, that is, features in the landscape which tend to prevent fire from spreading. All
fuel breaks such as roads are rasterized in Burn-P3 which sometimes leads to anomalous
behaviour where a simulated fire passes between grid cells connected only at a single vertex.
By using a small grid cell size, we can avoid this problem.
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Figure 9: Step-by-step illustration of 30 iterations of the Burn-P3 simulation model. Darker colours indicate
areas that have been burned more often. Green areas are unburned fuels. White areas represent nonfuel.
(a) The yellow patch represents a single fire. (b) The two yellow patches represent two fires occurring in
two different years. (c) Yellow patches denote areas burned by one of 3 fires occurring in different years.
The orange patch represents an overlap of 2 of these fires. (d) The red patch represents an area burned by
fires in 3 or more different years.
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Figure 10: Corrected vector fuel map.

4.4. Inputs

4.4.1. Fuel Map

The FBP System classifies vegetation into 16 distinct fuel types (Table 1), that can further be
grouped into the five categories: coniferous, deciduous, mixed wood, slash, and open [10].
A map of the fuel types in the District of Muskoka was obtained from the Ontario Ministry
of Natural Resources. The fuel map was created manually from aerial photography in 1994.
Fieldwork was conducted over the course of 7 days to verify and correct a subsample of the
fuel map which appears in Figure 10.

4.4.2. Verification in the Field

Regardless of the accuracy of the fuel map at the time of its creation, fuel types and extents
change over time due to land use changes, urban expansion, and natural causes such as
forest succession. For example, in the study area, a large area of fuel mapped as C-6 (Conifer
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Table 1: Fire Behavior Prediction System fuel types [10].

Group/Identifier Descriptive name

Coniferous

C-1 Spruce-lichen woodland

C-2 Boreal spruce

C-3 Mature jack or lodgepole pine

C-4 Immature jack or lodgepole pine

C-5 Red and white pine

C-6 Conifer plantation

C-7 Ponderosa pine-Douglas-fire

Deciduous

D-1 Leafless aspen

Mixedwood

M-1 Boreal mixedwood-leafless

M-2 Boreal mixedwood-green

M-3 Dead balsam fir mixedwood-leafless

M-4 Dead balsam fir mixedwood-green

Slash

S-1 Jack or lodgepole pine slash

S-2 White spruce-balsam slash

S-3 Coastal cedar-hemlock-Douglas-fir slash

Open

O-1 Grass

Plantation) was found to be harvested and hence, was reclassified (Figure 11). Not all areas
were accessible by public roads and thus could not be verified by fieldwork. Consequently,
satellite imagery was used to further supplement our fieldwork to help confirm such areas.

To get an estimate of the accuracy of the fuel map, multistage cluster sampling
procedure was carried out in the field. First, 20 roads were selected at random with
probability proportional to the length of the road (Figure 12). For each of these roads,
observations were taken at the beginning, the end, and at various points along the road.
The number of observations taken was randomly generated from a Poisson distribution
with rate equal to the length of the road in kilometers (Table 2). The exact locations of these
observations were randomly selected from a uniform distribution from the beginning to the
end of the road.

At each observation location, the width of the road (including shoulder) was measured
and recorded. One person without prior knowledge of the given fuel classification gave his
best assessment of fuel classification of the fuels on either side of the road, making sure to
look beyond the immediate vegetation at the tree line. Both the assessed fuel classification
and original fuel classification were recorded.

Three of these selected roads were privately owned or not maintained enough to be
traversable; these were not included in the sample. A summary of results is given in Table 3.
The subjective nature of fuel classification can be seen in the 81.1% misclassification rate
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Figure 11: Area mapped as C-6 that has since been harvested and required reclassification.

assuming no tolerance for classification error. However, not all differences in observations
can be considered practically important. For example, an area assessed as 10% mixed wood
originally classified as 20% mixed wood was not updated because the resulting change in fire
behaviour is very slight; the rate of spread changes marginally and the direction of spread
would not be affected at all. On the other hand, if a nonfuel was incorrectly classified as
some form of fuel in the original map, the correction was made because the difference in fire
behaviour could be substantial. Using this criterion, the misclassification rate was found to
be to 22.7% in our sample: most of the fuel types were close to what we assessed them to
be.

4.4.3. Unmapped Private Properties

The main properties of interest are those located along the waterfront because they represent
the highest concentration of values at risk. Unfortunately, on the fuel map obtained from the
Ontario Ministry of Natural Resources, such areas are almost always mapped as nonfuels
because this is a private land not included in the Forest Resource Inventories on which the
fuels classification is based. From what was observed in the field, most of these properties
are located very close to fuels and could in fact be treated as a separately defined fuel type
(Figure 13). The fuel types in these properties are almost always similar to what is located on
the opposite side of the road further inland. For the purpose of this paper, we will assume
that forest stands are continuous across roads into waterfront properties mapped as nonfuel.

Some properties have isolated buildings separated from surrounding fields (e.g., by a
well-kept lawn or driveway). Although these buildings are unlikely to be damaged directly
by a wildfire, they are still at risk to ignitions caused by spotting. Fire spotting is the
situation where firebrands are transported long distances by the wind to start new fires. On
waterfront properties, isolated buildings are not common. Thus, we further assume that all
such properties have the same fuel type as the surrounding area.
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Figure 12: Map of the 20 randomly selected roads to be sampled.

Table 2: Names of the 20 randomly selected roads to be sampled, the number of observations taken on
each road, and the location of each observation.

Name of Road Number of observations Locations along road (km)
Cemetery Road 3 0, 0.5, 0.8
Hekkla Road 5 0, 1.0, 2.3, 2.9, 4.3
Deerwood Drive 2 0, 0.7
Purdy Road 4 0, 0.1, 1.4, 2.4
North Shore Road 8 0, 0.4, 0.6, 3.0, 3.7, 3.9, 4.9, 5.3
Skeleton Lake Road 3 2 0, 1.2
Three Mile Lake Road 2 3 0, 2.5, 3.3
Walkers Road∗ 10 0, 1.9, 2.7, 3.6, 3.7, 4.4, 5.1, 5.5, 5.6, 6.5
Luckey Road∗ 7 0, 1.0, 1.4, 2.4, 2.5, 3.1, 4.0
Clearwater Shores Blvd 2 0, 1.5
Halls Road 2 0, 0.8
Dawson Road 8 0, 0.1, 1.7, 2.0, 2.1, 2.5, 2.6, 2.9
Beatrice Townline 9 0, 1.0, 2.1, 5.2, 7.1, 7.5, 7.6, 8.0, 8.4
Cranberry Road 4 0, 0.6, 1.9, 2.1
Fogo Street 3 0, 1.3, 1.8
Breezy Point Road 5 0, 0.5, 0.9, 1.3, 2.6
Ashworth Road 4 0, 0.3, 1.2, 1.7
Ziska Road 8 0, 0.9, 1.9, 3.3, 4.6, 4.9, 5.2, 5.3
Rock Sand Lane∗ 3 0, 0.2, 0.7
Muskoka Crescent Road 2 0, 6.1
∗Inaccessible roads.
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Table 3: Summary of fuel map accuracy sampling procedure.

Tolerance Margin % Misclassified
Zero tolerance 81.1%
Little practical difference 22.7%

Figure 13: A structure embedded in a region of continuous fuel.

4.4.4. Fuel Breaks

As we have seen, fuel breaks are wide regions of what are essentially nonfuels that have the
potential to prevent a fire from spreading across. The most common fuel breaks are roads,
water bodies, and power lines.

The fuel map classifies major roads as nonfuels. Smaller private roads have not been
included on the map. In some cases, they are located within larger private property regions
mapped as nonfuel. We traced such roads from road data provided by the National Road
Network. These data contain the locations of almost all roads as well as the number of lanes
per road. We took a random sample of roads of varying numbers of lanes to measure their
effective widths. Not only are lane widths not uniform on smaller roads, the size of the
shoulder and distance to the tree line are highly variable. We used an average of sampled
road widths for roads for which the widths are unknown or cannot be reasonably estimated.

Bodies of water such as lakes and rivers are clearly and accurately identified on the
fuel map. However, bogs and swamps are problematic, since they are occasionally classified
as water. Although a sufficiently dry bog could potentially become a fuel source in the heat
of summer, the current fire growth model does not account for such a phenomenon.

Power lines introduce a further difficulty, since they are not identified on the fuel map.
When power lines are built in a forested area, a path is cleared and growth underneath
the line is regularly maintained. The width of this clearing and the amount of growth
directly underneath the power line vary depending on how regular such maintenance occurs.
Without a map of the smaller power lines, power lines are assumed to be negligible as fuel
breaks.

4.4.5. Rasterization

The corrected vector fuel map must be converted to a raster map before it can be used by
the Burn-P3 program. In doing so, detail at resolutions smaller than the grid cell resolution
of the raster fuel map may be lost. However, refining the resolution of the raster fuel map
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Figure 14: Rasterized fuel map at 25 m resolution.

directly increases computation time. In this assessment, a 25 m resolution (Figure 14) was
used. A coarser resolution of 150 m was also tested, but we have not included the results of
this rasterization, because important features such as fuel breaks were not respected.

4.4.6. Historic Weather

We obtained weather data from surrounding weather stations. The most complete weather
record also happens to be the station closest to the study region so only weather data from
this station was used in our analysis. This weather record begins with the 1980 fire season.

Only the extreme weather days are used for input to the Burn-P3 program. These days,
in which there is potential for substantial fire growth, are referred to as spread event days.
Days when the initial spread index (ISI) is less than 7.5 are considered to be nonextreme
and are deleted from the weather stream. The resulting data set consists of 232 cases, each
representing to a single day. Given the large number of simulations to be run, these weather
conditions are sampled frequently.
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4.4.7. Seasons and Causes

To properly simulate the growth of fires for an entire year, fires need to be classified by cause
and by season in which they occur.

In regions with a mixture of deciduous and coniferous vegetation, there are often two
distinct fire subseasons each year, the first immediately following snowmelt, and the second
in summer. The spring fire subseason is a period of increased fire risk because leaves have
not appeared on the deciduous trees leading to drier surface conditions. Since there is limited
lightning activity during this period, ignitions are primarily due to people.

After the leaves appear, there is often a brief interval with few fires. Fire occurrence
increases with temperature increase and as lightning activity increases. Thus, during the
summer fire subseason, ignitions are due to people and lightning. This results in different
spatial ignition patterns depending on time of year.

Operationally, early to mid June is typically taken as the transition date between
the spring and summer seasons when classifying fires. However, this date is inferred from
observations taken in the northern boreal forest. The District of Muskoka is further south
and experiences a slightly warmer climate. Consequently, it is reasonable to assume that the
actual transition date occurs approximately a week earlier. Looking at the distribution of
human caused fires (Figure 15), we can see a dip on June 11th in human caused ignitions
which is used as an estimate of the transition date and is highlighted with a vertical line in
the figure.

All fire ignitions can be classified into either human- or lightning-caused fires. Human-
caused fires can be further subdivided into eight specific causes: recreational, residential,
railway, forestry industrial, nonforestry industrial, incendiary, miscellaneous, and unknown.
Each of these causes is associated more strongly with either the spring or summer season
(Figure 16). Between 1996 and 2005 inclusive, across the province, there were a total of 12,974
wildfires resulting in over 1.5 million hectares burned. Of these ignitions, nearly 7,000 can be
attributed to lightning.

4.4.8. Ignition Grids

For each season and cause combination, ignition grids were created to represent the relative
likelihood of an ignition in a certain cell. To create the ignition grids for human caused fires,
a grid twenty times coarser than the fuel grid was created and assigned a value of 1. For each
historic fire, the cell in which the ignition occurred had its value incremented by 1. Lightning
ignitions in the region appear to be uniformly random and so a uniform ignition grid was
used for lightning-caused ignitions.

4.4.9. Estimation of Spread Event Days

Burn-P3 models fire growth only on spread event days. The number of spread event days is
not necessarily equal to the total duration of a fire; there may be days for which a fire does
not spread (either due to suppression or nonconducive weather). The fire data do not contain
information on fire spread days so a best estimate is made by counting the number of days
from the fire start date to the date in which the fire was reported as “held”. A held fire is one
that has been completely surrounded by fire line (i.e., fuel breaks constructed by suppression
efforts as well as naturally occurring fuel breaks). The historic data on the distributions of
spread event days per fire, as defined previously, is displayed in Figure 17.
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Figure 15: Distribution of human caused forest fires during the year. The vertical line indicates the
minimum of the dip, corresponding to June 11th.

The FBP System’s rate of spread is based on peak burning conditions, which are
assumed to occur in the late afternoon, generally specified as 1600 hours [10]. Consequently,
any fire growth models based on this system are effectively simulating spread event days
[12].

5. Analysis and Results

We will begin this section by discussing the application of the Burn-P3 simulator to the
corrected fuel map when the recommended settings are used. We will then discuss the
results of a sensitivity analysis in which the effects of fuel break misclassification on the
burn probabilities are studied. This will provide an indication of the uncertainty induced
by possible inaccuracies in the fuel map. We next compare the burn probability map obtained
from Burn-P3 with the map obtained using generalized additive models, and finally compare
simulated fire size distributions with the historical record; this ultimately guides us to what
we believe is a more accurate burn probability map.

A uniform ignition grid for lightning caused fires is normally recommended for use
in Burn-P3. For human-caused fires, the ignition grid is also uniform, but with increased
probability at locations where previous ignitions occurred. The distribution of spread event
days is based on historic weather data where the weather stream has been adjusted so that it
only contains extreme weather, conducive to fire growth. Using these recommended settings,
we obtain the burn probability map and fire size distribution as shown in the left panel of
Figure 18.

In that figure, it can be seen that the fire risk is higher in the north. This result seems
plausible, since there are larger forest stands in that region, and we have already conjectured
on the possibility of large fires spreading into the study region from further north.

In order to assess the uncertainty induced by possible inaccuracies in the fuel map,
we conducted the same simulation but with 20% of randomly selected nonfuel grid cells
converted to the M-1 20% mixed wood fuel type. By making this kind of change, we should
observe the largest range of realistic fire behaviour in the study region, since much of the
forest in the area is of M-1 type, and changes within this categorization have minimal effect
on fire behaviour. By contrast, changes from nonfuel to any kind of of fuel can have relatively
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Figure 16: Histograms of forest fires during the year by cause. Vertical line indicates June 11th, the
estimated transition date used to separate “spring” and “summer” subseasons.

dramatic effects on fire behaviour, since nonfuel regions often serve as fuel breaks; replacing
parts of such regions with fuel allows for the possibility of a fire breach where it would
not otherwise have been possible. As expected, the burn probability map (Figure 18(b))
exhibits larger regions of relatively high probability than in the original map, especially in
the eastern region as well as in the north. Note that regions where the burn probability was
already relatively high do not see a substantial gain in burn probability when the nonfuels
are perturbed. Rather, we see somewhat more substantial increases in burn probability in
those areas where the probability was much less. An additional simulation was run with
only 10% of the nonfuel randomly converted to fuel; we have not shown the resulting map
because of its similarity to the map in the right panel of Figure 18. We conclude that gross
misclassification of fuel as nonfuel could lead to a moderate underestimate of the area at
elevated risk.
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Comparing the map obtained from Burn-P3 using the corrected and unperturbed
fuel map (Figure 18) with the burn probability map obtained using the generalized additive
model (Figure 7), we see some similarities. Both maps exhibit elevated burn risk in the north,
but the prevalence of ignitions in the southeast seems to figure more prominently in the
map obtained from the generalized additive model. It should be noted that the latter map
is based on accurate fire sizes but incorrect fire shapes, while the former map is based on
what are possibly more realistic fire shapes, but with a fire shape and size distribution that is
determined by the weather and fuels.

We can then use the historic fire size distribution as a check on the accuracy of the
Burn-P3 output. Figure 19 shows the estimated density of fire sizes in the study region (solid
black curve) on the natural logarithmic scale. The dashed curve represents the estimated
density of the simulated log fire sizes under the recommended settings, and the dotted curve
corresponds to the perturbed nonfuel simulation. Both densities fail to match that of the
historic record. Modal log fire sizes are close to 2 in the historic record, while the simulations
give modes exceeding 5. Note that, in accordance with our earlier observations regarding the
nonfuels, the fire sizes indeed increase when fuel breaks are removed.

In order to find a model which matches the historic record more closely, we could
introduce additional fuel breaks, but we have no way of determining where they should be
located without additional (substantial) fieldwork, and the earlier sensitivity study indicates
that even fairly substantial errors in the fuel map will lead to only modest discrepancies in the
fire size distribution. Instead, it may be more important to consider the effects due to weather.
To investigate this, we have run four additional Burn-P3 simulations under different settings.
The resulting burn probability maps appear in Figure 20. We now proceed to describe these
simulations and their resulting fire size distributions.

First, we replaced the spread event day distribution with a point mass at 1 day. In
other words, we made the assumption that even if fires in the area burn for several days,
there would only be one day in which the fire would burn a nonnegligible amount. All other
simulation settings remain as before. The fire size distribution for this situation is pictured in
Figure 19 as the long-dashed curve, having a mode near 4. This is closer to the historic record,
but still unsatisfactory.
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Figure 18: (a) Burn probability map of simulated fires using recommended Burn-P3 settings. (b) Burn
probability map of simulated fires using recommended settings and 20% of nonfuels randomly converted
to M-1 fuel type.

The next simulation made use of the entire weather record, dispensing with the notion
of spread event days completely. Fire durations were sampled from historic fire duration
distribution. Again, all other simulation settings were the same as before. The resulting fire
size distribution is displayed in Figure 19 as the dashed-dotted curve, having a mode near
3—a substantial improvement, but still not satisfactory. The difference between this result
and the earlier simulations which depend only on extreme weather calls such practice into
question.

In the succeeding simulation run, the duration of the fires was reduced to a single day,
again sampling from the full weather stream. The resulting density estimate is displayed in
Figure 19 as the long-dashed-dotted curve, having a mode near the historic mode, although
its peak is not nearly as pronounced. An additional simulation was conducted using the
same settings but with an ignition grid based on the generalized additive model for ignitions
obtained in Section 3.1. The resulting fire size distribution is also pictured in Figure 19 and is
very similar to the result of the preceding simulation.

We conclude that the use of the full weather stream and that limiting the duration of
the fires to one day give more accurate fire size distributions. Use of the uniform ignition grid
is slightly less accurate than the use of the modelled grid based on historic ignitions.
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Figure 19: Estimated density functions of log-transformed simulated and observed fire sizes under various
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6. Discussion

We have shown how to estimate a burn probability map which could be used by insurers
to estimate expected losses due to wildfire risk in the region under study. We found that
substantial perturbation of the fuel map, converting nonfuels to fuels, gives rise to moderate
changes in the fire risk.

We have also used historic fire size distribution information as a check on its accuracy
and found that the recommendation to use a spread event day distribution for fire duration
overestimates the fire size distribution. The use of spread event days in the Burn-P3 model
could be degrading the probability estimates. The spread event day distribution may be
biased since it is based on the time between when a fire was first reported and when it was
declared as being successfully held by suppression activities. A fire would not necessarily be
spreading rapidly during this entire period.

Note that fire suppression is not accounted for directly in Burn-P3. This could account
for the difference between the simulated and observed fire size distributions. By using the
full weather stream and a one day fire duration, the simulated fire size distribution comes
closer to matching the historic record. In fact, using the 1 day fire duration may be realistic
because of suppression effects; it is unlikely that most fires are allowed to burn for more than
1 day in this region without being attacked. If allowed to burn longer, it would not be under
extreme weather conditions, and such fires would not be spreading fast.

Thus, there is some justification for our approach. We note, however, that there is still
a discrepancy between the simulated fire size distribution and the historic record. As we saw,
fuel/nonfuel misclassification can have a modest effect on the fire size distribution estimates.
It is possible that some of the small roads that are not classified as fuel breaks may in fact
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Figure 20: Burn probability maps under various simulation scenarios. (a) Using full weather stream. (b)
Using one spread event day. (c) Using full weather stream and one spread event day. (d) Using full weather
stream and one spread event day with ignition grid from GAM model.
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be serving as fuel breaks; this kind of error could explain the discrepancy in the fire size
distributions.

Our final model indicates a relatively low burn probability across the region.
Depending on the ignition grid used, the higher risk areas are either in the north (uniform
grid) or to the east and southeast (historic ignition grid). The latter indicates a somewhat
more serious risk for the more heavily populated area, and may be the more realistic
scenario, since there is no reason to believe that the pattern of human-caused ignitions (which
are largely responsible for the fires here) will change in the future without some form of
intervention.

However, there are several limitations to this approach. The results obtained in this
assessment need to be interpreted with some care. We should note that by using the fire size
distribution as our standard for accuracy checking, we are assuming that the fuel distribution
and composition is similar to how it was in the past and that the climate has not changed
substantially. Future research in which this model is run under various realistic climate
change scenarios will be important. Any changes in fire management in the area, either past
or future, have not been factored into our estimates of fire risk.

The Prometheus Fire Growth Model has been used extensively in Canadian fire
management operations. It has been found to be reasonably accurate under many
circumstances, especially under peak burning conditions, which is where the FBP system
is at its most accurate. Indeed, predictions from the FBP System, which forms the foundation
of fire growth in the Prometheus model and consequently in Burn-P3, are used as a regular
and important part of forecasting the active growth of fires and the consequent planning
of fire suppression resource needs. While the FBP has limitations (see discussion below), it
constitutes the best available system for predicting fire ignition and growth in the forests of
Canada. Consequently, the Prometheus fire growth model as well as Burn-P3 have been used
in a number of research studies in a wide variety of locations in Canada [5, 13–16].

However, the size of fires may be overstated under moderate weather conditions
[12]. Since Prometheus is based on the FBP system which is, in turn, based on empirical
observations, the process under which these empirical observations were collected influences
model performance. Some of these observations were from controlled burns, so spread rates
of wildfires in different fuel types may be quite different, at least during the acceleration
phase. The reason for this is that the prescribed fires were started with a line ignition
under somewhat variable weather conditions. Because of the line ignition, the estimated
spread rate may be biased upwards, since point fire ignitions are more common in naturally
occurring fires. Spread rates for mixed wood fuel types were not empirically developed from
observed fire behaviour; instead, they were calculated as weighted averages of spread rates
of coniferous and deciduous fuel types.

The Burn-P3 simulation model is also limited in that it is not programmed to handle
vectorized fuel breaks so any fuel breaks smaller than the chosen cell resolution do not
prevent a fire from spreading. Furthermore, inputs for Burn-P3 are based on empirical
observations which makes an assumption that what will be observed in future fire seasons is
similar to what has happened in the past.
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