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1. INTRODUCTION

In this paper we critically analyze production bottlenecks from an economic perspective,
addressing important facilities-design and demand-planning problems. Using a queueing
network model, we demonstrate that production bottlenecks are inevitable when there are
differences in job arrival rates, processing rates, or costs of productive resources. We
further analyze the impact of capacity and demand decisions on the location and
characteristics of bottlenecks.

The results of this analysis have a number of important managerial implications. We
demonstrate that bottlenecks necessarily arise when costs (profits) are minimized
(maximized) and that attempts to control bottlenecks by balancing production will usually
be economically counterproductive. We introduce the notion of an “economic bottleneck,”
which defines resources as bottlenecks based on economic, rather than physical,
characteristics. This definition provides the basis for making recommendations for
managing and relieving bottlenecks in order to improve the economic performance of
productive capacity.

Thus we address the capacity allocation problem from a different perspective than that
of most work previously done. Although our Jackson network model of the shop-floor
dynamics is simpler than some others, we are able to obtain closed-form expressions,
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rather than simply to present an algorithm. This allows us to obtain a much clearer picture
of the nature of the solution and thus provide more insight. In particular, the economic
bottleneck concept allows easy, managerially useful prescriptions for allocation of
additional resources.

A survey of the research and pedagogical literature finds that there exists no clear
consensus as to the definition of a “bottleneck” resource. Several of these definitions are:

e Congestion points, or bottlenecks, primarily occur when manufacturing resources
required in a given time period are unavailable. [30]

o A bottleneck is defined as any resource whose capacity is less than the demand placed
upon it. A bottleneck, in other words, is a process that limits throughput. [8]

o Production bottlenecks are generally considered to be temporary blockades to
increased output...(where) inventories build up at different places and different times.
(31]

o A facility, function, department, etc., that impedes production... [12]

o A bottleneck operation ... is any operation that limits output. [21]

Umble and Srikanth [33] make a distinction between “bottlenecks” and “constrained
capacity resources,” where the former is defined as “any resource whose capacity is equal
to or less than the demand placed upon it” and the latter as “any resource which ... is likely
to cause the actual flow of product through the plant to deviate from the planned product
flow.” Goldratt and Cox [13] and Schonberger and Knod [32] make similar distinctions.

Summarizing, there appear to be three principal definitions for bottleneck resources
currently in use: A bottleneck resource is one for which (1) short-term demand exceeds
capacity; (2) work-in-process (WIP) inventory is maximum; or (3) production capacity is
minimum, relative to demand (i.e., capacity utilization is maximal). We assign each
definition its own name: the short-term definition, the inventory definition, and the
production definition, respectively.

Short-Term Definition. In the long run, demand cannot exceed capacity—either work
will increase without bound or there will be sufficient loss of business to reduce the
demand rate below capacity. But demand can, and often does, exceed capacity in the short
run. When these short-term bottlenecks occur, shop-floor control techniques (such as finite
scheduling, priority sequencing, overtime, subcontracting, and so forth) must be exercised
to alleviate the bottleneck.

Inventory Definition. In practice, bottlenecks are often identified by simply walking
out on a shop floor and observing where the most work is waiting in queue for processing.
The second definition of a bottleneck thus focuses on relative levels of work-in-process
(WIP) inventories—that resource with the largest current WIP is defined to be the
bottleneck. In a stochastic environment, the workcenter with the most WIP changes from
time to time, and so the bottleneck is observed to randomly shift from workcenter to
workcenter—a phenomenon which bedevils many managers (for an analysis of shifting
bottlenecks, see [23]). Since work-in-process inventories are related to the busy period of
the workcenter, they shift more slowly than do instantaneous arrival rates. Inventory
bottlenecks are therefore more long-lived than are short-term bottlenecks, making them
relevant over a middle-term time horizon.
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Production Definition. Finally, for long-range planning, bottlenecks are those
resources which, on average, are the greatest impediment to increased output or
throughput. For long time horizons, capacity utilization is the most useful measure with
which to identify these long-run bottlenecks, since those resources which are most highly
utilized are those which over time most severely limit output and slow production.

These three definitions can be operationalized as follows. Let -y be the arrival rate of jobs
to a workcenter or machine, and let u be its capacity, expressed as a processing rate. Then
a bottleneck exists when: (1) demand temporarily exceeds capacity (short-term definition);
or (2) the number of jobs waiting in queue L = L(7y,u) is maximum (inventory definition);
or (3) the long-run utilization p = y/u is maximum (production definition). An alternative
to utilization is long-run capacity cushion defined as u — y. We use capacity cushion and
utilization interchangeably as the context warrants. Note that these definitions are not
mutually exclusive and that a particular workcenter may satisfy one or more of them at
any given time. Since none of these definitions considers costs, revenues, or profitability
of the firm, but focuses solely on the output of the process, we will refer to them as
production bottlenecks. In contrast, when cost and revenues are taken into account, we can
identify those resources which limit profitability. We will call such resources economic
bottlenecks. As with production bottlenecks, we can identify short-; medium-, and
long-term economic bottlenecks in a manner similar to the three types of production
bottlenecks. Since the nature of the decisions we consider in this paper are long-term, we
will use the long-term bottleneck definitions for both the production and economic
bottlenecks. In this paper we demonstrate that the economic bottleneck and the production
bottleneck do not necessarily coincide.

The remainder of this paper is organized as follows. The next section surveys the
literature, and section 3 introduces the general profit maximization model for determining
capacities or demand rates. Section 4 investigates optimal bottlenecks in facilities design
where the design variable is production capacity. In section 5 we turn to the demand
planning problem of determining optimal demand volumes when resource capacities are
fixed. We introduce the notion of an economic bottleneck in section 6 and discuss its
implications in managing bottlenecks. Section 7 presents a numerical example of our
results, and concluding remarks are made in section 8.

2. LITERATURE REVIEW

The importance of understanding and managing production bottlenecks has been the focus
of the proponents of the “OPT” philosophy (for example, [13]), more recently called the
Theory of Constraints [14] or Synchronous Manufacturing [33]. This literature argues that
bottlenecks are inevitable (and even desirable) in many manufacturing settings (see [24];
[28]; [22]), and typically uses simple analogies and appeals to common sense to support
its analyses. While provocative, this qualitative approach is difficult to evaluate
objectively. Further, much of the original OPT technology is cloaked in commercial
secrecy, further confounding a balanced appraisal of its efficacy.

Another body of literature significant to this paper concerns queueing networks since
our model utilizes a Jackson network [17]. (The background literature on the use of
queueing networks to model manufacturing systems is vast, so we refer the reader to [6]
for a summary.) [19] developed fluid approximations to discrete flow networks and used
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their results to define and characterize network bottlenecks. Other work related to ours is
that of [20], who chooses capacities for an open Jackson network to minimize expected
time in the system subject to a linear budget constraint. While Kleinrock deals with a
problem similar to our facilities design problem of section 4, his sojourn-time criterion is
different and his use of a budget constraint produces a different solution. [35] subsequently
generalizes Kleinrock’s model to queueing networks with arbitrary service times, utilizing
a heavy traffic approximation of [15]. Wein’s simulation results show that the approxima-
tion gives good results. Neither of these works directly address the issue of production
bottlenecks.

Some work in management of machine capacity has used somewhat more sophisticated
network models in their analysis, such as Bitran and Tirupati [3] and Boxma, Kan, and van
Vliet [4]. This research differs from these two papers in several respects. First, in these
papers there is either a target level of WIP given exogenously, with the cost of the
machines being minimized, or WIP is minimized for a given budget of either capital or
capacity. In this paper, there are no exogenously given constraint; rather, our results are
more of a “natural” economic equilibrium, that is, what the rational levels of both capital
investment in capacity and in WIP would be in the absence of these exogenously given
targets. A second difference is that, with the simpler Jackson network model, we are able
to give explicit forms of the solutions. This is important to our study, not because of the
fact of obtaining closed-form results, but because of the insights we can obtain,
particularly related to the important concept of the economic bottleneck. The above
mentioned papers provide algorithms for the solutions, rather than analytic expressions.
Finally, the prior research along these lines has not focused on the bottleneck issue, that
is, providing means of identifying the workcenters that are constraining flows. In this
paper, the economic bottleneck concept allows the framing of capacity and demand
decisions in terms of identifying which workcenters constrain cash flows, rather than the
more traditional product-flow bottlenecks.

Bottlenecks are also an important topic in the control of production systems, as
evidenced by the increasing research interest in bottleneck management. Adams, Balas,
and Zawack [1] developed a shifting bottleneck algorithm which iteratively scheduled the
bottleneck resource in a classic jobshop scheduling problem to minimize makespan.
Chang, Matsuo, and Sullivan [7] examined the makespan scheduling of a flexible
manufacturing system, and used the alternative routings available with an FMS to develop
a beam-search solution procedure which scheduled around bottleneck machines. Pence,
Meegeath, and Morrell [27] describe a cycle-scheduling algorithm for scheduling a single
bottleneck when set-up times are sequence dependent.

While this summary illustrates the growing research interest in the management of
production bottlenecks, there has been relatively little investigation of the economic
consequences of production bottlenecks. Banker, Datar, and Kekre [2] demonstrate how
production bottlenecks can affect cost accounting and pricing decisions in stochastic
production systems. Morton and Singh [25] generalize these results to deterministic
systems and develop a resource pricing methodology based on the busy-period of the
resource. Morton, Lawrence, Rajagopolan, and Kekre [26] used a related busy-period
resource pricing methodology in the development of a production scheduling algorithm.
However, none of these papers has explicitly examined the economic consequences of
production bottlenecks, a contribution of this paper.
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3. GENERAL MODEL

The general problem we address is that of determining capacities for workcenters and
determining the demand rates for each product manufactured in a facility such that
long-run average profits are maximized. We subsequently show that production
bottlenecks naturally arise from this optimization.

Consider a production facility which manufactures n distinct products (or product
classes) with product j having demand rate \; items per unit time. These n products are
processed in one or more of m workcenters, each with production capacity of y, units per
unit time. Workcenter capacities 4, and demand rates \; are thus the decision variables of
this problem; let 1 & (u,, ..., u,,) denote the vector of processing rates and A & (A,..., \,)
denote the vector of demand rates. The sequence of processing in the facility can be
random (a job shop), sequential (a flow shop), or mixed.

Relevant costs include the period costs K(u) of providing capacity at level y, for
workcenter k and the period flow costs F(u,\) arising from congestion. Note that all costs
are the per-period (e.g., annualized) expenses incurred using a common time unit.
Capacity costs include amortized equipment expense, plant costs, labor, and maintenance
expense. Congestion costs include warehousing and storage costs, materials handling
expense, insurance costs, inventory tracking and expediting charges, capital opportunity
costs, lost customer goodwill, quality expenses arising from deteriorating in-process
inventory, and other similar inventory holding expenses. Marginal period profits M(\)
consist of product contribution (gross revenue less variable production costs) net
marketing expenses associated with producing demand at rate \. The general form of the
profit function II(u, \) can thus be written as

I(u, N) = M(N) — F(u, ) — K(p). ey

The firm’s objective is to maximize the long-run or steady-state average profit per unit
time; that is, to maximize II(u, N). Implicit in this formulation is the assumption that the
facility can, and does, reach steady state.

The focus of this paper is not the solution of (1) per se; rather, it is to investigate the
consequences of capacity and demand decisions on the congestion in the facility as
exhibited by the bottlenecks. Therefore, we concentrate on the special cases obtained by
finding the optimal capacities for given demand, and then on the optimal demand for given
capacities. The former problem we call the Facilities Design problem, and the latter the
Demand Planning problem. The joint problem of simultaneously determining optimal
capacity and demands is an important and difficult one, but is beyond the scope of the
present paper. The reader is referred to [5] which addresses this joint problem in a
somewhat different context.

3.1. Jackson Network Model

To investigate the problem outlined above, it is necessary to specify more precisely the
characteristics of the production facility. We do this by modeling the shop as a Jackson
network consisting of m single-machine workcenters [17]. The Jackson network is very
flexible and can model a wide range of situations from a pure job shop to a flow line.
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We adopt the standard Jackson network assumptions (see, for example, [18]). Each
work center k has a service time distribution that is exponential with rate y,. We thus
assume that the processing rates of all products j have the same mean processing time 1/u,
on machine k. Jobs arrive to the workcenters as independent Poisson processes, with A, the
mean arrival rate to workcenter k, and are distinguished solely by the workcenter at which
they first arrive. Our model can thus accommodate as many products or product classes
as there are workcenters—additional products can be included by the addition of dummy
workcenters.

Upon completion of processing at workcenter i, a job moves to workcenter j with
(known) probability P; and leaves the shop with probability P, ,,.,. The routing matrix
P= (Pij) is thus an (m + 1) X (m + 1) stochastic matrix. The matrix P is assumed to be
irreducible with P; .., > O for at least one i. Denote the m X m submatrix of in-shop routing
probabilities by P,. The aggregate arrival rate vector vy is given by y = A\ (I — P,) ' where
A= (A, ..., \y) is the arrival rate vector (we let \; = 0 if there is no job whose initial
workcenter is j). The condition for steady state is -y, < 1, for all workcenters k. In this case,
the probability of n jobs at the workcenters is identical to that for independent M/M/1
queues with arrival rates v, . . . , vy,, and service rates y,, . . . , 4,,. This is a result for the
marginal probabilities of the number of customers in queue only; the workcenters do not
behave dynamically as independent M/M/1 queues (see [11]).

To specify the congestion cost function F(u, N), we assume that it can vary by
workcenter, but is proportional to sojourn times at each workcenter. Denote the unit flow
cost at workcenter k by F,, where F is the holding or flow cost per unit time for a
customer at station k. The long-run average flow cost per unit time is given by (see
Appendix):

m F
Flu V=3 —2% )
k=1Hk™ Yk
The profit function in (1) is thus
- Fov
O, N) = M(\) =2 ——— — K (w). (€)]
k=1 le—‘Yk

A critical assumption in our Jackson network model is that changes in arrival rates \;
do not affect routing matrix P. This is not a problem under the assumptions of an ideal
Jackson network, but may not strictly hold when an actual production facility is
approximated using a Jackson network. In the latter case, changes in A may necessitate
changes in P which in turn greatly complicates marginal analysis of II(u, \) with respect
to \. Simulation experiments on shops having jobs with fixed routings have demonstrated
the robustness of our assumption, but we acknowledge this is a potential limitation of our
model.

A second assumption of the model is that different products can be distinguished by
their initial workcenter. Our modeling objective is to capture the impact of different
products on flow costs, which will be related to the congestion induced by the arrival of
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jobs to the facility. For a given arrival rate vector A, the expected flowcosts for a job
arriving at workcenter k will be 2, F, v/(, — ¥.)- Since we are concerned with the
capturing impact of flowcosts, we may sometimes consider products to be “identical” if
they have comparable value, have similar routings, and require approximately the same
processing times. Note that we can introduce dummy workcenters at the beginning of
processing to further distinguish the different products.

4. FACILITIES-DESIGN PROBLEM

The Facilities Design problem is that of determining capacities ¢ such that the profit in
Expression (3) is maximized for given (fixed) demand rate vector \. We use the term
“design” because the capacity decisions for a shop or facility are typically made during the
design stage. We model the cost of providing capacity u, at workcenter k as a continuous
linear function of capacity, so that the aggregate cost per unit time K(u) is given by K(u)
= 2 Ky, where K is the cost (per unit time) of providing one unit of capacity at
workcenter k. Since demand is fixed, maximizing the profit in (3) is equivalent to
minimizing costs; that is, the facilities design problem amounts to minimizing

Fvy
He™ Yk

C =2 Ky +2 )
k k

Our use of a linear capacity cost function is consistent with previous literature (e.g., [16];
[20]; [3]; [35]) and is justified as follows. While it is unlikely that an actual capacity cost
function will be linear over its entire range, a linear model can closely approximate a
“true” cost function in the neighborhood of any chosen capacity u and so will be a good
representation of capacity costs in the relevant range of near-optimal capacities. It is also
unlikely that actual capacity cost functions will be continuous since capacity is typically
acquired in discrete units. A linear function is therefore an approximation, but a useful one,
since it allows marginal analysis to be conducted resulting in important managerial
insight, as we subsequently demonstrate.

4.1. Optimal Workcenter Capacities
Since C(u) is convex in u (see Appendix), there exists a unique optimal vector of

capacities which minimizes C(u). Optimal workcenter capacities can therefore be found
by solving the first-order conditions:

aC Y

— == F———=+K,,=0 o)
ouk k( ,Uk-Vk)2 ¢

and are given by

He = Vit A [ (6)
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Expression (6) is a network generalization of Hillier’s result for a single server M/M/1
queue [16]. If \; > O for one j, then vy, > 0 for all k, by the irreducibility of the Jackson
network. Thus, the optimal capacities ,u: are strictly positive and are equal to aggregate
arrival rate vy, plus a capacity cushion \/Fyy,/K,. The capacity cushion at one
workcenter is therefore independent of cost parameters K, and F; of other workcenters—
each workcenter can be considered in isolation from other centers. This property is a
consequence of the product-form solution to the Jackson network—in networks without a
product-form solution, we would anticipate a greater interaction between the various
workcenters.
The optimal capacity utilization for workcenter k, p ; Av,/u, , is obtained from (6):

o Vv \/Km=<1+ /i)"l -
¢ \/Kk'Yk+\/Fk Kvi

Flow shops and pure job shops represent two special cases of this general result.

Flow Shop. For a flow shop, the routing is deterministic and each job follows the same
sequence of workcenters. All jobs begin at workcenter 1 and proceed in ascending order
through workcenter m, after which they leave the system. The routing matrix P thus
consists of ones immediately above the diagonal and zeros elsewhere. Since all jobs start
at workcenter 1, there is only one job type which arrives at rate A, so we may write the
optimal work center capacities and utilizations as

S =\ + Fih, =1+ Fe )™ 8)
My 1 K, p K\,

which is identical to the single-server M/M/1 result of Hillier [16].

Pure Job Shop. A Jackson network model of a pure job shop assumes that from any
workcenter a job may go to any workcenter (including the one it just left) or out of the
shop with equal probability and that the exogenous arrival rate of jobs to each workcenter
is identical. Thus, the routing sub-matrix P consists of identical entries, each of which is
1/(m + 1). The matrix (I — P,)~' consists of 2’s on the diagonal and 1s off the diagonal.
The aggregate arrival rate vy, at each workcenter k is therefore y, = (m + 1)\,, where \,
is the common exogenous arrival rate to each workcenter. The optimal capacity and
utilization of workcenter k are

. \o(m + 1F, . [ F -
My = AO (m + 1) + '—Kk"“ - p = (1 + _xo(_m—-\{- I)Kk) ) (9)

a close analog of the [16] single-server result.

4.2. Designing Optimal Boftlenecks

From expression (7) for p}, it is clear that optimal workcenter utilizations will seldom be
equal—this occurs only in the unlikely event that two or more ratios F/K,y, are equal. By
our earlier definition of a production bottleneck as the workcenter with the largest
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utilization p,, this result demonstrates that production bottlenecks are the usually
inevitable outcome of cost minimization. Bottlenecks therefore do not represent a failure
in facilities design, but rather arise naturally from the optimizing efforts of design and
production personnel.

Expression (7) offers additional insights. First, all else equal, as capacity costs K,
increase, utilization levels p; increase—the more expensive is workcenter capacity, the
more highly utilized it will be and the more likely it will be a bottleneck. Conversely, a
workcenter with large flowcosts F, will have a reduced capacity utilization and will less
likely be a bottleneck. Finally, as job arrival rate vy, increases (all else equal), the greater
will be capacity utilization—the busier the workcenter, the greater is the likelihood that it
is a bottleneck. These outcomes are intuitively satisfying. For both pure flow shops and
pure job shops the ratio K;/F, is sufficient to determine the production bottleneck, which
is the workcenter with the smallest ratio. For pure job shops and pure flow shops with
equal unit costs of congestion and capacity, the optimal design is completely balanced
production.

Bottleneck Sensitivity. 'We now examine the effect of changes in the parameters on the
optimal utilizations p}. Differentiating (7) with respect to \;, F;, and K, gives

o R F
P Tk [ZEso (10)
N 2py) Kvi

J

wm_ @)

——— < () (11)
OF 2\ Fi K vy

5_PZ= (o)’ Fy ~0 12)
oK, 2 Kive

where R, & (I — Py)~! jk 1s the mean number of times workcenter k is visited by a job
initiating service at workcenter j [19].

Thus, p} is increasing in A; and K, but decreasing in F;. From (10), increasing any \;
will result in an increase in all p}’s for which R;; > 0—this change will be proportional
to the expected number of times the job visits workcenter k. Changing A; will have the
greatest impact on non-bottleneck workcenters (those with relatively small utilizations)
which are visited relatively often—increases in A; will disproportionately increase the
utilization of these centers. From (11) and (12), changing F, or K, affect the optimal
utilization of workcenter k only. The impact is greatest for bottleneck workcenters (those
with large utilizations) and for those with relatively low aggregate arrival rates <y,.
Increasing flow costs at a workcenter has the effect of decreasing capacity utilization,
while increasing the costs of capacity increase the utilization at that workcenter alone.

Sensitivity of Costs. 'We now examine the sensitivity of total costs C(u") to changes in
workcenter parameters. Such information is managerially valuable since it focuses
attention on workcenters with the largest potential return on improvement. Substituting the
optimal capacities u* into (3), we have the minimum cost associated with the optimal
design:
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C(p*)=22 \ FiKivie+ EKka . (13)
k=1 k=1

Observe that the cost at the optimum grows linearly in K,, but as the square root of F,.
Examining the impact of changing the various parameters on the optimal cost, from (4) we
immediately have

C () _ P
3K “ o (14)

This result indicates that for fixed demand, cost-reduction efforts (perhaps through
improvements in technology or redesign) should focus on those workcenters with the
greatest assigned capacities . Note that these workcenters may well not be those with
largest capacity costs K, or those with the greatest utilization p,, as intuition might first
suggest. Indeed, all else equal, reducing the capacity costs of non-bottleneck workstations
(those with lower utilizations) will provide faster paybacks than will reducing costs at
bottleneck stations.
Considering changes in flow costs F} at workcenter k, we have

W) _ p _ [Kew 1s)
oF, l—p, F, '

Here, the largest rate of cost reduction is obtained by reducing F, at the workstation with
the highest capacity utilization, as intuition would suggest. More surprising is that, all else
equal, the best total cost improvement rate occurs at that workcenter with the lowest value
of F,, since this corresponds to workcenters with low utilizations in the optimal solution.

Finally, consider changes in total cost due to increases in \; (the arrival rate of job type
J), perhaps due to changes in marketing effort. From (6) and (13) we have:

aCl * m F o *
a)(\" ) _ szk<Kk + A /ﬁ) = 2 RyKi/py (16)
j k=1 Y k=1

Recalling that R; is the mean number of visits of product j to workstation k, we see that,
other things equal, products which visit more costly workstations more frequently produce
larger cost increases when demand increases. Similarly, products which visit workstations
more frequently with higher flowcosts also produce larger cost increases in response to
increased demand for those products. Although these two results are quite intuitive, note
that (16) provides a means of explicitly evaluating the impact of increasing demand for
each product on costs.

4.3. Cost of Balancing Capacity

A frequently cited goal of production managers is to balance production, meaning that all
machines and workcenters are equally utilized, thus “eliminating” bottlenecks. The intent
of such a policy is to ensure that capital equipment and fixed labor is not underutilized,
thereby incurring supposed opportunity costs from lost production.
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A policy of balanced production is equivalent to insisting that traffic intensities
Prx = Y1 be identical for all machines k. Let p be this common traffic intensity and Cy
the cost associated with the balanced utilization policy. Cost function (4) becomes:

p L%
Colp) = 2 Fr— + > — a7
PR e

The optimal (common) utilization level can be found by solving the first-order condition

, 1 1
CB(P)—W%Fk"?%Kka=O’ (18)

yielding

- \/ZF,

P NVAER Vi 19)

The cost associated with this balanced policy is

Colp") =2\/(2 Kmk><2 Fk) + 3 Ky 20)
k k k

As with C(u"), Cy(p”) grows linearly in K, and as the square root of F,. The difference
between C(p") and Cp(u") is

Colp) = C(u') =2 2 Kivi 2F ) -ZVFEKy |- @D
k k

k

This non-negative (and typically positive) quantity represents the additional costs that the
firm must pay for adhering to a balanced production policy.

In summary, the results of this section show that cost-minimizing behavior leads to the
deliberate creation of production bottlenecks. Bottlenecks are thus an inevitable result of
the optimization of resource capacities. Rather than attempting to balance production or
eliminate bottlenecks, production managers should in fact design bottlenecks into the
production facility, with the location of these bottlenecks determined by appropriate cost
(or profit) considerations.

5. DEMAND-PLANNING PROBLEM

Our analysis in the previous section addressed the design of productive capacity with
demand rates assumed to be fixed. In this section we consider the analogous Demand
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Planning problem: determining optimal demand rates for given fixed capacity. This applies
to situations in which management desires to maximize profits at an existing production
facility by adjusting demand levels to match the capabilities of an existing plant. We
assume that demand levels can be modified by the firm through adjustments to advertising
expenditures, price incentives, sales effort and focus, and similar marketing initiatives, but
note that the marketing initiatives themselves are not decision variables in our model. We
further assume that the plant is currently operating in the region of optimal demand levels,
so that required demand changes are relatively small.

Capacity costs K(u) are now sunk, and so are irrelevant, whereas marginal revenues
M(N\) are now relevant. Since production capacities y, are fixed, the relevant range of
feasible production volumes M\, is relatively narrow. Consequently, we model marginal
revenues as a linear function of production volumes: M(\) 4 E ]" -1 M)\;. As with the
design problem of section 3, we distinguish products by the workcenter at which they
initiate service. If there are no products with workcenter j as the initial workcenter, we set
M; = 0, effectively creating a “dummy” product. Clearly these dummy products will have
)\;.‘ = 0, since they only add flow costs and do not contribute to the profitability of the
operation.

Taken together with congestion costs, the objective of the demand planning problem is
to maximize contribution II(\) defined as marginal revenues less congestion costs:

m m FA.
N2 M\ - 3 ——
=1 =1 M ™ M

(22)

The demand-planning problem is complicated by the fact that -y is a function of A and we
must therefore explicitly consider both non-negativity of A as well as feasibility of v. This
latter condition arises because the traffic intensity at each workcenter must be less than
unity (i.e., px & /vy, < 1). Thus, the model for demand planning becomes

max II(\)

subject to
A=0 (23)
NI — Py ' <u

The first constraint insures non-negative arrivals, while the second ensures the feasibility
of .

5.1. Properties of the Solution

Program (23) can be solved using standard nonlinear programming techniques, but it will
be useful to establish several of its properties, including the existence of a solution. Since
the set S, = {\ € R*: NI — P,)"! < u} is convex and II is convex on S,, there is a
Kuhn-Tucker point (A", 87), where 0 is the vector of dual variables associated with the
non-negativity constraints (see Appendix). Elements 6; of the dual vector 6 represent the
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reduced margins of the various products available for production (analogous to reduced
costs in linear programming). For products being produced (\; > 0), the reduced margin
is zero (8, = 0). For products not being produced (A; = 0) the reduced margins are
non-negative (6; = 0), representing the amount by which margin M; must be increased in
order to make product j attractive enough for production.

If revenues M; are not sufficient to cover costs for product j then it should not be
produced, and if this is true for all products then it is optimal not to produce at all. The
following conditions indicate when it is not profitable for the firm to produce a given
product: (1) If M; — 2 k=1 Fx Ryl = 0 for all j, then the product initiating service on
machine j should not be produced (i.e., \" = 0); (2) Conversely, if M; — 2 k=1 Fe Ry

4, > 0 for some j then \; > O for some i (see Appendlx)

Henceforth, to avoid the no-production situation ()\ = 0 for all j), we will assume that
M; - 2 k=1 Fk R /uy > O for at least one j. By Corollary 28.3.1 of [29], A" maximizes
l'[()\), and (\", 8") satisfy the first-order conditions

m

Fy R
R L L L & T (24)
kl("uk )

Thus, y* may be expressed in terms of 8 by solving (24):

=y \[ P by =My~ Thbhe (25)
e D QM+ 6) M+ 0

in which M = QM, 6 = 08, and Q = I — P,
Expanding their definitions, we have M, = (1 = Py) M; — X4 Pk,M and 0} =(1 —

POy — Xisi Py 0 respectrvely Thus, the values M, and 8 % have the following
economic 1nterpretat10ns M, is the expected margin obtained by incrementing the arrivals
of product k by one additional unit, less the weighted opportunity costs of margins
foregone at downstream workcenters—M|, can be positive, zero, or negative. Similarly,

0 is the reduced margin at center k, less the weighted reduced margins at downstream
centers, and can be positive, negative, or zero. Since 6, is positive only for a workcenter
j with X" = 0, it represents the additional opportumty cost of depriving other jobs from

using the capacity of workcenter j. Thus (M, + 0 %) represents the aggregate benefits of
increasing arrivals of product k by one additional unit.

From (25) we have
- Fypy
)\=EQ<</J— ~"—) (26)
2=\ N @+

so the optimal utilization p, at workcenter k is

. F
e N
M, + 6, 27)
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The bottleneck workcenter will be the one for which "\/ F/u, (M, + é:) is smallest.

Workcenters with large flow costs or small capacities (i.e., small y,) will tend to have
small capacity cushions and therefore be production bottlenecks. One again, we see that
production bottlenecks are the inevitable outcome of optimizing behavior.

Although 8" cannot be expressed in closed form, a simple condition indicates whether
some will be positive: if M, < F,/u,, then 8 > 0, and hence \; = 0 (see Appendix). To
interpret this condition, observe that F,/u, is the average flow cost accumulated during the
processing of job k on its first work center, k. The value of M, = M, — EJ- Py; M; can be
interpreted as follows. After processing on workcenter k, the job goes to workcenter j with
probability P;;. That workcenter thus has an gpportunity cost of M; for processing a job of
type k, since no revenue is received. Thus, M, can be interpreted as the marginal revenue
net the expected opportunity cost of processing on the second workcenter. If this is not
sufficient to meet the expected flow costs during processing (which is a lower bound on
flow costs), then it will clearly not be profitable to take type k jobs.

The planning problem is complicated by the possibility of the optimal solution not being
an interior point, that is, having )\; = 0 for some j’s. However, if we do have an optimal
point in the interior, it is of the form:

o Fy
Ye = Mg Mk (28)

and
. Fou
N =2 (ﬂk -\ ")ij, (29)
k=1 k
with optimal utilization
* 1 F k
P W, b (30)

Equation (29) is, again, the network analog of Hillier’s [16] M/M/1 single-server results.

5.2. Special Cases

Flow Shop. The profit function for planning problem in a flow shop is:

n  FA\
Iy =My, — 3 ——— 31)
k=1 Mk — A
with corresponding first-order condition
m F
RO =M-3 — —, (32)

k=1 (auk_)\l)2
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There will be a positive optimal \, iff M > >"'_ | F/u,, and the production bottleneck will
be the workcenter with the smallest capacity p;.

Uniform Utilization. Unlike the capacity design problem, it may not be possible to
have the same utilization at all workcenters for the planning problem. However, the
following two conditions are necessary and sufficient for uniform utilization to be possible
(see Appendix): (1) y; > Dk My P,; for all workcenters j with an exogenous arrival stream,
and (2) y; = DMy P,; for all workcenters j without an exogenous arrival stream. For those
cases in which equal utilization is possible, we can determine the optimal utilization p".
We obtain the profit associated with balanced utilization, I in a manner similar to section
3:

m R p m
Hgp)=p> Mkﬂk_l—___pEFk- (33)
k=1 -

The optimal utilization for balanced production is therefore

. [ S, F,
p = 1 - - A
2y e M, (34)

We may then obtain similar results as for the facilities design problem with equal
utilization.

6. ECONOMIC BOTTLENECK

Our analysis of the facilities design and demand planning problems has shown that
bottlenecks naturally arise when firms organize capacity design and demand volumes to
minimize costs and maximize profits. Implicit in this analysis is the notion of an economic
bottleneck, defined to be that workstation which most severely increases costs or limits
profits. Below we offer a formal definition of an economic bottleneck, distinguish it from
a production bottleneck, and demonstrate that the two do not necessarily coincide.

Consider a production facility with existing capacity levels y and fixed production
demands . Management of the firm wishes to reduce costs and improve throughput rates
by increasing capacity at the appropriate workstation(s). Capacity might be increased by
incremental technological improvements, better management of secondary resources such
as labor and tooling, reduced setup times, and so forth. We distinguish these types of
continuous improvement activities from the initial design of the facility. Given limited
resources, at which workstation(s) should management focus its attention, and what are
the potential benefits?

Under these assumptions, initial capacity costs K(u) are sunk (since the plant is in
operation), and contribution margins M(\) are constant (since production demands \ are
fixed). Consequently, the objective function facing the firm is simply to minimize
congestion costs

m F.v.
Fu)= 3 —L0

k=1 MY

(35
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with respect to u. We define the economic bottleneck to be that station for which marginal
increases in capacity provides the largest decrease in congestion costs; that is, the
workcenter k for which

OFW _  Fw
O (e — 'Yk)2 (36)

is a minimum. This definition of an economic bottleneck provides the marginal benefit or
shadow price of marginal increases in capacity at a particular workcenter. This result
applies to any production facility, whether or not it is optimally configured with regard to
A and u. Note also that, as defined in (36), the costs of additional capacity are not explicitly
considered.

If the facility is optimally planned, that is A = \", then further results can be obtained.
By the Envelope Theorem (see, for instance, [34]), dF(\ })/du; = OF(\)/oply -, so that

oF Fiovi 01+ 6 p: 37)
Oty (.uk_'Yk)z ¢ K
If \} > 0 for all j, then 6" = 0 and dF/ou, = — M, p}.

Expression (37) connects the concept of an economic bottleneck to that of a production
bottleneck. An economic bottleneck combines the definition of a production bottleneck
(via utilization p}), with the economic benefit (M, + 0}) of increasing the capacity of
workstation k. Increasing capacity has the effect of allowing additional units of product k
to be accepted for processing with net benefit M,, and simultaneously allows additional

units of other products i # k to be processed with net benefit 6 .

The economic bottleneck concept has important consequences for the improvement of
facilities. While the production bottleneck is the workstation which constrains capacity,
the economic bottleneck is the workcenter which constrains profitability. Clearly the two
need not be identical and, indeed, will typically be different. Indeed, Expression (37)

shows that the concepts coincide only when M, + 8 are identical for all workcenters &,
an unlikely occurrence. Capacity decisions based on production bottleneck considerations
may therefore not be the most profitable ones, as shown in the following example.

7. NUMERICAL EXAMPLE

A simple example will serve to illustrate several of our results. Consider a production
facility with 5 single-server workstations having routing matrix given in Table I, and with
other parameters given in Table II (the base case).

The facility design problem is straightforward, as discussed previously, since the
optimal capacities will always be positive and given in closed form, for linear cost of
capacity functions. Using the base case values for F, K, and demand arrivals A as shown
in Table III, equation (6) gives the optimal capacities u" in Table III.

For the demand planning problem, using base case values for F, M, and u as given in
Table III, equation (26) gives optimal values of A" as in Table III. Since all \ ; are positive,
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Table I Five-Workstation Example: Routing Matrix

From To Workstation
Workstation 1 2 3 4 5 Out
1 173 2/3
2 1/6 1/3 173 1/6
3 1/6 1/6 1/3 1/3
4 1/6 1/6 173 1/3
5 1/3 1/3 1/3

Table II Five-Workstation Example: Economic Parameters

Workstation
1 2 3 4 5
F 1.0 5.0 20.0 3.0 10.0
M 23.0 20.0 24.0 13.0 15.0
K 1.0 4.0 7.0 0.5 0.5

Table III Base Case and Optimal Workcenter Parameters

Workstation
1 2 3 4 5

Base u 46.0 56.0 111.0 85.0 50.0
Case A 17.0 8.0 28.0 15.0 10.0
p 0.90 0.88 0.87 0.88 0.70

Facility ,uf 47.7 57.1 112.7 96.4 61.5
Design P 0.87 0.86 0.85 0.78 0.57
N 10.1 8.8 36.0 5.0 14.5

Demand Ap* ) 0.74 0.85 0.88 0.77 0.73
Planning Mp 0.2 32 11.0 0.5 1.9
o 6" 0.0 0.0 0.0 0.0 0.0

this initial example is “full rank” for the demand problem in that all machines have jobs
arriving at the optimum.

For the base case, Table III shows that station 1 is the production bottleneck since it has
the highest capacity utilizations among the five stations (although stations 2 and 4 could
be considered secondary bottlenecks). Conventional analysis therefore suggests that
station 1 should first be considered for relief before the other stations. However,
determination of the economic bottleneck using equation (37) demonstrates that station 3
is the economic bottleneck, with a dual price that is substantially greater than the second
largest (station 2) as shown in Table III. To emphasize this result further, Figure 1 shows
the impact of increasing or decreasing capacity on profits at each of the workstations, and
clearly shows station 3 to be the economic bottleneck. Costs will decline most rapidly by
increasing capacity at the economic bottleneck, not the production bottleneck.

Finally, Figure 2 uses equation (17) to compare optimal costs with actual costs balanced
production is enforced. For our example, this figure shows that the negative impact
of balancing utilization is small when that utilization is optimal, but that there is
a stiff penalty if the optimum is missed. Furthermore, as the common utilization
approaches unity, the penalty gets increasingly worse. Similar results are obtained when
using equation (33) to compare optimal profits with balanced production profits.
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8. CONCLUSIONS

In this paper, we have critically analyzed bottlenecks from an economic perspective.
Using queueing network theory, we have demonstrated that bottlenecks are inevitable
when there are differences in job arrival rates, processing rates, or costs of productive
resources. These differences naturally lead to the creation of bottlenecks both when
designing production facilities to meet anticipated demand, and when determining demand
loads for existing facilities.

Our results have a number of implications for the management of stochastic production
facilities:

e Care must be taken when managing a “bottleneck,” since several definitions are in
current use, each requiring a different management response;

¢ Production bottlenecks are the natural outcome of minimizing costs when designing
production facilities, or of maximizing profits when determining demands loads;

e Balanced production is rarely optimal, from a purely economic perspective;

e The concept of an economic bottleneck provides an economic basis for bottleneck
management and improvement.

Our treatment of the demand-planning problem demonstrates that consideration of flow
costs due to congestion and the demands different products place on facilities can
contribute to the unprofitability of certain items. In those cases, our model gives rise to
dual variables which measure the degree of unprofitability for those items.

We have found that while the various production bottleneck concepts are related to the
economic bottleneck, they do not necessarily coincide. In our opinion, the economic
bottleneck is ultimately a more useful concept for managers, since it shows the way to the
best financial return on capacity investment. Thus, relieving an economic bottleneck will
bring greater returns to the firm than relieving a production bottleneck. The latter will
merely increase output by the greatest amount without regard for profitability.
Furthermore, we have found that attempting to balance the shop by equalizing utilization
is also not economically the best course. However, for the facilities-design problem, our
solution can be considered the economically balanced shop.
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APPENDIX

First, we show that the long-run average flow cost per unit time for the Jackson network
defined in section 3 is given by

m

Fivy

. (38)
k=1 Mk — Yk



PRODUCTION BOTTLENECKS 361

Consider a Jackson Network with m single-server nodes (workcenters) with service rate
U, at node k. The arrivals to node j form independent Poisson processes, with the mean
arrival rate to node j given by A;. Job routing is via a Markov transition matrix P, which
we assume to be open and irreducible. Each job accumulates a flow cost at rate F, while
at node k. The arrival rate to node j is thus vy;, which solves the flow balance equations
v =M — Py)~ ", and the system is ergodic providing Y/1; < 1 for each j. Let X(z) be the
vector process consisting of the number of jobs at each node and m(n) the steady-state
probability. Let s be a real-valued function on N™, where N is the non-negative integers,
for which Z,, Yi(n)w(n) < .
The from the ergodicity of {X(#)} we have (see [10]):

ProposiTioN 1.

T—-)OCT J YX@®)dt = Etll(n)Tr(n) almost surely.

Now let Yi(n) = > =11 F Then yi(n) is the rate at which flow costs are accumulating
when there are njjobs at nodej j=1,...,m,and lim;_, ., 1/ng U(X(1)) dt is the long-run
average flow cost per unit time for the Jackson network.

ProposiTioN 2. The long-run average flow cost per unit time in the Jackson network
described above is given by

lim 1 d =§ Fyg

T wy | WX (39
0

k=1 luk - ‘Yk.

Proof. By Proposition 1 we have

fwnmw Ewmwm

T—x T

=S SR -p)

n k=1 j=1

=2 FkZ”kPZ‘(l =P

k=1

M=o

% 1Fipk

k=1 Pr
- - Fuve

k=1 Mk~ Yk

ProposiTion 3. C(u) is convex on the set S; & {u: u> vy}.
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Proof. The Hessian of C(u) is a diagonal matrix with elements 2F,y,/(u, — v,)’, and
these are all positive under the assumptions.

ProposiTION 4. The profit function 11 is concave on the set S, = {N € R*: N(I — Py)~' <
M}

Proof. Let R= (I — P,)~". Then the second partial derivatives of II are given by

2 m
Gl _ 2Fk/~lkRik§jk 40)
ON; ON; PP (TP
For any non-zero vector x € R”,
&Il " 2F
Sotl o 5 2k sk \ (S,
i ONON; ! P AR j !
<0, 41)

since A € S, = 1, — vy, > 0 for all k.

ProposITION 5.  There is a Kuhn-Tucker point (\", 8") in program (23), where 0 is the
vector of dual variables associated with X = Q.

Proof. Since the set C is convex with a non-empty interior and the constraints are linear
with a feasible \ satisfying the constraints with strict inequality, the program (23) satisfies
the conditions of Theorem 28.2 of Rockafeller [29] (appropriately modified for a concave
objective) asserting the existence of a Kuhn-Tucker point.

ProposiTioN 6. If M; — 2 7'_ | Fi Ry, =< O for all j, then the product initiating service
on machine j should not be produced (i.e., \" = 0); (2) Conversely, ifM; — > v=1 Fr R,/
W, > 0 for some j then \; > 0 for some i

Proof. Follows from the gradient at A = 0 and the concavity of II.
PropositioN 7. If M, < F,/u,, then 8, > 0, and hence \, = 0.

Proof. Suppose, to the contrary, that M, < F/u, but 87 = 0. Then 6 X 0, since Q is
positive only on the diagonal. Furthermore, since Q,; < 0 for k # i, M, < F,/u, implies
v% = 0. But y" > 0 under our assumption that M;> > Fe R;/u. Therefore, we must have
8, >0.

Prorosimion 8. Balanced capacity utilization (i.e., p & vy, is the same for all
workcenters j) is possible iff (1) p; > > Py for all workcenters j with an exogenous
arrival stream, and (2) y; = I Py; for all workcenters j without an exogenous arrival
stream.

Proof. Suppose balanced capacity utilization of p € (0,1) is possible for some vector \,
and let y = N( — Pg)~". Then vy = p, so A = pu(I — Py). Thus, ;= p (W, — 2 ¢ Py
If workcenter j has an exogenous arrival stream, then A; > 0, so p; > O P,; must hold.
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On the other hand, if workcenter j does not have an exogenous arrival stream, then )\j =
0, so we must have u; = > 1 Py;.

Conversely, if (1) and (2) hold, then for any p € (0,1), set A = pu(I — Py). By (1) A; >
0 for all workcenters with an exogenous arrival stream and by (2) \; = 0 for all
workcenters without an exogenous arrival stream. Thus, \ is a feasible vector of arrival
rates. Since vy = py, this choice of N gives equal capacity utilization p at all workcenters.



