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This paper provides an application of generalized space-time autoregressive (GSTAR) model on
GDP data in West European countries. Preliminary model is identified by space-time ACF and
space-time PACF of the sample, and model parameters are estimated using the least square
method. The forecast performance is evaluated using the mean of squared forecast errors (MSFEs)
based on the last ten actual data. It is found that the preliminary model is GSTAR(2;1,1). As a com-
parison, the estimation and the forecast performance are also applied to the GSTAR(1;1) model
which has fewer parameter. The results showed that the ASFE of GSTAR(2;1,1) is smaller than that
of the order (1;1). However, the t-test value shows that the performance is significantly indifferent.
Thus, due to the parsimony principle, the GSTAR(1;1)model might be considered as a forecasting
model.

1. Introduction

Space-time data are frequently found inmany areas of research, for example, monthly tea pro-
duction from some plants, yearly housing price at capital cities, and yearly per capita GDP
(gross domestic product) of several countries in some region. The generalized space-time
autoregressive model of order (p;λ1, . . . , λp), shortened by GSTAR(p;λ1,. . .,λp), is one of
space-time models characterized by autoregressive terms lagged in the pth order in time and
the order of (p;λ1, . . . , λp) in space [1].

The term of generalization is associated with themodel parameters. When a parameter
matrix is diagonal, the GSTAR model is the same as space time autoregressive (STAR)model
given byMartin andOeppen [2] and Pfeifer andDeutsch [3]. The notion of generalization has
also been used by Terzi [4] who also generalizes STAR models but in a different context. He
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generalized the STAR(1;1) by adding the contemporaneous spatial correlation but still pre-
served the scalar parameters.

When p = 1 and λ1 = 1, GSTAR(1;1) is called the first order of GSTAR model. The
model has interpretation that the current observation in a certain location only depends
on the immediate past observations recorded at the location of interest and at its nearest
neighbourhood [5]. The order (1;1) is the simplest natural assumption if one wants to forecast
future observations in a certain location. The STAR(1;1) model is another simple space time
model which also has the same interpretation as GSTAR(1;1)model. However, contrary to the
generalization model, its parameters of each spatial order are assumed to be the same for all
location though; there is no a priori justification for this assumption [1]. Parameters of GSTAR
model can be estimated by the method of least square. This method has been used to model
the monthly oil production [5] and to model the monthly tea production [1]. However, when
the model was applied to their data, none of the papers included a description about how to
assess the model based on forecasting performance which is an important step when the
modelling purpose is to build a forecasting model. In this paper, we attempt to put in the idea
to optimize the goodness of fit in model selection.

This paper is presented as follows. In Section 2, the GSTAR model and the para-
meters least squares estimation is reviewed with the example given for GSTAR(1;1) and
GSTAR(2;1,1). To illustrate the estimator properties for finite sample size, simulation study is
discussed in Section 3. In the last section, themodel is applied to the per capita GDP ratio data
in West European countries for the period 1956–1996. The one step ahead forecasting is per-
formed for each model for the period 1997–2006. As a comparison performance measure, it is
used the empirical mean of squared forecast error (MSFE) where forecast error is defined as
the difference between the actual value and the forecast value.

2. The Model

Let Z(t) = (Z1(t), . . . , ZNt)′ be anN-dimensional vector process with zero mean withN as is
a fixed positive integer. GSTAR(p;λ1, . . . , λp) process is a space-time process Z(t)which satis-
fies

Z(t) =
p∑

k=1

λk∑

�=0

Φk�W(�)Z(t − k) + e(t), (2.1)

where p is the autoregressive order, λk is the spatial order of the kth autoregressive term,
W(�) = (w(�)

ij ) is anN×Nmatrix of spatial weight for the spatial order �which has a zero diag-

onal, sum of each row is equal to one, and matrix W(0) is defined as the identity matrix I. An
N ×N matrixΦk� is a diagonal parameter matrix of temporal lag k and spatial lag � with the
diagonal element (φ(1)

k�
, . . . , φ

(N)
k�

). Finally, e(t) is an error vector at time twhich is assumed to
be independent normal with zero mean and constant variance.

Model parameters φ(1)
k�
, . . . , φ

(N)
k�

for k = 1, 2, . . . and � = 1, 2, . . . can be estimated by the
least squares (LS) estimation. The procedure estimation and the asymptotic properties of LS
estimators have been discussed extensively in Borovkova et al. [1]. The following examples
are an illustration on how to find the LS estimator for GSTAR(1;1) and GSTAR(2;1,1)models,
respectively.
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Example 2.1 (LS estimation for GSTAR(1;1)model). From (2.1), GSTAR(1;1)model can be ex-
pressed as

Z(t) = Φ10Z(t − 1) +Φ11W(1)Z(t − 1) + e(t). (2.2)

Suppose observation Z(t) = (Z1(t), . . . , ZN(t))′ is given for t = 1, 2, . . . , T . By rearranging the
component of Z(t) for t = 1, 2, . . . , T , by location then by time, model (2.2) can be expressed
as a linear model

Z = XΦ + e, (2.3)

where Z = (Z1(1), . . . , Z1(T), . . . , ZN(1), . . . , ZN(T)), X = diag(X1, . . . ,XN) with

Xi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Zi(0)
∑

j /= i

wijZj(0)

Zi(1)
∑

j /= i

wijZj(1)

...
...

Zi(T − 1)
∑

j /= i

wijZj(T − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.4)

Φ = (φ(1)
10 , φ

(1)
11 , . . . , φ

(N)
10 , φ

(N)
11 )

′
, and e(e1(1), . . . , e1(T), . . . , eN(1), . . . , eN(T))′.

Then, the LS estimator for parameter matrix Φ is a solution of
(
X′X

)
Φ =

(
X′Z

)
. (2.5)

Example 2.2 (LS estimation for GSTAR(2;1,1)model). For order p = 2, λ1 = 1 and λ2 = 1, model
(2.1) is called GSTAR(2;1,1) which can be written as

Z(t) = Φ10 Z(t − 1) + Φ̂11W(1)Z(t − 1) +Φ20Z(t − 2) +Φ21W(2)Z(t − 2). (2.6)

By rearranging the component of Z(t) for t = 2, 3, . . . , T , by location then by time, model (2.6)
can also be expressed as a linear model

Z = XΦ + e, (2.7)

where Z and e are defined as in Example 2.1, X = diag(X1, . . . ,XN) with

Xi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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∑
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w
(1)
ij Zj(1) Zi(0)
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w
(2)
ij Zj(0)
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j /= i

w
(1)
ij Zj(2) Zi(1)
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j /= i

w
(2)
ij Zj(1)

...
...

...
...

Zi(T − 1)
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j /= i

w
(1)
ij Zj(T − 1) Zi(T − 2)
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j /= i

w
(2)
ij Zj(T − 2)
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(2.8)

and Φ = (φ(1)
10 , φ

(1)
11 , φ

(1)
20 , φ

(1)
21 , . . . , φ

(N)
10 , φ

(N)
11 , φ

(N)
20 , φ

(N)
21 )′.
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Then, the LS estimator for parameter matrix Φ is a solution of
(
X′X

)
Φ =

(
X′Z

)
. (2.9)

3. Simulation Study

Under the stationary assumption, the LS estimator for the GSTAR parameters is a consistent
estimator [1]. To get insight into the LS properties for finite sample we performed a Monte
Carlo simulation with 1000 replications. Artificial data were generated from GSTAR(1;1)
model where the error e(t) is normally distributed with mean 0 and covariance matrix I4.
Spatial weight matrix and model parameters that used in the simulation, respectively, were

W(1) =

⎛
⎜⎜⎜⎜⎜⎝

0 0.5 0.5 0

0.5 0 0 0.5

0.5 0 0 0.5

0 0.5 0.5 0

⎞
⎟⎟⎟⎟⎟⎠

,

φ
(1)
10 = 0.2, φ

(2)
10 = 0.5, φ

(3)
10 = 0.3, φ

(4)
10 = 0.2,

φ
(1)
11 = 0.4, φ

(2)
11 = 0.3, φ

(3)
11 = 0.5, φ

(4)
11 = 0.7

(3.1)

such that the parameter matrix for the generated model was

Φ10 = diag(0.2, 0.5, 0.3, 0.2), Φ11 = diag(0.4, 0.3, 0.5, 0.7) (3.2)

The LS estimator vector φ̂ = (φ̂(1)
10 , φ̂

(2)
10 , φ̂

(3)
10 , φ̂

(4)
10 , φ̂

(1)
11 , φ̂

(2)
11 , φ̂

(3)
11 , φ̂

(4)
11 ) was calculated us-

ing R functions in Algorithm 1. Simulationwas carried out for sample size T = 40, 50, 100, 500,
1000, 10000, and for each T , simulations were repeated 1000 times to obtain the estimates aver-
age

φ̂T =
1

1000

1000∑

r=1

φ̂
(r)
T (3.3)

and empirical mean squared error (MSE)

MSET =
1

1000

1000∑

r=1

∥∥∥φ̂(r)
T − φ

∥∥∥
2
, (3.4)

where ‖φ̂(r)
T − φ‖2 = ∑4

i=1(φ̂
(i)
10 − φ

(i)
10 )

2 + (φ̂(i)
11 − φ

(i)
11 )

2.
The result is presented in Table 1. It can be seen that the parameters estimates (in aver-

age) approaches the true parameters as T increases while the empirical MSE is getting smaller
and approaching 0 as T increasing. It means that behavior of the LS estimator in the simula-
tion exhibits the consistent property. In general, we can notice that the LS estimation could
give fair estimates even for moderate sample size such as T = 40 and T = 50.
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# =============================================================
# [FUNCTION]: OLS estimation for GSTAR(p;L1,. . .,Lp) models
# =============================================================
# 3 dimension zeros matrix
# ——————————-
zeros <-function(m,n,p){
W<-rep(0, m∗n∗p)
dim(W)<-c(m, n, p)
W}
# “vec” operator
vec<-function(X){
a<-dim(X)
Y<- t(X[1, ])
for (i in 2:a[1]){
Y<- cbind(Y,t(X[i, ]))}
t(Y)}
#——————–
# Inverse of matrix
#——————–
inv<-function(X){
if(dim(X)[1]! = dim(X)[2]) stop(“THE MATRIX MUST BE SYMMETRIC!!!”)
else{
if (det(X)==0) stop(”THE MATRIX IS SINGULAR!!!”)
else { n<-dim(X)[1]
solve(X)}}}
# ————————————————————–
# Construction of vector Zi, for each i=1,. . .,N
# ——————————————————
# Construction of vector Zi, for each i=1,. . .,N
# ——————————————————
# suppose x = c(p,L1,..., Lp) represent the model order
Zi<-function(Zt, x){
N<-dim(Zt)[1] #number of sites
T<-dim(Zt)[2]-1 #number of time periods
p<-x [1]
Zi<-matrix(0, T-p+1, N)
for (i in 1: N)
Zi[,i]<-Zt[i,(p+1):(T+1)]
Zi}
# —————————————————————
# Construction of matrix Xi, for each i= 1,. . .,N
# ———————————————
Xi<-function(Zt,x)
{N<-dim(Zt)[1] #number of sites
T<-dim(Zt)[2]-1 #number of time periods
p<-x[1]
La<-x[2: length(x)]
r<-lmd+1 # where lmd = the greatest order for weight matrices
WZ<-zeros(N, T, r)
for (k in 1: r)
WZ[,, k]<-W [,, k]% ∗%Zt[, 1: T]
Xi<-zeros((T-p+1),sum(La+1), N)
if (p==1)
{ for (i in 1:N){

Algorithm 1: Continued.
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TR<-WZ[i,p:T,1:(La[1]+1)]
Xi[,, i]<-TR}} if (p>=2){

for (i in 1:N){
TR<-WZ[i,p:T,1:(La[1]+1)]
for (s in 2:p)

TR<-cbind(TR,WZ[i,(p-s+1):(T-s+1),1:(La[s]+1)])
Xi[,, i]<-TR}}
Xi} # —————————————————————
# OLS parameter of GSTAR model
# —————————-
gstar<-function(Zt,x){
p<-x[1]
La<-x[2:length(x)]
r<-lmd+1 # where lmd = the greatest order for weight matrices
N<-dim(Zt)[1] #number of sites
T<-dim(Zt)[2]-1 #number of time periods
Xi<-Xi(Zt,x)
Zi<-Zi(Zt,x)
coef.OLS<-matrix(0,sum(La+1),N)
col.name<-array(0,N)
for (i in 1:N){

coef.OLS[, i]<-inv(t(Xi[,, i])% ∗%Xi[,,i])% ∗%t(Xi[,, i])% ∗%Zi[,i]
col.name[i]<-paste(”site”,i)}

colnames(coef.OLS)<-col.name
round(coef.OLS,4)}
# —————————————————————
# Residuals of GSTAR model
# —————————-
# (1). To find the LS estimates only, for example GSTAR(2;1,1), use
# the command:
# > gstar(Zt,c(2,1,1))
# where Zt is data matrix.
# (2). To find the estimates, prediction values, and residuals
# vector respectively, call the function by the following
# commands:
# > as.2<-res(Zt,c(2,1,1))
# > as.2$coef
# > as.2$pred
# > as.2$res
# —————————————————————
res<-function(Zt,x){
coef<-gstar(Zt,x)
Xi<-Xi(Zt,x)
p<-x[1]
La<-x[2:length(x)]
N<-dim(Zt)[1] #number of sites
T<-dim(Zt)[2]-1 #number of time periods
Z.OLS<-matrix(0,T-p+1,N)
res.OLS<-matrix(0,N,T-p+1)
if (p==1){
for (i in 1:N){
if (La[1]!=0)Z.OLS[,i]<-Xi[,,i]% ∗%coef[,i]
else Z.OLS[,i]<-Xi[,,i]∗coef[,i]
res.OLS[i,]<-t(Z.OLS[,i]-Zt[i,(p+1):(T+1)])}

Algorithm 1: Continued.
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if (p!=1){
for (i in 1:N){
Z.OLS[,i]<-Xi[,,i]% ∗%coef[,i]
res.OLS[i,]<-t(Z.OLS[,i]-Zt[i,(p+1):(T+1)])}}
az<-new.env()
az$Xi<-Xi # matrix Xi
az$coef<-coef
az$pred<-t(Z.OLS)
az$res<-res.OLS
ax<-as.list(az)}
# —————————————————————

Algorithm 1: R codes for least square estimation of GSTAR model.

Table 1: The LS estimated values (in average) for the data generated from GSTAR(1;1) model with 1000
replications for various sample sizes T compared to the theoretical parameter.

T = 40 T = 50 T = 100 T = 500 T = 1000 T = 10000
φ
(1)
10 = 0.2 0.1799 0.1822 0.1891 0.1996 0.2004 0.2000

φ
(2)
10 = 0.5 0.4639 0.4684 0.4819 0.4971 0.4987 0.5002

φ
(3)
10 = 0.3 0.2786 0.2815 0.2942 0.2966 0.2983 0.2998

φ
(4)
10 = 0.2 0.1802 0.1828 0.1929 0.1983 0.1986 0.1998

φ
(1)
11 = 0.4 0.4000 0.4025 0.4028 0.3999 0.4002 0.4005

φ
(2)
11 = 0.3 0.2961 0.2944 0.2970 0.005 0.2998 0.2999

φ
(3)
11 = 0.5 0.4880 0.4906 0.4931 0.4988 0.5001 0.5002

φ
(4)
11 = 0.7 0.6989 0.6980 0.6961 0.7008 0.7002 0.7002

MSE 0.0279 0.0219 0.0105 0.0002 0.0001 0.0001

4. Application of GSTAR Model to the Ratio of Per Capita GDP Data

In this section, we apply the GSTARmodel to the ratio of per capita GDP data in 16West Euro-
pean countries. The data was kindly given by Maddison [6] from Faculty of Economics, Uni-
versity of Groningen, the Netherland, who passed away on April 24 2010. The per capita GDP
of a country is the country GDP value divided by its population, and the per capita GDP of
total West Europe is the sum of each West European country GDP divided by the total popu-
lation in West Europe. The ratio of the per capita GDP of a country is the country per capita
GDP value divided by the per capita GDP of total West Europe, multiplied by 100. Hence, the
unit of the per capita GDP ratio is the percentage. For the data analysis in the following sub-
section, we will use the ratio of the per capita GDP data and for simplicity it will be called the
GDP ratio data.

4.1. Dataset and Preliminary Model Building

The dataset is the GDP ratio data for periods 1955–2006. It consists of 52 observations of 16 di-
mensional vectors. For the purpose of forecasting the data was grouped into the training data
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Figure 1: (a) The ratio of per capita GDP in 16 West European countries for the period 1955–2006 and (b)
plot of the centralized data of the difference data.

set and test data set. The training data is the first 42 observations that will be used for model
building and the test data is the last ten data that will be used in forecasting performance com-
parison.

Clearly, the 42 observations in the training data, depicted in Figure 1(a), are not station-
ary though they tend to converge to the value between 50% and 150%. Therefore, to achieve
the zeromean stationary data, the first difference transformation and data centralizationmust
be applied.

Suppose Yi(t) represents the per capita GDP ratio for country i, i = 1, 2, . . . , 16 at time
t, t = −1, 0, 1, . . . , 50. The first difference transformation of Yi(t) denoted by Di(t) is

Di(t) = Yi(t) − Yi(t − 1) (4.1)

and the centralization of the differenced data is

Zi(t) = Di(t) −Di, (4.2)

where Di is the average of Zi(t) at location i, for i = 1, 2, . . . , 16. Plot of the 16 series of this
transformation is displayed in Figure 1(b) and their behaviour has seemed to represent sta-
tionary series.

As a preliminary model building, we set some notations used in model (2.1). The
length of time period is T = 40, and the number of sites isN = 16. Time period t = 0 will cor-
respond to 1956, t = 1 to 1957, t = 2 to 1958, and so on. Since the time dimension is one, the
time lag can be ordered naturally by the sequence of k = 1, 2, . . .. On the other hand, the spatial
order � may be defined in a different ways because in a two-dimensional space there is no
specific order just as in one-dimensional space. For the GDP data, there are 16 countries. The
first order and the second order neighbours of the countries are given in Table 2. These are
defined based on the geographical location of the countries. The first order neighbours of a
country are those which have a common border with the country or within a close distance
along a sea route. A second order neighbour of a country is the union of all first order neigh-
bourhood countries of its first order neighbours, excluding itself.
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Table 2: Geographical neighbourhood of order 1 and order 2.

No. Country Countries in the 1st neighborhood Countries in the 2nd neighborhood
1 Austria 6,9,15 2,3,5,7,10,14
2 Belgium 5,6,10,16 1,3,8,9,13,14,15
3 Denmark 6,10,11,14 1,2,4,5,15,16
4 Finland 11,14 3,6
5 France 2,6,9,13,15,16 1,3,7,8,10,12,14
6 Germany 1,2,3,5,10,14,15 4,9,11,13,16
7 Greece 9 1,5,15
8 Ireland 16 2,5,10
9 Italy 1,5,7,15 2,6,13,16
10 Netherland 2,3,6,16 1,5,8,11,14,15
11 Norway 3,4,14 6,10
12 Portugal 13 5
13 Spain 5,12 2,6,9,15,16
14 Sweden 3,4,6,11 1,2,5,10,15
15 Switzerland 1,5,6,9 2,3,7,10,13,14,16
16 United Kingdom 2,5,8,10 3,6,9,13,15

Suppose n(�)
i , � = 1, 2 represents the number of countries which are the �th neighbours

of a country i. The spatial weight of order � between countries i and j can be defined as

w
(�)
ij =

⎧
⎪⎨

⎪⎩

1

n
(�)
i

, if j is the �th neighbours of i,

0, if j is not the �th neighbours of i.
(4.3)

For example, from Table 2 it can be seen that Austria has 3 the first order neighbours, Ger-
many, Netherland and Switzerland, and has 6 second order neighbours, Belgium, Denmark,
France, Greece, Netherland, and Sweden. Then, the first order of spatial weight between
Austria and each nearby country is

w
(1)
16 = w

(1)
19 = w

(1)
1,15 =

1
3

(4.4)

and the second order of spatial weight is w(2)
12 = w

(2)
13 = w

(2)
15 = w

(2)
17 = w

(2)
1,10 = w

(2)
1,14 = 1/6.

4.2. GSTAR Model Building for the GDP Data

After transforming the data and constructing spatial weight matrix, the next step is identi-
fication of the model order. In STAR model-building, [3] used the sample space time
autocorrelation function (STACF) and space time partial autocorrelation function (STPACF)
as the primary tools for model identification. The order (p;λ1, . . . , λp) model can be chara-
cterized by the tail-off behaviour of the autocorrelations and the cut-off behaviour of the par-
tial after p time lag and λp spatial lag. Since STAR model is a special case of GSTAR model,
these autocorrelation functions will be adopted to identify the order of GSTAR model.

Figure 2 presents sample STACF and STPACF for the differenced data Z(t) up to time
lag 10 and spatial lags 0, 1, and 2. The pattern is not clearly suggested an exact order.
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Figure 2: Sample space-time ACF and PACF of the differenced data.
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Figure 3: Sample space-time autocorrelation of the residuals from the GSTAR(2;1,1) model.

However, since the sample STPACF cut off after time lag 2 and spatial lag 1, order (2;1,1) can
be considered as the space-time order candidate. In addition, the space-time partials also cut
off at time lag 5 and spatial 2, but applying this GSTARmodel to the data will result too many
estimated parameters because there will be at least 160 parameters which have to be esti-
mated.

The 64 parameters and the error variance in this model were estimated using the least
square method and the result is presented in Table 3. The empirical MSE for GSTAR(2;1,1)
model is 2.735 counted based on 16 × 39 or 624 values. The residuals histogram and normal
probability plot on Figures 4(a) and 4(b) show that the GSTAR(2;1,1) residuals are approxi-
mately normal distributed with zero mean and constant variance. Meanwhile, fitted value
versus residuals plot in Figure 4(c) exhibits that the residuals do not show a significant pat-
tern. From Figure 3 we can observe that the STACF of the residuals is significantly almost zero
except for time lag 5 and 10, and spatial lag 2. The exception points at time lags 5 and 10, sug-
gesting that the seasonal difference of order 5 might be useful for further model analysis. But
the seasonal model analysis is not discussed here because it is out of the research scope.
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Figure 4: Histogram and normal probability plot of the GSTAR(2,1,1) residuals (a) and (b) and plot of
residuals versus fitted value (c).

Table 3: Least square estimates for GSTAR(2;1,1) parameter.

Site i φ̂
(i)
10 φ̂

(i)
11 φ̂

(i)
20 φ̂

(i)
21

1 −0.083 0.058 0.045 −0.046
2 −0.092 0.028 0.404 0.052
3 −0.218 0.730 −0.113 0.638
4 0.566 −0.534 −0.262 0.253
5 0.152 0.563 −0.030 0.255
6 0.176 0.211 −0.052 0.046
7 0.106 −0.048 −0.018 0.261
8 0.332 −0.126 −0.114 0.540
9 0.271 −0.424 −0.217 0.461
10 −0.026 −0.250 0.097 −0.332
11 0.549 −0.278 −0.166 0.239
12 0.442 0.198 −0.254 −0.204
13 0.376 0.242 −0.054 0.037
14 0.390 −0.120 −0.457 0.304
15 0.042 0.564 −0.250 −0.949
16 0.293 0.226 0.119 −0.318
σ̂2
LS = 2.969; MSE = 2.735.

For forecasting purpose, the estimated parameters in Table 3 can be used to predict the
h-step-ahead forecast value at time forecast origin T defined by

ẐT (h) = Φ̂10 ẐT (h − 1) + Φ̂11W
(1)
T ẐT (h − 1) + Φ̂20 ẐT (h − 2) + Φ̂21W

(2)
T ẐT (h − 2). (4.5)

5. GSTAR(1;1) Modeling

GSTAR(1;1)model is the simplest model of GSTAR(p;λ1, . . . , λp)model class defined in (2.1)
because it is only characterized by the autoregressive terms lagged in time and spatial of
order one. From (2.1) we can write GSTAR(1;1) as

Zi(t) = φ0iZi(t − 1) + φ1i

N∑

j=1

wijZj(t − 1) + ei(t), (5.1)
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Figure 5: GSTAR(1;1) residuals histogram (a), normal probability (b), and residuals versus fitted values
(c).
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Figure 6: Space-time autocorrelation of the GSTAR(1;1) residuals.

or in matrix notation

Z(t) = Φ10Z(t − 1) +Φ11W(1)Z(t − 1) + e(t), (5.2)

where Z(t) = (Z1(t), . . . , ZN(t)), Φ10 = diag(φ(1)
10 , . . . , φ

(N)
10 ), and Φ11 = diag(φ(1)

11 , . . . , φ
(N)
11 ). To

simplify the notation, Φ10 and Φ11 are frequently written, respectively, by Φ0 and Φ1.
The model has an interpretation that the current observation in a certain location only

depends on the immediate past observations recorded at the location of interest and at the
nearest locations. The GSTAR(1;1) model has 2N parameters since it is assumed that the
parameter for each location is allowed to be unequal. For the per capita GDP data the least
square estimator for GSTAR(1;1) model is presented in Table 4. The residuals distribution of
the model, presented in Figure 5, give the conclusion that the residuals are approximately
normally distributed with zero mean and the variance is nearly constant. In general, the
STACF plot in Figure 6 shows that the residuals are significantly uncorrelated. The insigni-
ficant value was only found at the last time lag.

For the GDP data case, GSTAR(2;1,1) model has 64 parameters while GSTAR(1;1) has
32 parameters. Hence, it is not a surprise if the empirical MSE of GSTAR(2;1,1) is less than
that of GSTAR(1;1). However, though the number of parameters of GSTAR(1,1) is half of the
other one, the empirical MSE of GSTAR(1,1) is only decreasing 0.257 compared to the
GSTAR(2;1,1).

The distribution of the MSE difference for each country is presented in a bubble plot
(Figure 7). Center of the bubble is the value of MSE difference and the radius is its absolute
value. The bubble placed under the zero axis indicates that the GSTAR(2,1,1) MSE for the
associated country is smaller than that of the GSTAR(1;1) MSE. From the figure, we can see
that the decrease of MSE values is mostly contributed by five countries, Belgium, Denmark,
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Figure 7: Bubble plot for the difference value of empirical MSE between GSTAR(2;1,1) and GSTAR(1;1).
The bubble placed under the zero axis indicates that GSTAR(2,1,1) has a smaller value of MSE difference
than that of the GSTAR(1;1) model.

Table 4: Least square estimates for GSTAR(1;1) parameters.

Site i φ̂
(i)
10 φ̂

(i)
11

1 −0.073 0.086
2 −0.090 0.250
3 −0.201 0.871
4 0.422 −0.452
5 0.192 0.582
6 0.187 0.221
7 0.116 0.011
8 0.355 0.077
9 0.183 −0.261
10 0.012 −0.123
11 0.465 −0.175
12 0.358 0.054
13 0.317 0.287
14 0.285 −0.162
15 0.006 0.119
16 0.340 0.203
σ̂2
LS = 3.1556; MSE = 2.992.

Ireland, Sweden, and Switzerland. Though the MSE value seems different, the paired t-test
for the result gives the P values < 0.678. It means that the MSE values for both models are sig-
nificantly indifferent.

6. Comparison of Forecast Performance

For the purpose of forecasting model, it would be useful if we also consider their forecast per-
formance. Therefore, in this section we will examine the one-step-ahead forecasting per-
formance for each model candidate using the last ten actual data points of the per capita
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GDP ratio data set. Result of this section is expected to become a supplementary reference in
finding the most parsimony space-time model for the case of per capita GDP ratio.

In (4.5) we have defined the h-step-ahead forecasting for GSTAR(2;1,1) model. For
GSTAR(1;1) model, it can be estimated by

ẐT (h) = Φ10ẐT (h − 1) +Φ11W(1)ẐT (h − 1), (6.1)

ẐT (h) = 0.1674 ẐT (h − 1) + 0.0453W(1)ẐT (h − 1), (6.2)

where Φ10 = diag(φ(1)
10 , . . . , φ

(N)
10 ),Φ11 = diag(φ(1)

11 , . . . , φ
(N)
11 ) , and for h ≤ 0, ẐT (h) = Z(T − h).

The one-step-ahead forecast ẐT+j−1(1) of each data points can be calculated using
(4.5), (6.1), and (6.2) for h = 1. Note that calculation of the forecast value for each time
j = 1, 2, . . . , 10, is performed without updating the parameter estimates and average data. The
one-step-ahead forecast for GSTAR(2;1,1) model is

ẐT+j−1(1) = Φ10Z
(
T + j − 1

)
+Φ11W(1)Z

(
T + j − 1

)
+Φ20Z

(
T + j − 2

)

+Φ12W(1)Z
(
T + j − 1

)
,

(6.3)

where j = 1, 2, . . . , 10. Meanwhile the one-step-ahead forecast for GSTAR(1;1) model is

ẐT+j−1(1) = Φ10Z
(
T + j − 1

)
+Φ11W(1)Z

(
T + j − 1

)
. (6.4)

To compare the forecast performance, we use mean of square forecast error (MSFE)
which is defined by

MSFE =
1
N

N∑

i=1

Ei, (6.5)

where

Ei =
1
10

10∑

j=1

[
Yi

(
T + j

) − Ŷi,T+j−1(1)
]2
,

Ŷi,T+j−1(1) =
(
Ẑi,T+j−1(1) +Di

)
+ Yi

(
T + j − 1

)
,

(6.6)

and Ẑi,T+j−1(1) is the element of Ẑi,T+j−1(1).
To measure the performance closeness between two models, we also calculate the

MSFE difference between model M1 and model M2 for country i which is defined by

Ci = Ei(M1) − Ei(M2). (6.7)

The performance of M1 and M2 model is said to be close if the value of Ci is near to
zero. The negative value of Ci indicates that for location i, the M1 model is better than M2
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Figure 8: Bubble plot for the difference of mean of square forecast error (MSFE) between GSTAR(2;1,1)
and GSTAR(1;1). The bubble under the zero axis indicates that the GSTAR(2,1,1) has a smaller value of
MSFE difference than that of the GSTAR(1;1) model.

SF
E

D

Si
te

 1

Si
te

 2
 

Si
te

 3

Si
te

 4

Si
te

 5

Si
te

 6

Si
te

 7

Si
te

 8

Si
te

 9

Si
te

 1
0

Si
te

 1
1

Si
te

 1
2

Si
te

 1
3

Si
te

 1
4

Si
te

 1
5

Si
te

 1
6

15

−5

5

−15

Figure 9: Square forecast error difference (SFED) for GSTAR(2;1,1) and GSTAR(1;1).

model. Since the residual is approximately normally distributed, the paired t-test can also be
applied to test the null hypothesis that modelM1 and modelM2 have the same forecast per-
formance.

SupposeM1 andM2 in (6.7) are represented by GSTAR(2;1,1) and GSTAR(1;1)model,
respectively. The MSFE difference values are displayed in a bubble plot (Figure 8). Center of
the bubble is the value of MSFE difference and the radius is its absolute value. The bubble
placed under the zero axis indicates that the MSFE value for modelM1 is smaller than that of
the modelM2. From the figure, it can be seen that most of the countries have the MSFE value
which is scattered around the zero axis. The high value of the P value < 0.9858 for the paired
t-test gives the evidence that the forecast performance of each model is not significantly
different.

The behavior of both differences for each time is displayed in Figure 9. From the figure,
it can be observed that most points in Ireland (site 8) have a negative value. It means that
in Ireland GSTAR(2;1,1) model has a better performance than GSTAR(1;1). Conversely, the
most points in Norway (site 11) and Switzerland (site 15) are positive when the difference is
counted for the pair of GSTAR(2;1,1) andGSTAR(1;1). On the other hand, Figure 7 also shows
that in Norway there is a point with high jump difference value. It means that the worst per-
formance of GSTAR(2;1,1) occurred at this point. In addition, the ratio of the negative value
and the positive value is almost the same. It gives the interpretation that forecast performance
of GSTAR(2;1,1) and GSTAR(1;1) model is almost similar.
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7. Conclusions

GSTAR modeling has been built to the ratio of per capita GDP data in West European
countries. The model of order (2;1,1) has been identified as the candidate model. How-
ever, when the forecast performance is compared with GSTAR(1;1), it is found that the per-
formance is significantly indifferent. Due to parsimony principle, we recommend that the
GSTAR(1;1) might be considered as a forecasting model.
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