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The second-grade flows through a microtube with wall slip are solved by Laplace transform
technique. The effects of rarefaction and elastic coefficient are considered with an unsteady
flow through a microtube for a given but arbitrary inlet volume flow rate with time. Five
cases of inlet volume flow rate are as follows: (1) trapezoidal piston motion, (2) constant
acceleration, (3) impulsively started flow, (4) impulsively blocked fully developed flow, and (5)
oscillatory flow. The results obtained are compared to those solutions under no-slip and slip
condition.

1. Introduction

During the past decades, a great deal of literatures used the Navier-Stokes equation to
describe the Newtonian fluid. However, the Newtonian fluid is the simplest to be solved
and its application is very limited. In practice, many complex fluids such as blood, soaps,
clay coatings, certain oils and greases, elastomers, suspensions, and many emulsions have
been treated as non-Newtonian fluids. From literatures, the non-Newtonian fluids are mainly
classified into three categories on the basis of their behavior in shear. (a) The shear stress of
the fluids depends only on the rate of shear. (b)A fluid with a relationship between the shear
stress and shear rate. (c) The fluids possess both elastic and viscous properties. One of the
most popular models for non-Newtonian fluids is called the second-grade fluid. Erdoğan
and İmrak [1] used the second-order Rivlin-Ericksen fluid, or the so-called second-grade
fluid to model the non-Newtonian fluid. They solved some unsteady flows, such as unsteady
flow over a plane wall, unsteady Couette flow, and unsteady Poiseuille flow. Hayat et al. [2]
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analysed the influence of variable viscosity and viscous dissipation on the non-Newtonian
flow. Bandelli and Rajagopal [3] solved various startup flows of second-grade fluids in
domains with one finite dimension by integral transform method. Some unsteady flows of
the fluids of second grade have been investigated by many authors [4–7].

Microfluidics is the significant technologies developed in the engineering field. As the
microflow is considered, the no-slip condition is not sufficient for a fluid of second grade.
Rarefaction phenomena should be considered when fluid flows in a microtube. The typically
flow field can be divided into the four regimes by Knudsen number [8]: Kn < 10−3, continuum
flow; 10−3 ≤ Kn < 10−1, slipflow; 10−1 ≤ Kn < 10, transition flow; and 10 ≤ Kn free molecular
flow. Much research in the literature does not consider the effect of rarefaction in the second-
grade fluid. The study examined the effects of rarefaction of an unsteady flow through a
microtube by Chen et al. [9].

In practice application, generally the inlet volume flow rate is a given condition
instead of pressure gradient. Das and Arakeri [10] solved the unsteady laminar duct flow
with a given volume flow rate variation. They discussed the problem with various types
of given inlet piston motion in the channel and duct. Also Das and Arakeri [11] verified
their earlier experimental work. Chen et al. [12–14] extended Das and Arakeri’s work by
considering various non-Newtonian fluids. Several studies [15, 16] have suggested the no-
slip condition that is deduced as the limiting cases when the slip parameter is equal to
zero. Hayat et al. [17] considered the unsteady flow of an incompressible second-grade fluid
in a circular duct with a given volume flow rate variation. The effects of Hall current are
taken into account. For the above reason, this study considers the wall slip condition and
the second-grade fluid with different given volume flow rate. For α1 → 0, they reduce to
the similar solutions for Newtonian fluids. The results show that the analytical solutions of
velocity profile and pressure gradient are affected by the slip conditions and the viscoelastic
parameter.

2. Constitutive Equations

The constitutive equation of second-grade Rivlin-Ericksen fluid is in the following form:

⇀

T= −p ⇀

I +μ
⇀

A1 +α1
⇀

A2 +α2
⇀

A1

2
, (2.1)

where
⇀

T is the stress tensor,
⇀

I is identity tensor, p is the static fluid pressure, μ is the dynamic
viscosity coefficient, α1 is the elastic coefficient and α2 is the transverse viscosity coefficient,

and
⇀

A1 and
⇀

A2 represent the Rivlin-Ericksen tensors. Here, μ, α1 and α2 are material modules

which are assumed constant. The kinematic tensors
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⇀
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⇀
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⇀
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In the above equation,
⇀

V is the velocity and d/dt denotes the material time derivative. Since
the fluid is incompressible, it can undergo only isochoric motion, and hence

div
⇀

V= 0, (2.3)

and substituting constitutive equation (2.1) into the balance of linear momentum

div
⇀

T +ρ
⇀

b= ρ
d

⇀

V
dt

, (2.4)

where ρ is the density of the fluid and
⇀

b is the body force. In the sense of the Clausius-Duhem
inequality and the condition that the Helmholtz free energy is a minimum when the fluid is
at rest, then the material modules must be satisfied [7] as follows:

μ ≥ 0, α1 ≥ 0, α1 + α2 = 0. (2.5)

In our study, we use the cylindrical polar coordinates (r, θ, x), where r is radial distance
from the center of the pipe, θ is the angular direction, and x is the axial direction. Velocity in
the x, r, and θ-direction are u, ur , and uθ, respectively.We also investigate the fluid rarefaction
effect in a microtube, the Knudsen number is an important nondimensional parameter

Kn ≡ λ

L
, (2.6)

where λ is the molecular mean free path, which is defined as the mean secondary collision
distance of a gas molecule, and L is the characteristic length.

In order to find the fluid of second grade for unsteady unidirectional flows, we seek a
velocity field of the form u = u(r, t), ur = 0, uθ = 0. The governing equations can be derived
from (2.4), which gives

(
μ + α1

∂

∂t

)(
∂2u

∂r2
+
1
r

∂u

∂r

)
− ρ

∂u

∂t
=

∂p

∂x
,

∂p

∂r
=

∂p

∂θ
= 0,

(2.7)

where ν is the kinematic viscosity. This implies that the pressure gradient is a function of time
only.

3. Methodology of Solution

The problem can be solved if the governing equation, boundary condition, and initial
condition are known. This third-order nonhomogeneous partial differential equation is not
convenient to use the method of separation of variable to solve. In this paper, we give the
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Laplace transform method reducing the two variables into single variable. In other words,
we transform PDE into ODE that will effectively reduce the original difficult equation.

The governing equation of motion in x-direction is

∂u

∂t
= −1

ρ

∂p

∂x
+
(
ν + θ

∂

∂t

)(
∂2u

∂r2
+
1
r

∂u

∂r

)
, (3.1)

where ν = μ/ρ and θ = α1/ρ.
With R is the radius of duct, the boundary conditions are

u(R, t) = −βνλ∂u(R, t)
∂r

,
∂u(0, t)

∂r
= 0, (3.2)

where βνλ is the velocity slip coefficient and is defined as

βν =
2 − Fν

Fν
, (3.3)

and Fν is the tangential momentum accommodation coefficient that describes the interaction
between fluid and wall and is related to constituents of fluid, temperature, velocity, wall
temperature, roughness, and chemical status. Fν is defined as

Fν ≡ ui − ure

ui −Uw
, (3.4)

where ui, ure, andUw are tangential momentum of incoming molecules, reflected molecules,
and re-emitted molecules, respectively.

We need an initial condition for the velocity, u(r, 0), and the problem can be solved if
the pressure gradient function is known. In our case, we determined the pressure gradient
indirectly by the volume flow rate, which is given. The velocity is related to the inlet volume
flow rate by

∫R

0
2πru(r, t)dr = up(t)πR2 = Q(t), (3.5)

where up is the average inlet velocity.
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Using the Laplace transform technique of (3.1), (3.2), and (3.5) yields the following
equations:

d2u(r, s)
dr2

+
1
r

du(r, s)
dr

− s

ν + sθ
u(r, s) =

1
ρ(ν + sθ)

dP(x, s)
dx

, (3.6)

u(R, s) = −βνλdu(R, s)
dr

, (3.7)

du(0, s)
dr

= 0, (3.8)

Q(s) =
∫R

0
2πru(r, s)dr = up(s)πR2. (3.9)

Equation (3.6) is a second-order inhomogeneous ordinary differential equation. The
homogeneous part is the modified Bessel’s equation of zeroth order and assuming the
particular integral as Ψp, the general solution is

u(r, s) = C1I0(mr) + C2K0(mr) + Ψp, (3.10)

where m =
√
s/(ν + sθ).

Using the boundary conditions (3.7) and (3.8) into (3.6) to solve these two unknown
coefficients C1 and C2, substituting C1 and C2 into (3.6) give

u(r, s) = Ψp

(
1 − I0(mr)[

I0(mR) + βνλmI1(mR)
]
)
, (3.11)

where I1 is the modified Bessel’s equation of the first order.
To solve for the unknown Ψp, we substitute (3.11) into (3.9) and Ψp is obtained as

Ψp =
up(s)(

1 − (2I1(mR)/mR
[
I0(mR) + βνλmI1(mR)

])) , (3.12)

Substituting Ψp into (3.11), we get

u(r, s) =
up(s){[I0(mR) + αmRI1(mR)] − I0(mr)}
{[I0(mR) + αmRI1(mR)] − 2I1(mR)/mR} , (3.13)

or

u(r, s) = up(s) ·G(r, s), (3.14)
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where

G(r, s) =
[I0(mR) + αmRI1(mR)] − I0(mr)

[I0(mR) + αmRI1(mR)] − 2I1(mR)/mR
(3.15)

and α = βνλ/R = βνKn ≈ Kn.
Taking the inverse Laplace transform, the velocity profile is

u(r, t) =
1

2πi

∫ r+i∞

r−i∞
up(s)G(r, s)estds. (3.16)

Furthermore, the pressure gradient is found by substituting (3.11) into (3.6) to obtain

dp(x, s)
dx

= −up(s)
[I0(mR) − αmRI1(mR)]

[I0(mR) − αmRI1(mR)] − 2I1(mR)/mR
, (3.17)

We obtain the expressions for the variation of nondimensional pressure gradient with time
by taking the inverse transform formula.

4. Illustration of Examples

We consider some examples proposed by Das and Arakeri [10] with the second-grade fluid
and the effect of wall-slip conditions on the unsteady flow patterns in a microtube.

For the following case, the velocity moves with a constant acceleration of the piston
starting from rest, and the other one, the piston suddenly starts from rest and then keeping
this velocity. These two solutions we apply to the trapezoidal motion, that is, the piston
has three stages: constant acceleration of the piston starting from rest, a period of constant
velocity, and a constant deceleration of the piston to a stop.

4.1. Trapezoidal Piston Motion

We get the solution for the three stages piston velocities which vary with time as follows:

up(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Up

t0
t, for 0 ≤ t ≤ t0,

Up, for t0 ≤ t ≤ t1,

Up
(t2 − t)
(t2 − t1)

, for t1 ≤ t ≤ t2,

0, for t2 ≤ t ≤ ∞,

(4.1)
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where Up is the constant velocity after acceleration, and t0, t1, and t2 are the time periods
for changing piston velocity. We use the Heaviside unit step function to describe the piston
motion as follows:

up(t) =
Up

t0
tH(t) − Up

t0
tH(t − t0) +UpH(t − t0) −UpH(t − t1)

+Up
t2 − t

t2 − t1
H(t − t1) −Up

t2 − t

t2 − t1
H(t − t2).

(4.2)

For the constant acceleration period (0 ≤ t ≤ t0), taking the Laplace transform of up(t) =
UptH(t)/t0, we get

up(s) =
Up

t0s2
. (4.3)

From (3.16) expression, the integration is determined using complex variable theory, as
discussed by Arparci [18]. We obtain the velocity distribution

u(r, t) =
1

2πi

⎡
⎣2πi

∑
j=1

Rj

⎤
⎦, (4.4)

where Rj is the residual of poles of Upe
stG(r, s)/t0s2.

It can be easily observed that s = 0 is a pole of order 2. Therefore, the residue at s = 0
is

Res(0) =
Up

t0

⎧
⎨
⎩

2t
[
1 − (r/R)2 + 2α

]

(1 + 4α)
+
R2
[
1 − (r/R)4 + 4α

]

8ν(1 + 4α)
−
R2(1 + 6α)

[
1 − (r/R)2 + 2α

]

6ν(1 + 4α)2

⎫
⎬
⎭.

(4.5)

The other singular points are the zeroes of

I0(mR) + αmRI1(mR) − 2I1(mR)
mR

= 0. (4.6)

Setting mR = iλ, we find that

αλJ1(λ) + J2(λ) = 0. (4.7)

If λn, n = 1, 2, 3, . . . ,∞ are zeros of (4.7), then sn = −λ2nν/(R2 + θλ2n), n = 1, 2, 3, . . . ,∞ are the
simple poles. Since all λn are symmetrically placed about zero on the real axis, all the poles
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(sn) lie on the negative real axis. These are simple poles, and residues at all these poles can
be obtained as

Res(sn) =
UpR

2

t0ν

{
2[J0(λn) − J0((r/R)λn) − αλnJ1(λn)][

(1 + 2α)λ3nJ1(λn) + αλ4nJ0(λn)
] e−νλ

2
nt/(R

2+θλ2n)

}
. (4.8)

Adding Res(0) and Res(sn), the dimensionless velocity distribution is obtained as

u∗(c, t∗) =
1
t∗0

{
2t∗
(
1 − c2 + 2α

)
+ (1/8)

(
1 − c4 + 4α

)

(1 + 4α)
− (1/6)(1 + 6α)

(
1 − c2 + 2α

)

(1 + 4α)2

}

+
2
t∗0

∞∑
n=1

{
e−λ

2
nt

∗/(1+βλ2n)
J0(λn) − J0(cλn) − αλnJ1(λn)[
(1 + 2α)λ3nJ1(λn) + αλ4nJ0(λn)

]
}
,

(4.9)

where u∗ = up/Up, c = r/R, α = βνKn, t∗ = tν/R2, t∗0 = t0ν/R
2, β = θ/R2.

By the same method, the dimensionless velocity profile during the constant piston
velocity (t0 ≤ t ≤ t1) is obtained as

up(t) =
Up

t0
tH(t) − Up

t0
tH(t − t0) +UpH(t − t0),

u∗(c, t∗) = 2

[(
1 − c2

)
+ 2α

1 + 4α

]
+

2
t∗0

∞∑
n=1

{[
e−λ

2
nt

∗/(1+βλ2n) − e−λ
2
n(t

∗−t∗0)/(1+βλ2n)
]

× J0(λn) − J0(cλn) − αλnJ1(λn)[
(1 + 2α)λ3nJ1(λn) + αλ4nJ0(λn)

]
}
,

(4.10)

during the constant deceleration of the piston motion (t1 ≤ t ≤ t2).

up(t) =
Up

t0
tH(t) − Up

t0
tH(t − t0) +UpH(t − t0) −UpH(t − t1) +Up

t2 − t

t2 − t1
H(t − t1),

u∗(c, t∗) =
1

t∗2 − t∗1

{
2
(
t∗2 − t∗1

)(
1 − c2 + 2α

) − (1/8)
(
1 − c4 + 4α

)

(1 + 4α)
+
(1/6)(1 + 6α)

(
1 − c2 + 2α

)

(1 + 4α)2

}

+ 2
∞∑
n=1

{[
e−λ

2
nt

∗/(1+βλ2n) − e−λ
2
n(t

∗−t∗0)/(1+βλ2n)

t∗0
− e−λ

2
n(t

∗−t∗1)/(1+βλ2n)

t∗2 − t∗1

]

× J0(λn) − J0(cλn) − αλnJ1(λn)[
(1 + 2α)λ3nJ1(λn) + αλ4nJ0(λn)

]
}
,

(4.11)

where t∗1 = t1ν/R
2, t∗2 = t2ν/R

2.
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And after the piston has stopped (t2 ≤ t ≤ ∞),

up(t) =
Up

t0
tH(t) − Up

t0
tH(t − t0) +UpH(t − t0) −UpH(t − t1)

+Up
t2 − t

t2 − t1
H(t − t1) −Up

t2 − t

t2 − t1
H(t − t2),

u∗(c, t∗) = 2
∞∑
n=1

{[
e−λ

2
nt

∗/(1+βλ2n) − e−λ
2
n(t

∗−t∗0)/(1+βλ2n)

t∗0
− e−λ

2
n(t

∗−t∗1)/(1+βλ2n) − e−λ
2
n(t

∗−t∗2)/(1+βλ2n)

t∗2 − t∗1

]

× J0(λn) − J0(cλn) − αλnJ1(λn)[
(1 + 2α)λ3nJ1(λn) + αλ4nJ0(λn)

]
}
.

(4.12)

We also obtain the expressions of the dimensionless pressure gradient during these
four different stages. During the constant acceleration period (0 ≤ t ≤ t0),

dp∗

dx∗ = − 1
t∗0

[
t∗ + (α/2) + (1/4)

(1 + 4α)
− (1/12) + (α/2)

(1 + 4α)2

]

+
1
4t∗0

∞∑
n=1

{
e−λ

2
nt

∗/(1+βλ2n)
J0(λn) − αλnJ1(λn)[

(1 + 2α)λnJ1(λn) + αλ2nJ0(λn)
]
}
,

(4.13)

where P ∗ = P/(8μUp/R), x∗ = x/R.
During the constant velocity period (t0 ≤ t ≤ t1),

dp∗

dx∗ = − 1
1 + 4α

+
1
4t∗0

∞∑
n=1

{[
e−λ

2
nt

∗/(1+βλ2n) − e−λ
2
n(t

∗−t∗0)/(1+βλ2n)
] J0(λn) − αλnJ1(λn)[
(1 + 2α)λnJ1(λn) + αλ2nJ0(λn)

]
}
,

(4.14)

during the constant deceleration period (t1 ≤ t ≤ t2),

dp∗

dx∗ = − 1
t∗2 − t∗1

[(
t∗2 − t∗1

) − ((α/2) + (1/4))
(1 + 4α)

+
(1/12) + (α/2)

(1 + 4α)2

]

+
∞∑
n=1

{[
e−λ

2
nt

∗/(1+βλ2n) − e−λ
2
n(t

∗−t∗0)/(1+βλ2n)

4t∗0
− e−λ

2
n(t

∗−t∗1)/(1+βλ2n)

4
(
t∗2 − t∗1

)
]

× J0(λn) − αλnJ1(λn)[
(1 + 2α)λnJ1(λn) + αλ2nJ0(λn)

]
}
,

(4.15)
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Figure 1: Velocity profiles at different phases at Kn = 0.1 and β = 0.05 (a) during the acceleration of the
piston motion (profiles are shown at time intervals of t∗0/6), (b) when the piston velocity is constant (time
intervals of (t∗1 − t∗0)/6), (c) during the deceleration of the piston velocity (time intervals of (t∗2 − t∗1)/6), and
(d) after the piston motion has stopped (time intervals of (0.0427 − t∗2)/6).

and after the piston has stopped (t2 ≤ t ≤ ∞),

dp∗

dx∗ =
∞∑
n=1

{[
e−λ

2
nt

∗/(1+βλ2n) − e−λ
2
n(t

∗−t∗0)/(1+βλ2n)

4t∗0
− e−λ

2
n(t

∗−t∗1)/(1+βλ2n) − e−λ
2
n(t

∗−t∗2)/(1+βλ2n)

4
(
t∗2 − t∗1

)
]

× J0(λn) − αλnJ1(λn)[
(1 + 2α)λnJ1(λn) + αλ2nJ0(λn)

]
}
.

(4.16)

Above these infinite series, equations are convergent and we set the n = 50 as enough for the
cases. For trapezoidal piston motion with different nondimensional times (t∗ = tν/R2) are
t0ν/R

2, t1ν/R2 and t2ν/R
2 = 0.0012, 0.0305, and 0.0366, respectively. The velocity profiles at

Kn = 0.1 and β = 0.05 are illustrated in Figure 1.
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These values are chosen for the purpose of comparing the results obtained by Das and
Arakeri [10] and Chen et al. [9]. When α ≈ Kn = 0 (no-slip condition) and β = 0 (no-elastic
effect), the velocity profiles in (4.9) to (4.12) are exactly like Das and Chen’s results. Figure 1
shows the second-grade flow with slippage on the microtube wall during four different time
periods. The development of velocity is similar to that in Das et al. and Chen et al.’s works.
However, the elastic coefficient retarded the change of velocity in the microtube. Because
the effect of slippage, the shift of velocity from the wall to centerline is smoother than that
in Das et al. and Chen et al.’s works. During the time period when the piston decelerates
and stops at time t∗2, it is observed that the flow reverses its direction near the wall (see
Figure 1(c)). After the piston motion ceases, the velocity profile (see Figure 1(d)) continues
to have reverse flow near the wall to satisfy the zero mass flow condition. Figure 2 shows the
variation of nondimensional pressure gradients with time at Kn = 0.1 and β = 0.05. During
the acceleration and deceleration stages, the pressure gradients are large mainly because of
fluid inertia. Finally, when the piston stops, the pressure gradient slowly decays to zero.
Figure 3 shows the effect of different β values (β = 0, 0.05, 0.1) on the velocity profiles at
Kn = 0.1. During the four stages of piston motion, the larger β values the smoother the
velocity profile.

The degree of smoothness is proportional to the β value. In the special case, it is worth
mentioning that when β → 0 (means that α1 → 0), corresponding to Newtonian fluids, all
solutions that have been obtained are going to be those for Newtonian fluids performing
the same motions. Figure 4 shows the effect of Kn various values (Kn = 0, 0.05, 0.1)
on the velocity profiles at β = 0.05. The analytical result demonstrates that a larger Kn
value will flatten the velocity profile. It is observed that the slip condition occurs near
the wall.

4.2. Constant Acceleration Case

For a piston with constant acceleration can be described by the following equation:

up(t) = apt =
(
Up

t0

)
t, (4.17)

where ap is the constant acceleration, Up is the final velocity after acceleration, and t0 is the
time period of acceleration.

The velocity profile can be obtained by putting t = t0 of (4.9) as follows:

u∗(c, t∗) =
1
t∗

{
2t∗
(
1 − c2 + 2α

)
+ (1/8)

(
1 − c4 + 4α

)

(1 + 4α)
− (1/6)(1 + 6α)

(
1 − c2 + 2α

)

(1 + 4α)2

}

+
2
t∗

∞∑
n=1

{
e−λ

2
nt

∗/(1+βλ2n)
J0(λn) − J0(cλn) − αλnJ1(λn)[
(1 + 2α)λ3nJ1(λn) + αλ4nJ0(λn)

]
}
,

(4.18)
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Figure 2: The variation of pressure gradient with time for trapezoidal piston motion at Kn = 0.1 and β =
0.05.

and when the pressure gradient, as time approaches infinity, is

dp∗

dx∗ = − 1
(1 + 4α)

− ((α/2) + (1/4))apR
2

(1 + 4α)νup
+
((1/12) + (α/2))apR

2

(1 + 4α)2νup

− 1
t∗

[
t∗ + (α/2) + (1/4)

(1 + 4α)
− (1/12) + (α/2)

(1 + 4α)2

]
.

(4.19)

4.3. Suddenly Started Flow

The solution to the suddenly started flow in a circular duct is as follows:

up(t) =

⎧
⎨
⎩
0, for t ≤ 0,

Up, for t > 0,
(4.20)

where Up is the constant velocity

u∗(c, t∗) = 2

[(
1 − c2

)
+ 2α

1 + 4α

]
− 2

∞∑
n=1

{
e−λ

2
nt

∗/(1+βλ2n)
J0(λn) − J0(cλn) − αλnJ1(λn)[

λnJ1(λn) + 2αλnJ1(λn) + αλ2nJ0(λn)
]
}
,

(4.21)
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Figure 3: The effect of different β values on the velocity profiles for trapezoidal piston motion at Kn = 0.1:
(a) t∗ = 0.0012, (b) t∗ = 0.0305, (c) t∗ = 0.0366, and (d) t∗ = 0.0427.

and the pressure gradient is

dp∗

dx∗ = − 1
1 + 4α

− 1
4

∞∑
n=1

{
e−λ

2
nt

∗/(1+βλ2n)
λn[J0(λn) − αλnJ1(λn)]

[(1 + 2α)J1(λn) + αλnJ0(λn)]

}
. (4.22)

4.4. Suddenly Blocked Fully Developed Flow

The exact solution of this problem with no-slip wall condition was considered by Weinbaum
and Parker [19]. The initial condition for this problem is u(r, 0) = 1 − c2, and the mass flow
condition is

∫R
0 2πrudr = 0. The resulting velocity profile is

u∗(c, t∗) = −2
∞∑
n=1

e−λ
2
nt

∗/(1+βλ2n)
J0(λn) − J0(cλn)

λnJ1(λn)
. (4.23)
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Figure 4: The effect of different Kn values on the velocity profiles for trapezoidal piston motion at β = 0.05:
(a) t∗ = 0.0012, (b) t∗ = 0.0305, (c) t∗ = 0.0366, and (d) t∗ = 0.0427.

When the wall slip is considered, the corresponding velocity profile and pressure gradient
are

u∗(c, t∗) = −2
∞∑
n=1

{
e−λ

2
nt

∗/(1+βλ2n)
J0(λn) − J0(cλn) − αλnJ1(λn)[

λnJ1(λn) + 2αλnJ1(λn) + αλ2nJ0(λn)
]
}
,

dp∗

dx∗ =
1
4t∗0

∞∑
n=1

{
e−λ

2
nt

∗/(1+βλ2n)
J0(λn) − αλnJ1(λn)[

(1 + 2α)λnJ1(λn) + αλ2nJ0(λn)
]
}
.

(4.24)

5. Oscillatory Flow

Here, the oscillating piston motion starting from rest is considered. The piston motion is
defined as

up(t) =

⎧
⎨
⎩
0, for t ≤ 0,

Up sin(ωt), for t > 0.
(5.1)
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Taking the Laplace transform of (5.1), we have

up(s) =
Upω

s2 +ω2
. (5.2)

Substitute (5.2) into (3.16) to find the velocity profile. The poles are simple poles at s = ±iω
and the roots of αλJ1(λ) + J2(λ) = 0. The solution is

u∗(c, t∗) =
i

2

[
e−iωtG(r,−iω) − eiωtG(r, iω)

]

+
∞∑
n=1

⎧
⎨
⎩

e−λ
2
nt

∗/(1+βλ2n)2R2νωλ4n[J0(λn) − J0(cλn) − αλnJ1(λn)][
λ4nν2 +ω2

(
R2 + θλ2n

)2][(1 + 2α)λ3nJ1(λn) + αλ4nJ0(λn)
]

⎫
⎬
⎭,

(5.3)

where G(r, s) is defined by (3.15).
And the pressure gradient is obtained as

dp∗

dx∗ = −R
2ω

16ν

[
eiωtΓ(iω) + e−iωtΓ(−iω)

]

+
1
4

∞∑
n=1

⎧
⎨
⎩

e−λ
2
nt

∗/(1+βλ2n)R4ωλ4n[J0(λn) − αλnJ1(λn)]

ρ
[
λ4nν2 +ω2

(
R2 + θλ2n

)2][(1 + 2α)λnJ1(λn) + αλ2nJ0(λn)
]

⎫
⎬
⎭,

(5.4)

where Γ(r, s) = [I0(mR) − αmRI1(mR)]/([I0(mR) − αmRI1(mR)] − 2I1(mR)/mR) and m =√
s/(ν + sθ).

6. Conclusion

In this paper, the second-grade flows through a microtube with wall slip are solved by
Laplace transform technique. The analytical solutions of velocity profiles and pressure
gradients are compared to those obtained by Das and Arakeri’s work [10] for no-slip flow
and Chen et al.’s work [9] for wall slip condition.We found that the Kn number represents the
degree of rarefaction and the α1 is characterized as the elastic coefficient. Those two variables
play a significant role in influencing the velocity profile.

From the equation we deduced that the larger Kn value decreases the change of
velocity distribution. We could find that the wall slip condition moves more fluid at one cross
section than at a cross section without slip. Also, the role of elastic coefficient is to retard the
development of flow in the microtube.
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Nomenclature

ap: Constant acceleration
⇀

A1: Rivlin-Ericksen tensor of first order
⇀

A2: Rivlin-Ericksen tensor of second order
⇀

b : Body force field
c: r /R
C1, C2: Arbitrary coefficients
Fν: Tangential momentum accommodation coefficient
H(t): Heaviside unit step function
⇀

I : Identity tensor
I0, I1: Modified Bessel’s function of the first kind of zeroth and first order
J0, J1: Bessel’s function of zeroth and first order
Kn: Knudsen number (Kn ≡ λ/L)
K0, K1: Modified Bessel’s function of the second kind of zeroth and first order
L: Characteristic length of the microtube
m:

√
s/(ν + sθ)

P : Static pressure
P ∗: Nondimensional pressure (P ∗ = P/(8μUp/R))
Q: Inlet volume flow rate
R: Radius of microtube
r, θ, x: Cylindrical coordinates
s: Parameter of the Laplace transform
t: Time
t0, t1, t2: Time period of acceleration, constant velocity, and deceleration, respectively
⇀

T : Stress tensor
ur, uθ, u: Velocity components in the r, θ, and x-directions, respectively
ure: Tangential momentum of reflected molecules
ui: Tangential momentum of incoming molecules
up: Average inlet velocity
u∗: Nondimensional average velocity over cross section
Up: Constant inlet piston velocity
Uw: Tangential momentum of re-emitted molecules
⇀

V : Velocity vector.

Greek Symbols

α: Nondimensional velocity slip coefficient
α1: Elastic coefficient
α2: Transverse viscosity coefficient
βν: Velocity slip parameter
λ: Molecular mean free path
Ψp: Assumed particular solution
ρ: Fluid density
ν: Kinematic viscosity
μ: Dynamic viscosity.
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