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The Gumbel distribution is perhaps the most widely applied statistical distribution for
problems in engineering. In this paper, we introduce a generalization—referred to as the
beta Gumbel distribution—generated from the logit of a beta random variable. We pro-
vide a comprehensive treatment of the mathematical properties of this new distribution.
We derive the analytical shapes of the corresponding probability density function and the
hazard rate function and provide graphical illustrations. We calculate expressions for the
nth moment and the asymptotic distribution of the extreme order statistics. We investi-
gate the variation of the skewness and kurtosis measures. We also discuss estimation by
the method of maximum likelihood. We hope that this generalization will attract wider
applicability in engineering.

1. Introduction

The Gumbel distribution is perhaps the most widely applied statistical distribution for
problems in engineering. It is also known as the extreme value distribution of type I.
Some of its recent application areas in engineering include flood frequency analysis,
network engineering, nuclear engineering, offshore engineering, risk-based engineering,
space engineering, software reliability engineering, structural engineering, and wind en-
gineering. A recent book by Kotz and Nadarajah [3], which describes this distribution,
lists over fifty applications ranging from accelerated life testing through earthquakes,
floods, horse racing, rainfall, queues in supermarkets, sea currents, wind speeds, and
track race records (to mention just a few).

In this paper, we propose a generalization of the Gumbel distribution with the hope
it will attract wider applicability in engineering. The generalization is motivated by the
work of Eugene et al. [1]. If G denotes the cumulative distribution function (cdf) of a
random variable, then a generalized class of distributions can be defined by

F(x)= IG(x)(a,b) (1.1)
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for a > 0 and b > 0, where

Iy(a,b)= By(a,b)

B(a,b)
(1.2)

denotes the incomplete beta function ratio, and

By(a,b)=
∫ y

0
wa−1(1−w)b−1dw

= ya
{

1
a

+
1− b

1 + a
x+ ···+

(1− b)···(n− b)
n!(a+n)

yn + ···
} (1.3)

denotes the incomplete beta function. Eugene et al. [1] introduced what is known as
the beta normal distribution by taking G to be the cdf of the normal distribution with
parameters µ and σ . The properties of this distribution have been studied in more detail
by Gupta and Nadarajah [2]. In this paper, we introduce a generalization of the Gumbel
distribution—referred to as the beta Gumbel (BG)—by taking G in (1.1) to be the cdf of
the Gumbel distribution, that is,

G(x)= exp
{
− exp

(
− x−µ

σ

)}
(1.4)

for −∞ < x <∞, −∞ < µ <∞, and σ > 0. Thus, the cdf of the BG distribution is given by

F(x)= Iexp(−u)(a,b) (1.5)

for −∞ < x <∞, a > 0, b > 0, −∞ < µ <∞, and σ > 0, where u = exp{−(x− µ)/σ}. The
corresponding probability density function (pdf) is

f (x)= uexp(−au)
{

1− exp(−u)
}b−1

σB(a,b)
. (1.6)

Using the series representation

(1 + z)α =
∞∑
j=0

Γ(α+ 1)
Γ(α− j + 1)

z j

j!
, (1.7)

(1.6) can be expressed in the mixture form

f (x)= Γ(a+ b)
σΓ(a)

∞∑
k=0

(−1)kuexp
{− (a+ k)u

}
k!Γ(b− k)

. (1.8)

As mentioned above, the Gumbel distribution is widely applied in many areas of engi-
neering. The generalization given by (1.6) allows for greater flexibility of its tail. Consider
the following problems.

(1) Many hydrological engineering planning, design, and management problems re-
quire a detailed knowledge of flood event characteristics, such as flood peak, volume, and
duration. Flood frequency analysis often uses the Gumbel distribution to model flood
peak values, which provides an assessment of flood events.
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(2) Corrosion science has been based mainly upon deterministic approaches, partic-
ularly the electrochemical theory of corrosion. Localized corrosion, however, cannot be
explained without statistical and stochastic points of view because of the large scatter
in data common in the laboratory and the field. Toshio Shibata was the 1996 recipient of
the W. R. Whitney Award sponsored by NACE International. In his award lecture at COR-
ROSION/96, Shibata reviewed successful applications of statistical approaches to local-
ized corrosion in engineering data and presented a stochastic theory of pitting corrosion
based upon sensitivity analysis of parameters in the stochastic model that rationally could
explain statistical distributions of pitting potential and induction time for pit formation.
The most successful application in the statistical analysis was found using the Gumbel
distribution to estimate the maximum pit depth that will be found in a large-area instal-
lation by using a small number of samples with a small area.

(3) Gumbel distribution has also been shown to provide good fits to the time series of
the extreme dynamic pressures (i.e., of the squares of the extreme wind speeds).

Each of the problems above is concerned with the tail behavior of one or more vari-
ables. Thus, by capturing the tail behavior more accurately, one could obtain improved
estimation and prediction. The model given by (1.6) provides one way of doing this.

In the rest of this paper, we provide a comprehensive description of the mathematical
properties of (1.6). We identify several particular cases of (1.5). We examine the shape of
(1.6) and its associated hazard rate function. We derive formulas for the nth moment and
the asymptotic distribution of the extreme order statistics. We also consider estimation
issues.

2. Particular cases

The Gumbel distribution is the particular case of (1.5) for a = 1 and b = 1. Four more
particular cases of (1.5) can be identified using special properties of the incomplete beta
function ratio. They are

F(x)=
n∑
i=a

(
n
i

){
1− exp(−u)

}n−i
exp(−iu) (2.1)

for b = n− a+ 1 and integer values of a;

F(x)= 1−
{

1− exp(−u)
}b

Γ(b)

a∑
i=1

Γ(b+ i− 1)
Γ(i)

exp
{− (i− 1)u

}
(2.2)

for integer values of a;

F(x)= exp(−au)
Γ(a)

b∑
i=1

Γ(a+ i− 1)
Γ(i)

{
1− exp(−u)

}i−1
(2.3)

for integer values of b; and

F(x)= 2
π

arctan

√
exp(−u)

1− exp(−u)
(2.4)
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Figure 3.1. The pdf of the beta Gumbel distribution (1.6) for selected values of (a,b) and µ = 0,
σ = 1.

for a = 1/2 and b = 1/2, where u = exp{−(x− µ)/σ}. These four formulas are of special
interest by themselves. For example, the last formula corresponds to the arcsine distribu-
tion, which arises naturally in statistical communication theory as a model for the am-
plitude of a periodic signal in thermal noise and the limiting spectral density function of
a high-index-angle modulated carrier (see Lee [5, Chapter 6] and Middleton [6, Chapter
14]).

3. Shape

The first derivative of log f (x) for the BG distribution is

d log f (x)
dx

= au− 1 +
{

1− (a+ b− 1)u
}

exp(−u)
σ
{

1− exp(−u)
} , (3.1)

where u = exp{−(x − µ)/σ}. Standard calculations based on this derivative show that
f (x) exhibits a single mode at x = x0, where u0 = exp{−(x0−µ)/σ} is the solution of

1− au= {1− (a+ b− 1)u
}

exp(−u). (3.2)

Furthermore, f (−∞)= 0 and f (∞)= 0. Figure 3.1 illustrates some of the possible shapes
of f for selected values of (a,b) and µ= 0, σ = 1.



S. Nadarajah and S. Kotz 327

3210−1−2−3

x

0

0.5

1.0

1.5

2.0

h
(x

)

a = 0.5, b = 0.5
a = 2, b = 2
a = 0.5, b = 2
a = 2, b = 0.5

Figure 4.1. Hazard rate function of the beta Gumbel distribution (1.6) for selected values of (a,b)
and µ= 0, σ = 1.

4. Hazard rate function

The hazard rate function defined by h(x) = f (x)/{1− F(x)} is an important quantity
characterizing life phenomena. For the BG distribution, h(x) takes the form

h(x)= uexp(−au)
{

1− exp(−u)
}b−1

σB(a,b)Iexp(−u)(b,a)
, (4.1)

where u= exp{−(x−µ)/σ}. Calculations using special properties of the incomplete beta
function ratio show that h(x) is an increasing function of x. Furthermore, h(x)→ 0 as
x→ 0 and h(x)→ b as x→∞. Figure 4.1 illustrates some of the possible shapes of h for
selected values of (a,b) and µ= 0, σ = 1.

5. Moments

If X has the pdf (1.6), then its nth moment can be written as

E
(
Xn
)= 1

σB(a,b)

∫∞
−∞

xn
[

1− exp
{
− exp

(
− x−µ

σ

)}]b−1

exp
(
− x−µ

σ

)

× exp
{
− aexp

(
− x−µ

σ

)}
dx,

(5.1)
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which, on setting u= exp{−(x−µ)/σ}, reduces to

E
(
Xn
)= 1

B(a,b)

∫∞
0

(µ− σ logu)n
{

1− exp(−u)
}b−1

exp(−au)du. (5.2)

Using the binomial expansion for (c+dz)n, (5.2) can be rewritten as

E
(
Xn
)= 1

B(a,b)

n∑
k=0

(
n
k

)
µn−k(−σ)kI(k), (5.3)

where I(k) denotes the integral

I(k)=
∫∞

0
(logu)k

{
1− exp(−u)

}b−1
exp(−au)du. (5.4)

Using the representation (1.7), (5.4) can be further expanded as

I(k)=
∞∑
l=0

(−1)lΓ(b)I(k, l)
l!Γ(b− l)

, (5.5)

where I(k, l) denotes the integral

I(k, l)=
∫∞

0
(logu)k exp

{− (a+ l)u
}
du. (5.6)

Finally, by equation (2.6.21.1) in [7], (5.6) can be calculated as

I(k, l)=
(
∂

∂α

)k[
(a+ l)−αΓ(α)

]∣∣
α=1. (5.7)

By combining (5.3), (5.5), and (5.7), the nth moment of X can be expressed as

E
(
Xn
)= Γ(a+ b)Γ(n+ 1)µn

Γ(a)

n∑
k=0

∞∑
l=0

(−1)k+l(σ/µ)k

k!l!Γ(n− k+ 1)Γ(b− l)

(
∂

∂α

)k[
(a+ l)−αΓ(α)

]∣∣
α=1.

(5.8)
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In particular,

E(X)= Γ(a+ b)
Γ(a)

∞∑
l=0

(−1)l
{
µ+Cσ + σ(l+ a)

}
l!(l+ a)Γ(b− l)

,

E
(
X2)= Γ(a+ b)

Γ(a)

∞∑
l=0

(−1)l × 1{
l!(l+ a)Γ(b− l)

}
× {6µ2 +

(
π2 + 6C2)σ2 + 12Cµσ

+ 12σ(µ+Cσ) log(a+ l) + 6σ2 log2(a+ l)
}

,

E
(
X3)= Γ(a+ b)

2Γ(a)

∞∑
l=0

(−1)l × 1{
l!(l+ a)Γ(b− l)

}
× {(π2 + 6C2)µσ2 + 6Cσµ2 + 2µ3− (4η(3) +π2C+ 2C3)σ3

+
(
12Cσ2µ+ 6σµ2− σ3π2− 6σ3C2) log(l+ a)

+ 6σ2(µ− σC) log2(l+ a)− 2σ3 log3(l+ a)
}

,

E
(
X4)= Γ(a+ b)

20Γ(a)

∞∑
l=0

(−1)l × 1{
l!(l+ a)Γ(b− l)

}
× {− 40σ3(π2C+ 2C3 + 4η(3)

)
µ+ 20σ2(π2 + 6C2)µ2 + 80Cσµ3 + 20µ4

+
(
3π4 + 20C4 + 160Cη(3) + 20π2C2)σ4

+ 40σ
{(
π2C+ 4η(3) + 2C3)σ3− (π2 + 6C2)σ2µ+ 6Cσµ2 + 2µ3} log(l+ a)

+ 20σ2(π2σ2 + 6C2σ2− 12Cσµ+ 6µ2) log2(l+ a)− 80σ3µ log3(l+ a)

+ 20σ4(1 + 4C) log4(l+ a)
}

,
(5.9)

where C denotes Euler’s constant. The variance, skewness, and kurtosis measures can now
be calculated using the relations

Var(X)= E
(
X2)−E2(X),

Skewness(X)= E
(
X3
)− 3E(X)E

(
X2
)

+ 2E3(X)

Var3/2(X)
,

Kurtosis(X)= E
(
X4
)− 4E(X)E

(
X3
)

+ 6E
(
X2
)
E2(X)− 3E4(X)

Var2(X)
.

(5.10)

The skewness and kurtosis measures are controlled mainly by the parameters a and b and
Figure 5.1 illustrates their variation.

It is evident that (1.5) is much more flexible than the Gumbel distribution.
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Figure 5.1. Skewness and kurtosis measures versus a= 1,1.5, . . . ,10 and b = 1,1.5, . . . ,10 for the beta
Gumbel distribution.

6. Asymptotics

If X1, . . . ,Xn is a random sample from (1.6) and if X̄ = (X1 + ···+Xn)/n denotes the sam-
ple mean, then, by the usual central limit theorem,

√
n(X̄ −E(X))/

√
Var(X) approaches

the standard normal distribution as n→∞. Sometimes one would be interested in the
asymptotics of the extreme values Mn =max(X1, . . . ,Xn) and mn =min(X1, . . . ,Xn). Note
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from (1.6) that

1−F(t)∼ 1
bB(a,b)

exp
(
− b

t−µ

σ

)
(6.1)

as t→∞ and that

F(t)∼ 1
aB(a,b)

exp
{
− aexp

(
− t−µ

σ

)}
(6.2)

as t→−∞. Thus, it follows that

lim
t→∞

1−F(t+ σx/b)
1−F(t)

= exp(−x),

lim
t→−∞

F
(
t+ (σ/a)xexp

(
(t−µ)/σ

))
F(t)

= exp(x).

(6.3)

Hence, it follows from Theorem 1.6.2 in [4] that there must be norming constants an > 0,
bn, cn > 0, and dn such that

Pr
{
an
(
Mn− bn

)≤ x
}−→ exp

{− exp(−x)
}

,

Pr
{
cn
(
mn−dn

)≤ x
}−→ 1− exp

{− exp(x)
} (6.4)

as n→∞. The form of the norming constants can also be determined. For instance, using
Corollary 1.6.3 in [4], one can see that an = b/σ and that bn satisfies 1− F(bn) ∼ 1/n as
n→∞. Using the fact (6.1), one can see that

bn = µ− σ

b
log

{
bB(a,b)

n

}
(6.5)

satisfies 1− F(bn) ∼ 1/n. The constants cn and dn can be determined by using the same
corollary.

7. Estimation

We consider estimation by the method of maximum likelihood. The log-likelihood for a
random sample x1, . . . ,xn from (1.6) is

logL(µ,σ ,a,b)=−n logB(a,b)−n logσ + (b− 1)
n∑
i=1

log
[

1− exp
{
− exp

(
− xi−µ

σ

)}]

−
n∑
i=1

xi−µ

σ
− a

n∑
i=1

exp
(
− xi−µ

σ

)
.

(7.1)
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The first-order derivatives of (7.1) with respect to the four parameters are

∂ logL
∂µ

= n

σ
− 1
σ

n∑
i=1

exp
(
− xi−µ

σ

)

+
b− 1
σ

n∑
i=1

exp
(− (xi−µ

)
/σ
)

exp
{− exp

(− (xi−µ
)
/σ
)}

1− exp
{− exp

(− (xi−µ
)
/σ
)} ,

∂ logL
∂σ

=−n

σ
+

n∑
i=1

xi−µ

σ2

{
1− aexp

(
− xi−µ

σ

)}

+
b− 1
σ2

n∑
i=1

(
xi−µ

)
exp

(− (xi−µ
)
/σ
)

exp
{− exp

(− (xi−µ)/σ
)}

1− exp
{− exp

(− (xi−µ
)
/σ
)} ,

∂ logL
∂a

= nΨ(a+ b)−nΨ(a)−
n∑
i=1

exp
(
− xi−µ

σ

)
,

∂ logL
∂b

= nΨ(a+ b)−nΨ(b) +
n∑
i=1

log
[

1− exp
{
− exp

(
− xi−µ

σ

)}]
,

(7.2)

where Ψ(x) = d logΓ(x)/dx is the digamma function. Setting these expressions to zero
and solving them simultaneously yields the maximum-likelihood estimates of the four
parameters.
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