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This study presents mathematical aspects of wave equation considered on closed space intervals. It
is shown that a solution of this equation can be represented by a certain superposition of traveling
waves with null values for the amplitude and for the time derivatives of the resulting wave in
the endpoints of this interval. Supplementary aspects connected with the possible existence of
initial conditions for a secondorder differential system describing the amplitude of these localized
oscillations are also studied, and requirements necessary for establishing a certain propagation
direction for the wave (rejecting the possibility of reverse radiation) are also presented. Then
it is shown that these aspects can be extended to a set of adjacent closed space intervals, by
considering that a certain traveling wave propagating from an endpoint to the other can be
defined on each space interval and a specific mathematical law (which can be approximated by
a differential equation) describes the amplitude of these localized traveling waves as related to
the space coordinates corresponding to the middle point of the interval. Using specific differential
equations, it is shown that the existence of such propagating law for the amplitude of localized
oscillations can generate periodical patterns and can explain fracture phenomena inside materials
as well.

Copyright q 2008 G. Toma and F. Doboga. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Test-functions(whichdifferto zero only on a limited interval and have continuous derivatives
of any order on the whole real axis) are widely used in the mathematical theory of
distributions and in Fourier analysis of wavelets. Yet such test-functions, similar to the Dirac
functions, cannot be generated by a differential equation. The existence of such an equation
of evolution, beginning to act at an initial moment of time, would imply the necessity for a
derivative of certain order to make a jump at this initial moment of time from the zero value
to a nonzero value. But this aspect is in contradiction with the property of test-functions to
have continuous derivatives of any order on the whole real axis, represented in this case by
the time axis. So it results that an ideal test-function cannot be generated by a differential
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equation (see also [1]); the analysis has to be restricted at possibilities of generating practical
test-functions (functions similar to test-functions, but having a finite number of continuous
derivatives on the whole real axis) useful for wavelets analysis. Due to the exact form of the
derivatives of test-functions, we cannot apply derivative free algorithms [2] or algorithms
which can change in time [3]. Starting from the exact mathematical expressions of a certain
test-function and of its derivatives, we must use specific differential equations for generating
such practical test-functions.

Thisaspect is connected with causal aspects of generating apparently acausal pulses
as solutions of the wave equation, presented in [4]. Such test-functions, considered at
the macroscopic scale (that does not mean Dirac-functions), can represent solutions for
certain equations in mathematical physics (an example being the wave-equation). The main
consequence of this aspect consists in the possibility of certain pulses to appear as solutions of
the wave-equation under initial null conditions for the function and for all its derivatives and
without any free-term (a source-term) to exist. In order to prove the possibility of appearing
acausal pulses as solutions of the wave-equation (not determined by the initial conditions or
by some external forces) we begin by writing the wave-equation

∂2φ

∂x2
− 1
v2

∂2φ

∂t2
= 0 (1.1)

for a free string defined on the length interval (0, l) (an open set), where φ represents the
amplitude of the string oscillations and v represents the velocity of the waves inside the string
medium. At the initial moment of time (the zero moment) the amplitude φ together with all
its derivatives of first and second orders is equal to zero. From the mathematical theory of the
wave-equation, we know that any solutionof this equation must be a superposition of a direct
wave and of a reverse wave. For the beginning, we will restrict our analysis at direct waves
by considering a supposed extension of the string on the whole Ox axis, φ being defined by
the function

φ(τ) =

⎧
⎪⎨

⎪⎩

exp
(

1

(x − vt + 1)2 − 1

)

for |x − vt + 1| < 1,

0 for |x − vt + 1| ≥ 1,
(1.2)

where t ≥ 0. This function for the extended string satisfies the wave-equation (being a
function of x − vt, a direct wave). It is a continuous function, having continuous partial
derivatives of any order for x ∈ (−∞,∞) and for t ≥ 0. For x ∈ (0, l) (the real string) the
amplitude φ and all its derivatives are equal to zero at the zero moment of time, as required
by the initial null conditions for the real string (nonzero values appearing only for x ∈ (−2, 0)
for t = 0, while on this interval |x − vt + 1| = |x + 1| < 1). We can notice that for t = 0 the
amplitude φ and its partial derivatives differ to zero only on a finite space interval, this being
a property of the functions defined on a compact set (test-functions). But the argument of
the exponential function is x − vt; this implies that the positive amplitude existing on the
length interval (−2, 0) at the zero moment of time will move along the Ox axis in the direction
x = +∞. So at some time moments tk after the zero moment, a nonzero amplitude φ will
appear inside the string, propagating from one edge to the other. It can be noticed that the
pulse passes through the real string and at a certain time moment tfin (when the pulse existing
at the zero moment of time on the length interval (−2, 0) has moved into the length interval
(l, l + 2)) its action upon the real string ceases. We must point the fact that the limit points
x = 0 and x = l are not considered to belong to the string; but this is in accordance with
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the rigorous definition of derivatives (for this limit points cannot be defined as derivatives
related to any direction around them).

This point of space (the limit of the open space interval considered) is very important
for our analysis, while we will extend the study to closed space intervals. Considering
small space intervals around the points of space where the sources of the generated field
are situated (e.g., the case of electrical charges generating the electromagnetic field), it
will be shown that causal aspects require the logical existence of a certain causal chain
for transmitting interaction from one point of space to another, which can be represented
by mathematical functions which vanish (its amplitude and all its derivatives) in certain
points of space. From this point of space, an informational connection for transmitting the
wave further could be considered (instead of a transmission based on certain derivatives of
the wave). Thus a kind of granular approach for propagation along a certain axis can be
considered suitable for application in quantum theory. As an important consequence, some
directions of propagation for the generated wave will appear and the possibility of reverse
radiation will be rejected. Moreover, specific applications for other propagating phenomena
involving the generation of some spatial periodical patterns or an increasing amplitude of
oscillations along a certain spatial axis can be also analyzed by this mathematical model.

2. Utility of test-functions in mathematical physics for half-closed space intervals

If we extend our analysis to half-closed intervals by adding one endpoint of the space interval
to the previously studied open intervals (e.g., by adding the point x = 0 to the open interval
(0, l)), we should take into account the fact that a complete mathematical analysis usually
implies the use of a certain function f(t) defined at the limit of the working space interval
(the point of space x = 0, in the previous example). Some other supplementary functions can
be met in mathematical physics.

The use of such supplementary functions defined on the limit of the half-closed
interval could appear as a possible explanation for the problem of generating acausal pulses
as solutions of the wave equation on bounded open intervals. The acausal pulse presented
in the previous paragraph (similar to wavelets) traveling along the Ox axis requires a certain
nonzero function of time f0(t) for the amplitude of the pulse for the limit of the interval
x = 0. It could be argued that the complete mathematical problem of generating acausal
pulses for null initial conditions on this interval and for null function f0(t) corresponding to
function φ (the pulse amplitude) at this endpoint of the interval (x = 0, resp.) would reject the
possibility of appearing the acausal pulse presented in the previous paragraph. The acausal
pulse φ previously presented implies nonzero values for f0 at certain time moments, which
represents a contradiction with the requirement for this function f0 to present null values at
any time moment. By an intuitive approach, null external sources would imply null values
for function f0 and (as a consequence) null values for the pulse amplitude φ.

Yet it can be easily shown that the problem of generating acausal pulses on half-closed
intervals cannot be rejected by using supplementary requirements for certain functions f(t)
defined at one limit of such bounded space intervals. Let us simply suppose that instead of
function

φ(τ) =

⎧
⎪⎨

⎪⎩

exp
(

1

(x − vt + 1)2 − 1

)

for |x − vt + 1| < 1,

0 for |x − vt + 1| ≥ 1
(2.1)
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presented in the previous paragraph we must take into consideration two functions φ0 and
φl defined as

φ0(τ) =

⎧
⎪⎨

⎪⎩

exp
(

1

(x − vt +m)2 − 1

)

for |x − vt +m| < 1,

0 for |x − vt +m| ≥ 1,

φl(τ) =

⎧
⎪⎨

⎪⎩

− exp
(

1

(x + vt −m)2 − 1

)

for |x − vt +m| < 1,

0 for |x + vt −m| ≥ 1,

(2.2)

with m selected as m > 0, m − 1 > l (so as both functions φ0 and φl to have nonzero values
outside the real string and asymmetrical as related to the point of space x = 0. While function
φ0 corresponds to a direct wave (its argument being (x − vt)) and φl corresponds to a reverse
wave (its argument being (x + vt)) it results that both functions φ0 and φl arrive at the same
space origin x = 0, the sum of these two external pulses being null all the time (functions φ0

and φl being asymmetrical, φ0 = −φl) at any moment of time. So by requiring that φ(t) = 0
for x = 0 (the left limit of a half-closed interval [0, l)) we cannot reject the mathematical
possibility of the appearance of an acausal pulse on a half-closed interval.

A possible mathematical explanation for this aspect consists in the fact that we have
used a reverse wave (an acausal pulse) propagating from x =∞ toward x = −∞, which is first
received at the right limit x = l of the half-closed interval [0, l) before arriving at the point of
space x = 0. It can be argued that in case of a closed space interval [0, l], we should consider
the complete mathematical problem, consisting of two functions f0(t), fl(t) corresponding to
both limits of the working space intervals (the points of space x = 0 and x = l). But in fact the
wave equation corresponds to a physical model valid in the three-dimensional space, under
the form

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
− 1
v2

∂2φ

∂t2
= 0 (2.3)

and the one-dimensional model previously used is just an approximation. Moreover, the
source of the field is considered at a microscopic scale (e.g., quantum particles like electrons
for the case of the electromagnetic field) and the emitted field for such elementary particles
presents a spherical symmetry. Transforming the previous equation in polar coordinates and
supposing that the function φ depends only on r (the distance from the source of the field to
the point of space where this emitted field is received), it results that

∂2U

∂r2
− 1
v2

∂2U

∂t2
= 0, (2.4)

where

U = rϕ. (2.5)

An analysis of the field emitted from the point of space r = 0 (the source) toward a point of
space r = r0 (where the field is received) should be performed on the space interval (0, r] (a
half-closed interval); the point of space r = 0 cannot be included in the working interval as
long as the solution φ(r) for the field is obtained by dividing the solutionU(r) of the previous
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equation (in spherical coordinates) through r (the denominator of the solution φ being zero,
some supplementary aspects connected to the limit of functions should be added, but still
without considering a function of time as condition for the space origin). This can be put in
correspondence with the previously presented case of an acausal pulse defined on [0, l) if we
consider that (as a rule) (a) the endpoint where the function φ(t) is not defined represents the
source of the field (a round bracket being added, while it cannot be considered as part of the
working interval) and (b) the endpoint where the function ϕ vanishes represents a point of
space where the propagating phenomenon is recreated (by reflection or by interaction with
different particles, for the case of optical waves), a square bracket being added. The endpoint
represented by square bracket (where the wave vanishes) can be considered as a source for
the field propagating in a next space interval after an interaction, and so on.

Thus an asymmetry in the required methods for analyzing phenomena appears.
Moreover, for the appearance of a certain direction for the transmission of interaction (from
one space interval to another), it results that the possibility of retroradiation (a reverse wave
generated by points of space where a direct wave has arrived) should be rejected (a memory
of previous phenomena is determining the direction of propagation).

3. Applications for closed space intervals: applications in quantum physics

The pulse presented in the previous paragraph is in fact a traveling wave propagating from
x = ∞ toward x = 0 and back which vanishes at the point of space x = 0 due to a kind of
reflection. Yet we can extend our analysis by considering a subsequent reflection of this pulse
at the limit point x = l and so on. Thus a resulting traveling wave can be considered inside the
closed space interval [0, l] with null values at the endpoints x = 0, x = l at any time moment
after the first reflection.

At first sight, this localized oscillation is not useful for our mathematical analysis
of acausal pulses. It does not correspond to initial null conditions on the closed bounded
space interval [0, l] and to null time functions defined at the endpoints x = 0, x = l (while
the traveling wave should already exist inside this interval when null conditions for the
endpoints at any subsequent time moment are added). Yet we must take into consideration
the fact that in quantum physics the operators corresponding to creation and annihilation of
particles are obtained (in a heuristic manner) starting from an analysis of electromagnetic
field performed on bounded space intervals and extended to unbounded intervals by simply
replacing the space limits for a set of such intervals with infinite values [5]. However, the
previously mentioned analysis on bounded intervals makes use of stationary waves which
cannot be taken into consideration when a space limit equals ±∞ (no reflection can appear).
This logical contradiction can be avoided if any extended space interval is considered as a
sum of adjacent small space intervals with specific localized oscillations defined on each of
them.

Supposing that a localized oscillation is generated on a certain limited space interval
by an external force or by a received wave-train, we can consider that subsequent oscillations
are generated on adjacent space intervals (as in the case of spherical waves) due to a kind
of informational connection existing on the boundaries of these intervals. A mathematical
connection described by wave-equation cannot be taken into consideration any more, and
thus the previous model of causal chain corresponding to a sequence: changes in the value
of partial derivatives as related to space coordinates imply changes in the partial derivatives of the
amplitude as related to time, which further imply changes in the value of the function, should be
replaced by a step-by-step transmission of interaction starting from an initial half-closed
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interval (e.g., its open limit corresponding to the source of the field) to adjacent space
intervals. This corresponds to a granular aspect of space suitable for applications in quantum
physics, where the generation and annihilation of quantum particles should be considered on
limited space-time intervals (asymmetrical pulses could be also used [6]). A specific physical
quantity (corresponding to the amplitude of localized oscillations) is transmitted from one
space interval to another, according to a certain mathematical law.

4. Dynamical spatial generation of structural patterns

We will continue the study by presenting properties of spatial linear systems described
by a certain physical quantity generated by a differential equation. This quantity can be
represented by internal electric or magnetic field inside the material or by similar physical
quantities, and corresponds to the amplitude of localized oscillations previously mentioned.
A specific mathematical law which can be approximated by a differential equation generates
this quantity considering as input the spatial alternating variations of a certain internal
parameter. As a consequence, specific spatial linear variations of the corresponding physical
quantity appear. In case of very short-range variations of this internal parameter, systems
described by a differential equation able to generate a practical test-function [1] exhibit an
output which appears to an external observer under the form of two distinct envelopes.
These can be considered as two distinct structural patterns located in the same material
along a certain linear axis. This aspect differs from the oscillations of unstable type second-
order systems studied using difference equations [7] or advanced differential equations [8],
and they differ also from the previous studies of the same author [9] where the frequency
response of such systems to alternating inputs was studied (in conjunction with the ergodic
hypothesis). For our purpose, we will use the function

ϕ(x) =

⎧
⎨

⎩

exp
(

1
x2 − 1

)

if x ∈ (−1, 1),

0 otherwise,
(4.1)

which is a test-function on [−1, 1]. For a small value of the numerator of the exponent, a
rectangular shape of the output is obtained. An example is the case of the function

ϕ(x) =

⎧
⎨

⎩

exp
(

0.1
x2 − 1

)

if x ∈ (−1, 1),

0 otherwise.
(4.2)

Using the expression of ϕ(x) and of its derivatives of first and second orders, a
differential equation which admits as solution the function ϕ corresponding to a certain
physical quantity can be obtained. However, a test-function cannot be the solution of a
differential equation. Such an equation of evolution implies a jump at the initial space point
for a derivative of certain order, and test-function must possess continuous derivatives of
any order on the whole real axis. So it results that a differential equation which admits a test-
function ϕ as solution can generate only a practical test-function f similar to ϕ, but having
a finite number of continuous derivatives on the real Ox axis. In order to do this, we must
add initial conditions for the function f (generated by the differential equation) and for some
of its derivatives f (1), and/or f (2) and so on equal to the values of the test-function ϕ and of
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some of its derivatives ϕ(1), and/or ϕ(2) and so on at an initial space point xin very close to
the beginning of the working spatial interval. This can be written under the form

fxin = ϕxin , f
(1)
xin = ϕ(1)

xin , and/or f
(2)
xin = ϕ(2)

xin , and so on. (4.3)

If we want to generate spatial practical test-functions f which are symmetrical as
related to the middle of the working spatial interval, we can choose as space origin for the
Ox axis the middle of this interval, and so it results that the function f should be invariant
under the transformation

x −→ −x. (4.4)

Functions invariant under this transformation can be written in the form f(x2) (similar to
aspects presented in [1]) and so the form of a general second-order differential equation
generating this kind of functions should be

a2
(
x2) d2f

d
(
x2
)2

+ a1
(
x2) df

dx2
+ a0

(
x2)f = 0. (4.5)

However, for studying the generation of structural patterns on such a working
interval, we must add a free term corresponding to the cause for the variations of the external
observable physical quantity. Thus, a model for generating a practical test-function using as
input the internal parameter u = u(x), x ∈ [−1, 1], is

a2
(
x2) d2f

d
(
x2
)2

+ a1
(
x2) df

dx2
+ a0

(
x2)f = u (4.6)

subject to

lim
x→±1

fk(x) = 0 for k = 0, 1, . . . , n, (4.7)

which are the boundary conditions of a practical test-function. For u represented by
alternating functions, we should notice periodical variations of the external observable
physical quantity f .

According to the previous considerations for the form of a differential equation
invariant at the transformation

x −→ −x, (4.8)

a first-order system can be written under the form

df

d
(
x2
) = f + u (4.9)
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Figure 1: f versus distance for first-order system, input u = sin (10x).

which converts to

df

dx
= 2xf + 2xu (4.10)

representing a first-order dynamical system. For a periodical input (corresponding to the
internal parameter) u = sin 10x, numerical simulations performed using Runge-Kutta
functions in MATLAB present an output of an irregular shape (Figure 1) not suitable for
joining together the outputs for a set of adjoining linear intervals (the value of f at the end of
the interval differs in a significant manner to the value of f at the beginning of the interval).
A better form for the physical quantity f is obtained for variations of the internal parameter
described by the equation u = cos 10x. In this case, the output is symmetrical as related to the
middle of the interval (as can be noticed in Figure 2) and the results obtained on each interval
can be joined together on the whole linear spatial axis, without any discontinuities to appear.
The resulting output would be represented by a sum of two great spatial oscillations (one at
the end of an interval and another one at the beginning of the next interval) and two small
spatial oscillations (around the middle of the next interval).

Similar results are obtained for an undamped dynamical system first order,
represented by

df

d
(
x2
) = u (4.11)

which is equivalent to

df

dx
= 2xu. (4.12)

When the internal parameter presents very short-range variations, some new
structural patterns can be noticed. Considering an alternating input of the form u = sin(100x),
it results in an observable physical quantity f represented in Figure 3; for an alternating
cosine input represented by u = cos (100x), it results in the output f represented in Figure 4.
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Figure 2: f versus distance for first-order system, input u = cos (10x).

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Figure 3: f versus distance for first-order system, input u = sin(100x).

Studying these two graphics, we can notice the presence of two distinct envelopes. Their
shape depends on the phase of the input alternating component (the internal parameter),
as related to the space origin. At first sight, an external observer could notice two distinct
functions f inside the same material, along the Ox axis. These can be considered as
two distinct structural patterns located in the same material, generated by a short-range
alternating internal parameter u through a certain differential equation (invariant at the
transformation x→− x).

5. Aspects connected with short-range breaking phenomena

For simulating the generation of specific deformations inside a material medium under the
action of external forces, it can be considered that some short wavelength vibrations appear in
the area where the force acts. Usually the corresponding deformation is simulated inside the
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Figure 4: f versus distance for first-order system, input u = cos (100x).

material medium, using linear differential equations or equations with partial derivatives
(similar to the wave equation or to the equation of diffusion). Yet such linear equations
cannot explain the distance between the space area where the external force acts and the
space area where fracture phenomena appear. Using differential equations of higher order,
some slow variations of deformation along a certain direction could be obtained. Due to the
fact that the mathematical model should explain the sharp deformations at a certain distance
of the point of space where the force acts (leading to fracture phenomena), some different
types of differential equations must be studied. For this reason, our study has taken into
consideration some dynamical equations able to generate practical test-functions (similar to
wavelets) [1] and delayed pulses (when a free term which corresponds to an external pulse is
added) [10] for justifying fracture phenomena appearing in a certain material medium. It is
considered that an external force (described by a short wavelength sine function multiplied
by a Gaussian function) acts upon the material medium in a certain area. As a consequence,
some localized vibrations (corresponding to localized oscillations on closed space intervals
presented in the previous paragraphs) appear. These localized oscillations are transmitted
from one space interval to another according to a certain mathematical law which puts into
correspondence the amplitude of these local vibrations to spatial coordinates.

Using a specific differential equation (able to generate symmetrical functions for a
null free term) for describing the generation of the corresponding deformation along an axis
inside the material medium, it results that a significant deformation appears at a certain
distance. This significant deformation justifies the fracture phenomena, while the inner
structure of the material cannot allow significant sharp deformations without breaking. The
main problem is represented by the search of an adequate free term u(x) able to justify
fracture phenomena. We start by using a constant free term, using an equation as

f (2) =
0.6x4 − 0.36x2 − 0.2

(
x2 − 1

)4
f + u(x), (5.1)

where u(x) represents the external force (supposed to be constant in a first approximation
on the working space interval (−1, 1)). The deformation f(x) is supposed to be first time
generated by the external force at the limit x = −1 of the working interval and then (according
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Figure 5: Deformation generated by an external constant force.

to the differential equation) it generates the corresponding deformation along the whole
working interval, with the external constant force u acting in a continuous manner upon
the material. The deformation generated by such a constant force u should be symmetrical
as related to origin 0 (the previous differential equations being valid on the space interval
(−1, 1) with initial null conditions for f(x) at the initial point of space x = −1). The property
of symmetry previously mentioned is justified by invariance properties of this type of
differential equations [1]. However, even for u(x) = 1 (the most simple external force acting
upon the material which is symmetrical as related to space origin 0) numerical simulations
in MATLAB present an asymmetry of the output signal, justified by numerical errors (see
Figure 5). But numerical simulations present also a slow varying deformation along the axis,
with no spatial oscillations; thus the fracture phenomenon cannot be explained.

A similar shape of the output can be noticed for an input represented by a Gaussian
external force, acting around the point of space x = −0.9 and having a width ten times smaller
than the working period—similar to the use of a Gaussian modulated signal for generating
delayed pulses [10]. In such a case the differential equation generating the deformation along
the working interval is represented by

f (2) =
0.6x4 − 0.36x2 − 0.2

(
x2 − 1

)4
f + exp− (x + 0.9)2

(0.01)2
(5.2)

and the corresponding output is represented in Figure 6.
So we must extend our search for adequate mathematical models, and we will try a

free term u(x) represented by

u(x) = exp
(

− (x + 0.9)2

(0.01)2

)

sin 104x. (5.3)

This mathematical expression describes an external force represented by a Gaussian
multiplied by a sine function with short wavelength, being considered that the applied force
is transformed by the surface of the material into a set of alternating internal efforts with very
short wavelength (similar to a localized vibration).
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Figure 6: Deformation generated by an external Gaussian (localized) force.
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Figure 7: Deformation generated by a modulated Gaussian internal effort.

The corresponding output is represented in Figure 7. It can be noticed that we have
finally obtained a sharp deformation appearing at a certain distance between the point of
space where the external (modulated Gaussian) force acts and the point of space where
the sharp deformation appears. Moreover, the sharp deformation appears as an alternating
function localized on a very short spatial interval. It is quite obvious that such a deformation
cannot be allowed by the inner structure of the material, leading to fracture phenomena. This
simulation explains also the fact that the fracture point is usually situated at a certain distance
from the point where the external force is applied (as can be noticed studying the deformation
presented in Figure 7 generated by the internal efforts u(x) presented in Figure 8)
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Figure 8: Modulated Gaussian internal effort by a sine function.

For the case when the Gaussian input is modulated by a cosine function, which means
that

u(t) = exp
(

− (τ + 0.9)2

(0.01)2

)

cos 104τ, (5.4)

we obtain an output represented by a slowly varying function, without alternate deformation.
So a cosine modulation of a Gaussian input is not suitable for simulating fracture phenomena
appearing at a certain distance from the point where the external force acts.

We must point the fact that such localized alternating deformations generated by
systems working on a limited interval and situated at a certain distance from the point
where the external force acts differ to wavelets resulting from PDE equations (see [11])
and to propagating wavelets through dispersive media [12], while the shape of the resulting
deformation is not symmetrical as related to Ox axis (its mean value differs to zero). However,
a multiscale analysis of such pulses should be performed for explaining the complex fracture
phenomena in an extended area and for justifying why a certain direction for generating
deformation has to be chosen.

6. Conclusions

This study has shown that some solutions of the wave equation for half-closed space interval
are considered around the point of space where the sources of the generated field are situated
(e.g., the case of electrical charges generating the electromagnetic field). These solutions
can be mathematically represented by vanishing waves corresponding to a superposition of
traveling test-functions. Then some properties of spatial linear systems described by a certain
physical quantity (generated by a differential equation) are studied. This quantity can be
represented by internal electric or magnetic field inside the material or by similar physical
quantities, and corresponds to the amplitude of localized oscillations previously mentioned.
A specific mathematical law which can be approximated by a differential equation generates
this quantity considering as input the spatial alternating variations of this internal parameter.
As a consequence, specific spatial linear variations of the corresponding physical quantity
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appear. Finally, a specific differential equation (able to generate symmetrical functions for a
null free term) is used for describing the generation of the corresponding deformation along
an axis inside the material medium. Numerical simulations have shown that a significant
deformation appears at a certain distance. This deformation justifies the fracture phenomena,
while the inner structure of the material cannot allow significant sharp deformations without
breaking.
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