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A numerical study of optimal low-thrust limited power trajectories for simple transfer (no
rendezvous) between circular coplanar orbits in an inverse-square force field is performed by
two different classes of algorithms in optimization of trajectories. This study is carried out by
means of a direct method based on gradient techniques and by an indirect method based on the
second variation theory. The direct approach of the trajectory optimization problem combines the
main positive characteristics of two well-known direct methods in optimization of trajectories:
the steepest-descent (first-order gradient) method and a direct second variation (second-order
gradient) method. On the other hand, the indirect approach of the trajectory optimization
problem involves two different algorithms of the well-known neighboring extremals method.
Several radius ratios and transfer durations are considered, and the fuel consumption is taken
as the performance criterion. For small-amplitude transfers, the results are compared to the ones
provided by a linear analytical theory.

1. Introduction

The main purpose of this work is to present a numerical study of optimal low-thrust limited
power trajectories for simple transfers (no rendezvous) between circular coplanar orbits in an
inverse-square force field. This study has been motivated by the renewed interest in the use
of low-thrust propulsion systems in space missions verified in the last two decades due to the
development and the successes of space missions powered by ionic propulsion; for instance,
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Deep Space One and SMART 1 missions. Several researchers have obtained numerical and
sometimes analytical solutions for a number of specific initial orbits and specific thrust
profiles [1–6]. Averaging methods are also used in such researches [7–11].

Two idealized propulsion models have most frequently been used in the analysis of
optimal space trajectories [12]: the limited power variable ejection velocity systems—LP
systems—are characterized by a constraint concerning with the power (there exists an upper
constant limit for the power), and the constant ejection velocity-limited thrust systems—
CEV systems—are characterized by a constraint concerning with the magnitude of the thrust
acceleration which is bounded. In both cases, it is usually assumed that the thrust direction
is unconstrained. The utility of these idealized models is that the results obtained from them
provide good insight into more realistic problems.

In the study presented in this paper only LP systems are considered. The fuel con-
sumption is taken as the performance criterion and it is calculated for various radius ratios
ρ = rf/r0, where r0 is the radius of the initial circular orbit O0, and rf is the radius of the
final circular orbit Of and for various time of flight tf − t0. The optimization problem associ-
ated to the space transfer problem is formulated as a Mayer problem of optimal control with
Cartesian elements—components of position and velocity vectors—as state variables. Trans-
fers with small, moderate, and large-amplitudes are studied, and the numerical results are
compared to the results provided by a linear theory given in terms of orbital elements [12–
15].

Two different classes of algorithms are applied in determining the optimal trajectories.
They are computed through a direct approach of the trajectory optimization problem based
on gradient techniques, and through an indirect approach based on the solution of the two-
point boundary value problem obtained from the set of necessary conditions for optimality.

The direct approach involves a gradient-based algorithm which combines the main
positive characteristics of the steepest-descent (first-order gradient) method and of a direct
method based upon the second variation theory (second-order gradient method). This
algorithm has two distinct phases: in the first one, it uses a simplified version of the steepest-
descent method developed for a Mayer problem of optimal control with free final state
and fixed terminal times, in order to get great improvements of the performance index in
the first iterates with satisfactory accuracy. In the second phase, the algorithm switches to
a direct method based upon the second variation theory developed for a Bolza problem
with fixed terminal times and constrained initial and final states, in order to improve the
convergence as the optimal solution is approached. This kind of algorithm for determining
optimal trajectories is well known in the literature [16], and the version used in this paper is
quite simple, since it uses a simplified version of the steepest-descent method, as mentioned
before, with terminal constraints added to the performance index by using a penalty function
method (see Section 2.2). This procedure simplifies the algorithm, providing a solution with
satisfactory accuracy, and can avoid some of typical divergence troubles of the classical
steepest-descent method as discussed in McDermott and Fowler [17].

The indirect approach involves the solution of the two-point boundary value problem
through two different algorithms of the neighboring extremals method. The formulation of
the neighboring extremals method, as presented herein, is associated with a Bolza optimal
control problem with fixed initial and final times, fixed initial state and constrained final
state [18, 19]. Basically, the method consists in iteratively determining the initial values of the
adjoint variables and the Lagrange multipliers associated to the final constraints. It involves
the linearization, about an extremal solution, of the nonlinear two-point boundary value
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problem defined by the application of Pontryagin Maximum Principle [20] to the optimi-
zation problem. The linearized problem has been solved through the state transition matrix,
and through the generalized Riccati transformation [16, 27]. The algorithms based on the
state transition matrix and the Riccati transformation are well known in the literature, and
the version used in this paper has a slight modification as described in da Silva Fernandes
and Golfetto [15].

A brief description of the versions of the algorithms used in this paper can be found in
da Silva Fernandes [21]. Finally, note that the results presented herein complete and extend
the results previously obtained [15, 21, 22].

2. Optimal Low-Thrust Limited Power Trajectories

In this section, the optimization problem concerning with optimal low-thrust limited power
trajectories is formulated. Application of each one of the proposed algorithms is also present-
ed. For completeness, a very brief description of the linear theory is included.

2.1. Formulation of the Optimization Problem

Low-thrust limited power propulsion systems are characterized by low-thrust acceleration
level and a high specific impulse [12]. The ratio between the maximum thrust acceleration
and the gravity acceleration on the ground, γmax/g0, is between 10−4 and 10−2. For such
system, the fuel consumption is described by the variable J defined as

J =
1
2

∫ t
t0

γ2dt, (2.1)

where γ is the magnitude of the thrust acceleration vector γ , used as control variable. The
consumption variable J is a monotonic decreasing function of the instantaneous mass m of
the space vehicle:

J = Pmax

(
1
m

− 1
m0

)
, (2.2)

where Pmax is the maximum power, and m0 is the initial mass. The minimization of the final
value Jf is equivalent to the maximization ofmf or the minimization of the fuel consumption.

The optimization problem concerning with simple transfers (no rendezvous) between
coplanar orbits is formulated as: at time t, the state of a space vehicle M is defined by the
radial distance r from the center of attraction, the radial and circumferential components of
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the velocity, u and v, and the fuel consumption J . In the two-dimensional formulation, the
state equations are given by [23]:

du

dt
=
v2

r
− μ

r2
+ R,

dv

dt
= −uv

r
+ S,

dr

dt
= u,

dJ

dt
=

1
2

(
R2 + S2

)
,

(2.3)

where μ is the gravitational parameter,R and S are the radial and circumferential components
of the thrust acceleration vector, respectively. The optimization problem is stated as: it is
proposed to transfer a space vehicleM from the initial state at the time t0 = 0:

u(0) = 0 v(0) = 1 r(0) = 1 J(0) = 0, (2.4)

to the final state at the prescribed final time tf :

u
(
tf
)
= 0 v

(
tf
)
=

√
μ

rf
r
(
tf
)
= rf , (2.5)

such that Jf is a minimum, that is, the performance index is defined by:

IP = J
(
tf
)
. (2.6)

Equations (2.4) and (2.5) are given in canonical units, and they define the initial and final
circular orbits. u(tf), v(tf), and r(tf) denote the state variables at the prescribed final time

tf , and 0,
√
μ/rf , and rf are the prescribed values defining the final circular orbit. Similar

definition applies at the initial time t0 = 0 (see (2.4)). For LP system, it is assumed that there
are no constraints on the thrust acceleration vector [12].

In the formulation of the optimization problem described above, the variables are
written in canonical units, such that the gravitational parameter μ is equal to 1.

2.2. Application of the Gradient-Based Algorithm

As described in da Silva Fernandes [21], the first phase of the gradient-based algorithm
involves a simplified version of the steepest-descent method, which has been developed for
a Mayer problem of optimal control with free final state and fixed terminal times. So, the
optimal control problem defined by (2.3)–(2.6)must be transformed into a new optimization
problem with final state completely free. In order to do this, the penalty function method
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[24, 25] is applied. The new optimal control problem is then defined by (2.3) and (2.4), with
the new performance index obtained from (2.5) and (2.6):

IP = J
(
tf
)
+ k1
(
u
(
tf
))2 + k2

(
v
(
tf
) − 1√

rf

)2

+ k3
(
r
(
tf
) − rf)2, (2.7)

where k1, k2, k3 � 1. The penalty function method involves the progressive increase of the
penalty constants; but, for simplicity, they are taken fixed in the gradient-based algorithm,
since the steepest-descent is used only to provide a convex nominal solution as starting
solution for the second order gradient method.

According to the algorithm of the simplified version of the steepest-descent method,
the adjoint variables λu, λv, λr , and λJ are introduced, and the HamiltonianH is formed using
(2.3) [21, 26]:

H = λu

(
v2

r
− μ

r2
+ R

)
+ λv
(
−uv
r

+ S
)
+ λru +

1
2
λJ
(
R2 + S2

)
. (2.8)

From the HamiltonianH, one finds the adjoint equations:

dλu
dt

=
v

r
λv − λr,

dλv
dt

= −2v
r
λu +

u

r
λv,

dλr
dt

=

(
v2

r2
− 2

μ

r3

)
λu − uv

r2
λv,

dλJ
dt

= 0,

(2.9)

and, from the performance index defined by (2.7), we get the terminal conditions for the
adjoint equations:

λu
(
tf
)
= −2k1u

(
tf
)
,

λv
(
tf
)
= −2k2

(
v
(
tf
) − 1√

rf

)
,

λr
(
tf
)
= −2k3

(
r
(
tf
) − rf),

λJ
(
tf
)
= −1.

(2.10)
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The algorithm also requires the partial derivatives of the HamiltonianH with respect
to the control variables. These partial derivatives are given by:

∂H

∂R
= λu + RλJ,

∂H

∂S
= λv + SλJ. (2.11)

The second phase of the gradient-based algorithm involves the second order gradient
method, developed for a Bolza problem with fixed terminal times and constrained initial
and final states, which requires the computation of the first order derivatives of the vector
function ψ containing the terminal constraints and the scalar function Φ, corresponding to
the augmented performance index, and the computation of the second order derivatives of
the HamiltonianH with respect to all arguments. The partial derivatives of the Hamiltonian
function are given in a matrix form by:

Hαα =

[
λJ 0

0 λJ

]
,

Hλα =

⎡
⎢⎢⎢⎢⎢⎣

1 0

0 1

0 0

R S

⎤
⎥⎥⎥⎥⎥⎦
,

Hxα = 0(4 × 2 null matrix),

Hλx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
v

r
−v

2

r2
+ 2

μ

r3
0

−v
r

−u
r

uv

r2
0

1 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Hxx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −λv
r

v

r2
λv 0

−λv
r

2
λu
r

−2 v
r2
λu +

u

r2
λv 0

λv
v

r2
−2 v
r2
λu +

u

r2
λv

(
2
v2

r3
− 6

μ

r4

)
λu − 2

uv

r3
λv 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.12)

α denotes the control vector αT = [R S], and it has been introduced to avoid confusion with
the state variable u, x is the state vector xT = [u v r J], and λ is the adjoint vector λT =
[λu λv λr λJ].
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From (2.5) and (2.6), one defines the functions ψ and Φ:

ψ =

⎡
⎢⎢⎢⎣

u
(
tf
)

v
(
tf
) − 1√

rf
r
(
tf
) − rf

⎤
⎥⎥⎥⎦, (2.13)

Φ = J
(
tf
)
+ Λ1u

(
tf
)
+ Λ2

(
v
(
tf
) − 1√

rf

)
+ Λ3

(
r
(
tf
) − rf), (2.14)

where Λi, i = 1, 2, 3 are Lagrangian multipliers associated to the final constraints defined by
(2.13). The partial derivatives of ψ and Φ are then given by:

ψx =

⎡
⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎥⎥⎦,

Φxx = 0. (4 × 4 null matrix).

(2.15)

The results of the gradient-based algorithm to the optimization problem described
above are presented in Section 3.

2.3. Application of the Neighboring Extremals Algorithms

Let us to consider the Hamiltonian function defined by (2.8). Following the Pontryagin Max-
imum Principle [20], the control variables R and S must select from the admissible controls
such that the Hamiltonian function reaches its maximum along the optimal trajectory. Thus,

R∗ = −λu
λJ
, S∗ = −λv

λJ
. (2.16)

The adjoint variables λu, λv, λr , and λJ must satisfy the adjoint differential equations
and the transversality conditions. Therefore, from (2.3)–(2.5) and (2.16) one finds the
following two-point boundary value problem for the transfer problem defined by (2.3)–(2.6):

du

dt
=
v2

r
− μ

r2
− λu
λJ
,

dv

dt
= −uv

r
− λv
λJ
,
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dr

dt
= u,

dJ

dt
=

1
2λ2J

(
λ2u + λ

2
v

)
,

dλu
dt

=
v

r
λv − λr,

dλv
dt

= −2v
r
λu +

u

r
λv,

dλr
dt

=

(
v2

r2
− 2

μ

r3

)
λu − uv

r2
λv,

dλJ
dt

= 0,

(2.17)

with the boundary conditions:

u(0) = 0,

v(0) = 1,

r(0) = 1,

J(0) = 0,

u
(
tf
)
= 0,

v
(
tf
)
=

√
μ

rf
,

r
(
tf
)
= rf ,

λJ
(
tf
)
= −1.

(2.18)

The neighboring extremals algorithms are based on the solution of a linearized two-
point boundary value problem that involves the derivatives of the right-hand side of (2.3)
with respect to the state and adjoint variables [16, 21, 27]. These equations can be put in the
following form:

dδx

dt
= Aδx + Bδλ,

dδλ

dt
= Cδx −ATδλ, (2.19)
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with δx(t) = xn+1(t) − xn(t) and δλ(t) = λn+1(t) − λn(t), where n denotes the iterate, and A, B,
and C are matrices given by:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
2v
r

−a 0

−v
r

−u
r

uv

r2
0

1 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
λJ

0 0
λu

λ2J

0 − 1
λJ

0
λv

λ2J
0 0 0 0

λu

λ2J

λv

λ2J
0 − c

λ3J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
λv
r

−vλv
r2

0

λv
r

−2λu
r

b 0

−vλv
r2

b d 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2.20)

where

a =
v2

r2
− 2

μ

r3
,

b =
2v
r2
λu − u

r2
λv,

c = λ2u + λ
2
v,

d =

(
−2v

2

r3
+
6μ
r4

)
λu +

2uv
r3

λv.

(2.21)

The results of the neighboring extremals algorithms to the optimization problem de-
scribed above are presented in Section 3.

2.4. Linear Theory

For completeness, a very brief description of a first-order analytical solution for the problem
of optimal simple transfer (no rendezvous) between close quasicircular coplanar orbits in
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an inverse-square force field is presented. This approximate solution, also referred as linear
theory, is expressed in nonsingular orbit elements, and it is valid for orbits with very small
eccentricities. According to Marec [12] or da Silva Fernandes and Golfetto [15], for transfers
between circular orbits, only Δα is imposed, and assuming that the initial and final positions
of the vehicle in orbit are symmetric with respect to x-axis of the inertial reference system,
that is, 	f = −	0 = Δ	/2, the linear solution can be written as:

u = na
(
h sin 	 − k cos 	

)
,

v = na
(
1 + h cos 	 + k sin 	

)
,

r =
a

1 + h cos 	 + k sin 	
,

J(t) =
1
2

√√√a5

μ3

{
4
(
	 − 	0

)
λ2α + 8

(
sin 	 − sin 	0

)
λαλh − 8

(
cos 	 − cos 	0

)
λαλk

+
[
5
2

(
	 − 	0

)
+
3
4

(
sin 2	 − sin 2	0

)]
λ2h −

3
2

(
cos 2	 − cos 2	0

)
λhλk

+
[
5
2

(
	 − 	0

)
− 3
4

(
sin 2	 − sin 2	0

)]
λ2k

}
,

(2.22)

with

α(t) = α0 + 4

√√√a5

μ3

{(
	 − 	0

)
λα +

(
sin 	 − sin 	0

)
λh −

(
cos 	 − cos 	0

)
λk
}
, (2.23)

h(t) = h0 +

√√√a5

μ3

{
4
(
sin 	 − sin 	0

)
λα +

[
5
2

(
	 − 	0

)
+
3
4

(
sin 2	 − sin 2	0

)]
λh

−3
4

(
cos 2	 − cos 2	0

)
λk

}
,

(2.24)

k(t) = k0 +

√√√a5

μ3

{
−4
(
cos 	 − cos 	0

)
λα − 3

4

(
cos 2	 − cos 2	0

)
λh

+
[
5
2

(
	 − 	0

)
− 3
4

(
sin 2	 − sin 2	0

)]
λk

}
,

(2.25)

λα =
1
2

√
μ3

a5

⎧⎪⎨
⎪⎩

Δα
(
5Δ	 + 3 sinΔ	

)

10Δ	
2
+ 6Δ	 sinΔ	 − 64 sin2

(
Δ	/2

)
⎫⎪⎬
⎪⎭, (2.26)
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λh = −
√
μ3

a5

⎧⎪⎨
⎪⎩

8Δα sinΔ	/2

10Δ	
2
+ 6Δ	 sinΔ	 − 64 sin2

(
Δ	/2

)
⎫⎪⎬
⎪⎭, (2.27)

λk = 0, (2.28)

where α = a/a, h = e cosω, k = e sinω, where a is the semimajor axis, e is the eccentricity, ω

is the argument of the pericenter, 	 = 	0 + n(t − t0), and n =
√
μ/a3 is the mean motion. The

overbar denotes the reference orbit O about which the linearization is done.
The optimal thrust acceleration Γ∗ during the maneuver is expressed by:

Γ∗ =
1
na

{(
λh sin 	 − λk cos 	

)
er + 2

(
λα + λh cos 	 + λk sin 	

)
es
}
, (2.29)

where er and es are unit vectors extending along radial and circumferential directions in a
moving reference frame, respectively.

The linear theory is applicable only for orbits which are not separated by large radial
distance. If the reference orbit is chosen in the conventional way, that is, with the semimajor
axis as the radius of the initial orbit, the radial excursion to the final orbit will be maximized
[14]. A better reference orbit is defined with a semimajor axis given by an intermediate value
between the values of semimajor axes of the terminal orbits. In this study, a is taken as a =
(a0 + af)/2 in order to improve the accuracy in the calculations.

In the next section, the results of this linear theory are compared to the ones provided
by the proposed algorithms.

3. Results

The results of a numerical analysis for optimal low-thrust limited power simple transfers
(no rendezvous) between coplanar circular orbits in an inverse-square force field, obtained
through the analytical and numerical methods described in the preceding sections, are
presented for various radius ratios ρ = rf/r0 and for various time of flight tf − t0 presented in
Tables 1–8. All results are presented in canonical units as described in Section 2. A preliminary
analysis of some interplanetary missions considering transfers from Earth to Venus, Mars,
asteroid belt, Jupiter, and Saturn, which correspond to ρ = 0.727, 1.523, 2.500, 5.203, and
9.519, respectively, is presented. In this preliminary analysis of interplanetary missions, the
following assumptions are considered:

(1) the orbits of the planets are circular;

(2) the orbits of the planets lie in the plane of the ecliptic;

(3) the flight of the space vehicle takes place in the plane of the ecliptic;

(4) only the heliocentric phase is considered, that is, the attraction of planets on the
spacecraft is neglected.
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Table 1: Consumption variable J(ρ > 1) for transfers with small time of flight.

ρ tf − t0 Janal Jgrad JNeigh1 JNeigh2 drel 1 drel 2 drel 3

1.0250

2.0
3.0
4.0
5.0

3.5856 × 10−4

8.4459 × 10−5

3.1226 × 10−5

1.7138 × 10−5

3.5855 × 10−4

8.4462 × 10−5

3.1233 × 10−5

1.7147 × 10−5

3.5854 × 10−4

8.4456 × 10−5

3.1230 × 10−5

1.7143 × 10−5

3.5854 × 10−4

8.4456 × 10−5

3.1230 × 10−5

1.7143 × 10−5

0.00
0.00
0.01
0.03

0.00
0.01
0.01
0.02

0.00
0.00
0.00
0.00

1.0500

2.0
3.0
4.0
5.0

1.4463 × 10−3

3.4169 × 10−4

1.2533 × 10−4

6.7541 × 10−5

1.4463 × 10−3

3.4166 × 10−4

1.2538 × 10−4

6.7611 × 10−5

1.4459 × 10−3

3.4164 × 10−4

1.2537 × 10−4

6.7598 × 10−5

1.4459 × 10−3

3.4164 × 10−4

1.2537 × 10−4

6.7598 × 10−5

0.03
0.01
0.03
0.08

0.03
0.01
0.00
0.02

0.00
0.00
0.00
0.00

1.1000

2.0
3.0
4.0
5.0

5.8778 × 10−3

1.3977 × 10−3

5.0619 × 10−4

2.6374 × 10−4

5.8741 × 10−3

1.3970 × 10−3

5.0666 × 10−4

2.6453 × 10−4

5.8716 × 10−3

1.3969 × 10−3

5.0664 × 10−4

2.6451 × 10−4

5.8716 × 10−3

1.3969 × 10−3

5.0664 × 10−4

2.6451 × 10−4

0.11
0.06
0.09
0.29

0.04
0.00
0.00
0.01

0.00
0.00
0.00
0.00

1.2000

2.0
3.0
4.0
5.0

2.4187 × 10−2

5.8370 × 10−3

2.0813 × 10−3

1.0260 × 10−3

2.4097 × 10−2

5.8200 × 10−3

2.0845 × 10−3

1.0346 × 10−3

2.4097 × 10−2

5.8199 × 10−3

2.0844 × 10−3

1.0345 × 10−3

2.4097 × 10−2

5.8199 × 10−3

2.0844 × 10−3

1.0345 × 10−3

0.37
0.29
0.15
0.82

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

Table 2: Consumption variable J(ρ < 1) for transfers with small time of flight.

ρ tf − t0 Jlinear Jgrad JNeigh1 JNeigh2 drel 1 drel 2 drel 3

0.8000

2.0
3.0
4.0
5.0

2.0951 × 10−2

4.9040 × 10−3

2.0703 × 10−3

1.3838 × 10−3

2.0842 × 10−2

4.9173 × 10−3

2.1047 × 10−3

1.4198 × 10−3

2.0842 × 10−2

4.9172 × 10−3

2.1046 × 10−3

1.4197 × 10−3

2.0842 × 10−2

4.9172 × 10−3

2.1046 × 10−3

1.4197 × 10−3

0.52
0.27
1.63
2.53

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.9000

2.0
3.0
4.0
5.0

5.4740 × 10−3

1.2771 × 10−3

5.0063 × 10−4

3.0496 × 10−4

5.4672 × 10−3

1.2772 × 10−3

5.0198 × 10−4

3.0653 × 10−4

5.4671 × 10−3

1.2771 × 10−3

5.0198 × 10−4

3.0652 × 10−4

5.4671 × 10−3

1.2771 × 10−3

5.0198 × 10−4

3.0652 × 10−4

0.13
0.00
0.27
0.51

0.00
0.01
0.00
0.00

0.00
0.00
0.00
0.00

0.9500

2.0
3.0
4.0
5.0

1.3958 × 10−3

3.2649 × 10−4

1.2451 × 10−4

7.2585 × 10−5

1.3955 × 10−3

3.2649 × 10−4

1.2459 × 10−4

7.2671 × 10−5

1.3955 × 10−3

3.2647 × 10−4

1.2458 × 10−4

7.2667 × 10−5

1.3955 × 10−3

3.2647 × 10−4

1.2458 × 10−4

7.2667 × 10−5

0.02
0.01
0.06
0.11

0.00
0.01
0.01
0.01

0.00
0.00
0.00
0.00

0.9750

2.0
3.0
4.0
5.0

3.5225 × 10−4

8.2555 × 10−5

3.1120 × 10−5

1.7765 × 10−5

3.5231 × 10−4

8.2560 × 10−5

3.1126 × 10−5

1.7772 × 10−5

3.5223 × 10−4

8.2554 × 10−5

3.1124 × 10−5

1.7771 × 10−5

3.5223 × 10−4

8.2553 × 10−5

3.1124 × 10−5

1.7771 × 10−5

0.01
0.00
0.01
0.03

0.02
0.01
0.01
0.00

0.00
0.00
0.00
0.00

Tables 1–4 show the values of the consumption variable J for small-amplitude trans-
fers computed through the different approaches and the absolute relative difference in per-
cent between the numerical and analytical results, according to the following definition:

drel 1 =

∣∣∣∣∣
(
Jneigh1 − Jlinear

)
Jneigh1

∣∣∣∣∣ × 100%,

drel 2 =

∣∣∣∣∣
(
Jneigh1 − Jgrad

)
Jneigh1

∣∣∣∣∣ × 100%,

drel 3 =

∣∣∣∣∣
(
Jneigh1 − Jneigh2

)
Jneigh1

∣∣∣∣∣ × 100%.

(3.1)
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Table 3: Consumption variable J(ρ > 1) for transfers with moderate time of flight.

ρ tf − t0 Jlinear Jgrad JNeigh1 JNeigh2 drel 1 drel 2 drel 3

1.0250

20.0
30.0
40.0
50.0

3.7722 × 10−6

2.5221 × 10−6

1.8855 × 10−6

1.5066 × 10−6

3.7733 × 10−6

2.5226 × 10−6

1.8859 × 10−6

1.5072 × 10−6

3.7730 × 10−6

2.5230 × 10−6

1.8860 × 10−6

1.5070 × 10−6

3.7714 × 10−6

2.5209 × 10−6

1.8841 × 10−6

1.5049 × 10−6

0.02
0.04
0.03
0.03

0.01
0.02
0.00
0.01

0.04
0.08
0.10
0.14

1.0500

20.0
30.0
40.0
50.0

1.4520 × 10−5

9.7411 × 10−6

7.2599 × 10−6

5.8158 × 10−6

1.4536 × 10−5

9.7482 × 10−6

7.2659 × 10−6

5.8199 × 10−6

1.4533 × 10−5

9.7480 × 10−6

7.2660 × 10−6

5.8200 × 10−6

1.4531 × 10−5

9.7460 × 10−6

7.2636 × 10−6

5.8182 × 10−6

0.09
0.07
0.08
0.07

0.02
0.00
0.00
0.00

0.01
0.02
0.03
0.03

1.1000

20.0
30.0
40.0
50.0

5.4007 × 10−5

3.6278 × 10−5

2.7003 × 10−5

2.1653 × 10−5

5.4168 × 10−5

3.6390 × 10−5

2.7083 × 10−5

2.1719 × 10−5

5.4167 × 10−5

3.6389 × 10−5

2.7078 × 10−5

2.1718 × 10−5

5.4165 × 10−5

3.6387 × 10−5

2.7077 × 10−5

2.1716 × 10−5

0.30
0.30
0.27
0.30

0.00
0.00
0.02
0.00

0.00
0.01
0.00
0.01

1.2000

20.0
30.0
40.0
50.0

1.8980 × 10−4

1.2543 × 10−4

9.4416 × 10−5

7.5157 × 10−5

1.9172 × 10−4

1.2695 × 10−4

9.5396 × 10−5

7.5976 × 10−5

1.9154 × 10−4

1.2693 × 10−4

9.5391 × 10−5

7.5928 × 10−5

1.9154 × 10−4

1.2693 × 10−4

9.5390 × 10−5

7.5927 × 10−5

0.91
1.18
1.02
1.02

0.09
0.02
0.01
0.06

0.00
0.00
0.00
0.00

Table 4: Consumption variable J(ρ < 1) for transfers with moderate time of flight.

ρ tf − t0 Jlinear Jgrad JNeigh1 JNeigh2 drel 1 drel 2 drel 3

0.8000

20.0
30.0
40.0
50.0

3.4529 × 10−4

2.2973 × 10−4

1.7196 × 10−4

1.3736 × 10−4

3.5015 × 10−4

2.3313 × 10−4

1.7467 × 10−4

1.3978 × 10−4

3.5011 × 10−4

2.3316 × 10−4

1.7465 × 10−4

1.3959 × 10−4

3.5010 × 10−4

2.3311 × 10−4

1.7465 × 10−4

1.3959 × 10−4

1.37
1.47
1.54
1.59

0.01
0.01
0.01
0.13

0.00
0.02
0.00
0.00

0.9000

20.0
30.0
40.0
50.0

7.3862 × 10−5

4.8663 × 10−5

3.6467 × 10−5

2.9218 × 10−5

7.4146 × 10−5

4.8851 × 10−5

3.6588 × 10−5

2.9317 × 10−5

7.4146 × 10−5

4.8852 × 10−5

3.6589 × 10−5

2.9316 × 10−5

7.4144 × 10−5

4.8850 × 10−5

3.6587 × 10−5

2.9314 × 10−5

0.38
0.39
0.33
0.33

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.01

0.9500

20.0
30.0
40.0
50.0

1.7023 × 10−5

1.1240 × 10−5

8.4569 × 10−6

6.7519 × 10−6

1.7042 × 10−5

1.1251 × 10−5

8.4642 × 10−6

6.7581 × 10−6

1.7040 × 10−5

1.1249 × 10−5

8.4640 × 10−6

6.7580 × 10−6

1.7038 × 10−5

1.1247 × 10−5

8.4620 × 10−6

6.7561 × 10−6

0.10
0.08
0.08
0.09

0.01
0.02
0.00
0.00

0.01
0.02
0.02
0.03

0.9750

20.0
30.0
40.0
50.0

4.0858 × 10−6

2.7075 × 10−6

2.0361 × 10−6

1.6230 × 10−6

4.0869 × 10−6

2.7081 × 10−6

2.0366 × 10−6

1.6234 × 10−6

4.0870 × 10−6

2.7080 × 10−6

2.0360 × 10−6

1.6230 × 10−6

4.0847 × 10−6

2.7059 × 10−6

2.0349 × 10−6

1.6216 × 10−6

0.03
0.02
0.00
0.00

0.00
0.00
0.03
0.02

0.06
0.08
0.05
0.09

Table 5: Consumption variable J for Earth-Venus transfers.

ρ tf − t0 Jlinear Jgrad JNeigh1 JNeigh2 drel 1 drel 2 drel 3

0.7270

2.0
3.0
4.0
5.0

3.7654 × 10−2

8.9269 × 10−3

4.0482 × 10−3

2.8941 × 10−3

3.7299 × 10−2

9.0261 × 10−3

4.2133 × 10−3

3.0573 × 10−3

3.7298 × 10−2

9.0259 × 10−3

4.2131 × 10−3

3.0572 × 10−3

3.7298 × 10−2

9.0259 × 10−3

4.2131 × 10−3

3.0572 × 10−3

0.95
1.10
3.91
5.33

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

20.0
30.0
40.0
50.0

7.2355 × 10−4

4.8236 × 10−4

3.6177 × 10−4

2.8942 × 10−4

7.4857 × 10−4

4.9863 × 10−4

3.7385 × 10−4

2.9903 × 10−4

7.4856 × 10−4

4.9862 × 10−4

3.7384 × 10−4

2.9901 × 10−4

7.4856 × 10−4

4.9862 × 10−4

3.7383 × 10−4

2.9897 × 10−4

3.34
3.26
3.22
3.20

0.00
0.00
0.00
0.01

0.00
0.00
0.00
0.01
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Table 6: Consumption variable J for Earth-Mars transfers.

ρ tf − t0 Jlinear Jgrad JNeigh1 JNeigh2 drel 1 drel 2 drel 3

1.5236

2.0
3.0
4.0
5.0

1.7743 × 10−1

4.4947 × 10−2

1.6051 × 10−2

7.2498 × 10−3

1.7434 × 10−1

4.4067 × 10−2

1.5889 × 10−2

7.3352 × 10−3

1.7434 × 10−1

4.4066 × 10−2

1.5889 × 10−2

7.3351 × 10−3

1.7434 × 10−1

4.4066 × 10−2

1.5889 × 10−2

7.3351 × 10−3

1.77
1.99
1.02
1.16

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

20.0
30.0
40.0
50.0

8.6591 × 10−4

5.7537 × 10−4

4.2991 × 10−4

3.4273 × 10−4

9.3232 × 10−4

6.1074 × 10−4

4.5311 × 10−4

3.6096 × 10−4

9.3151 × 10−4

6.1071 × 10−4

4.5296 × 10−4

3.6093 × 10−4

9.3158 × 10−4

6.1073 × 10−4

4.5299 × 10−4

3.6095 × 10−4

7.02
5.79
5.09
5.04

0.09
0.00
0.03
0.01

0.01
0.00
0.01
0.01

Table 7: Consumption variable J for interplanetary transfers with large-amplitude.

ρ tf − t0 JNeigh1 JNeigh2

2.500

20.0
30.0
40.0
50.0
60.0

3.7736 × 10−3

2.3900 × 10−3

1.7541 × 10−3

1.3859 × 10−3

1.1454 × 10−3

3.7733 × 10−3

2.3900 × 10−3

1.7541 × 10−3

1.3859 × 10−3

1.1453 × 10−3

5.203

20.0
30.0
40.0
50.0
60.0

1.3746 × 10−2

7.5307 × 10−3

5.0533 × 10−3

3.7103 × 10−3

2.9897 × 10−3

1.3746 × 10−2

7.5309 × 10−3

5.0533 × 10−3

3.7100 × 10−3

2.9896 × 10−3

9.519

60.0
70.0
80.0
90.0
100.0

5.9485 × 10−3

4.6970 × 10−3

3.9003 × 10−3

3.3295 × 10−3

2.8858 × 10−3

5.9392 × 10−3

4.6980 × 10−3

3.9009 × 10−3

3.3285 × 10−3

2.8857 × 10−3

The results provided by the neighboring extremals algorithm based on the state transition
matrix (denoted by number 1) have been chosen as the exact solution for each maneuver, in
view of the accuracy obtained in fulfillment of the terminal constraints.

Similar results for interplanetary transfers are presented in Tables 5, 6 and 7. Results
for large-amplitude transfers with long time of flight are presented in Table 8. In both cases,
the transfers are only computed through the neighboring extremals algorithms.

From the results presented in Tables 1–8, major comments are as follows:

(1) The linear theory provides a very good approximation for the fuel consumption
considering small-amplitude transfers with |ρ − 1| ≤ 0.100, that is, for transfers
between close circular coplanar orbits. For the most of the maneuvers, drel 1 < 0.5%;

(2) For transfers with small time of flight (tf − t0 = 2.0, 3.0, 4.0, 5.0 time units), Tables
1, 2, 5 and 6 show that the maximum absolute relative difference drel 1 occur for the
most of the transfers with tf − t0 = 5. This maximum value of drel 1 is about 2% for
ρ > 1 and 5.5% for ρ < 1;

(3) For transfers with moderate time of flight (tf − t0 = 20.0, 30.0, 40.0, 50.0 time units),
Tables 3, 4, 5, and 6 show that the maximum absolute relative difference drel 1 is
about 7% for ρ > 1, and 3.5% for ρ < 1;

(4) In all cases described above, the maximum absolute relative differences drel 1 occur
for transfers with large radial excursion;
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Table 8: Consumption variable J for large transfers.

ρ tf − t0 JNeigh1 JNeigh2

2.500

100.0
125.0
150.0
175.0
200.0

6.7827 × 10−4

5.4241 × 10−4

4.5154 × 10−4

3.8651 × 10−4

3.3812 × 10−4

6.7818 × 10−4

5.4241 × 10−4

4.5154 × 10−4

3.8688 × 10−4

3.3812 × 10−4

3.750

100.0
125.0
150.0
175.0
200.0

1.1975 × 10−3

9.5018 × 10−4

7.8787 × 10−4

6.7324 × 10−4

5.8793 × 10−4

1.1966 × 10−3

9.4987 × 10−4

7.8784 × 10−4

6.7325 × 10−4

5.8794 × 10−4

5.000

100.0
125.0
150.0
175.0
200.0

1.6105 × 10−3

1.2678 × 10−3

1.0441 × 10−3

8.8948 × 10−4

7.7584 × 10−4

1.6106 × 10−3

1.2678 × 10−3

1.0441 × 10−3

8.8947 × 10−4

7.7584 × 10−4

(5) For transfers between close orbits with small time of flight, the fuel consumption
can be greatly reduced if the duration of the transfer increases: for instance, the fuel
consumption for transfers with time of flight tf − t0 = 2.0 (time units) is approx-
imately ten times the fuel consumption for transfers with time of flight tf − t0 =
4.0 (time units), and, it is approximately hundred times the fuel consumption for
transfers with time of flight tf − t0 = 20.0 (time units), considering any value of ρ;

(6) For transfers with moderate time of flight, the fuel consumption decreases almost
linearly with the time of flight;

(7) For transfers with moderate amplitude (ρ = 0.727 and ρ = 1.523), Tables 5 and 6
show that 7.0% > drel 1 > 1.0%;

(8) Tables 1–6 show that the results obtained through the numerical algorithms—
gradient and neighboring extremals—are very quite similar, regardless the
amplitude of maneuver and the time of flight;

(9) Table 7 shows that an Earth-asteroid belt mission with tf − t0 = 20.0 time units
(approximately, 3.2 years) and an Earth-Jupiter mission with tf − t0 = 50.0 time
units (approximately, 8.0 years) spend almost the same quantity of fuel. This result
is closely related to the concept of transversals (payoff curves) in a field of extremals
introduced by Edelbaum [7] in the study of optimal limited-power transfers in
strong gravity field. Low-thrust limited power transfers with different amplitude
ρ and different time of flight tf − t0 can be performed with the same amount of
fuel as shown in Figures 7, 8, and 9. From Figure 7, one finds that an Earth-Venus
mission with tf − t0 = 30.0 time units (approximately, 4.8 years) and an Earth-Venus
mission with tf − t0 = 36.5 time units (approximately, 5.8 years) also spend almost
the same quantity of fuel, J = 4.98 × 10−4 (canonical units).

In order to follow the evolution of the optimal thrust acceleration vector during the
maneuver, it is convenient to plot the locus of its tip in the moving frame of reference. Figures
1, 2, 3, and 4 illustrate these plots for ρ = 0.727, 0.950, 0.975, 1.025, 1.050, and 1.523, with
tf − t0 = 2.0, 3.0, 30.0 and 50.0. Note that the agreement between the numerical and analytical
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Figure 1: Thrust acceleration for tf − t0 = 2.0.
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Figure 2: Thrust acceleration for tf − t0 = 3.0.
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Figure 3: Thrust acceleration for tf − t0 = 30.0.
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Figure 4: Thrust acceleration for tf − t0 = 50.0.
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Figure 6: Thrust acceleration for large-amplitude transfers with tf − t0 = 200.0.

results is better for small-amplitude transfers. For moderate- and large-amplitude transfers,
this difference increases with the duration of the maneuvers.

Similarly, Figures 5 and 6 show the evolution of the optimal thrust acceleration vector
for large-amplitude transfers with long time of flight. Note that the magnitude of the thrust
acceleration becomes smaller as the time of flight increases.

Figures 3, 4, and 5 show that for transfers with long time of flight the circumferential
thrust acceleration is the main component of the optimal thrust acceleration. As the time of
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Figure 9: Consumption for large transfers.

flight increases the contribution of the radial component of the optimal thrust acceleration
decreases and the optimal thrust acceleration tends to the circumferential acceleration.

Figures 7 and 8 show the consumption variable for interplanetary transfers with
moderate flight of time, and Figure 9 shows the consumption variable for large-amplitude
transfers with long time of flight. Note that transfers with different amplitude ρ and different
time of flight tf − t0 can be performed with the same amount of fuel (see Comment 9).

4. Conclusion

In this paper, a gradient-based algorithm and two different algorithms of the neighboring
extremals method are applied to the analysis of optimal low-thrust limited power transfers
between circular coplanar orbits in an inverse-square force field. The numerical results given
by these algorithms have been compared to the analytical results obtained by a linear theory.
The good agreement between these results shows that the linear theory provides a good
approximation for the solution of the transfer problem concerned with small-amplitudes,
that is, for transfers between close circular coplanar orbits. The linear theory can be used in
preliminary mission analysis involving such kind of transfers. The results presented in the
paper also show that the fuel consumption can be reduced if the time of flight of the transfer
increases. For transfers with long time of flight, the circumferential thrust acceleration
becomes the main component of the optimal thrust acceleration. A preliminary analysis of
some interplanetary missions is presented using the neighboring extremals algorithms.
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