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For an interceptor that follows a Keplerian trajectory, we have obtained a closed-form
linear expression for the miss distance in terms of the perturbations of the booster cut-off
conditions, where the miss distance reflects the predicted miss at the Point of Closest
Approach (PCA) between the interceptor and the target. We use this analysis result to
develop a new guidance law which, in the absence of gravity, ensures (1) that the
magnitude of the predicted PCA miss decays exponentially, and (2) that the magnitude
of the relative velocity is constant. The same guidance law has been applied to
interceptors flying in a gravity field. In the presence of random navigation errors in the
new guidance law, the numerically simulated results show that increasing the guidance
law gain increases the rms of the predicted PCA miss, which results in a degradation of
the interception performance. A trade-off in gain magnitude is required to prevent this
degradation.
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1 INTRODUCTION

The classical Lambert Problem of astrodynamics is to determine an
orbit that connects two given points in a given transfer time under the
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Keplerian assumptions of the restricted two-body problem [1-9].
Whereas this problem was originally stated for stationary endpoints, it
has received substantial attention in the literature because of its
potential application to the interception of celestial bodies and ballistic
missiles. In such applications, an intercept vehicle is to follow a
Keplerian trajectory between a departure point and an arrival point in
a given transfer time; however the arrival point must coincide with the
position of a given moving target. Hence we will use the name Lambert
Interception for these applications.

In ballistic guidance, one typically determines nominal cut-off
conditions and a nominal trajectory that connect two given points by a
Keplerian orbit. However any perturbation in cut-off conditions (due
for instance to navigation errors) will cause the interceptor to be on a
perturbed trajectory and miss the target in general. In order to
successfully guide the interceptor, it is therefore necessary to evaluate
the miss distance correctly, taking into account variations in time of
flight. Indeed, in missions of interception, what really matters in the
closest approach, that is the minimum value of the distance between
the interceptor and the target. This is in general not achieved at the
time of nominal interception. This distinction between time of nominal
interception and time of closest approach was recognized in [6] where
the notion of aiming vector is introduced to quantify the miss distance
in general interception problems. The results presented here are based
on the same idea, but applied to the classical Lambert problem.

Some standard references [1-9] discuss the restricted two-body
problem and Lambert problem. Various methods for solving Lambert’s
problem have been suggested in [10—18]. Alternative approaches for
solving Lambert’s problem were introduced by Battin ez al. [10—12]
and Nelson and Zarchan [13] and Brand [14]. Gooding [15] provided a
procedure and an universal solution for Lambert’s problem. Prussing
[16] presented a simple geometric interpretation of the angles o and 3
in Lambert’s equation, and their analogues for hyperbolic orbits.
Sun et al. [17] analytically studied the characteristic features of the
solutions of Lambert’s problem under various terminal conditions, in
the light of the extended form of Godal’s time equation. White
[18] introduced modified Lambert targeting, which is applicable to
multi-stage rocket systems that lack a velocity control capability. For
the extension of Lambert’s theorem, Lancaster and Blanchard [19]
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presented a unified form of Lambert’s theorem that is valid for elliptic,
hyperbolic, and parabolic orbits. Lancaster ez al. [20] combined all the
various cases of Lambert’s theorem into a single form for numerical
calculations.

Throughout this paper we work under the assumptions of the
restricted two-body problem, that is, the interceptor and target are
particles of negligible mass above the sensible atmosphere. And it is
assumed that the attracting central body has a spherically symmetric
gravitational potential. We neglect the interaction with other celestial
bodies. The position and velocity of the target will be assumed
completely known. For an interceptor that follows a Keplerian trajec-
tory and nominally intercepts a moving target, we obtain a closed
form linear approximation for the miss distance in terms of the
perturbations of the orbital elements, where the miss distance reflects
the closest approach of the interceptor and target. This is accom-
plished by first determining the position and velocity of the interceptor
and target at a common time, then computing the miss distance under
the assumption of rectilinear uniform motion. The results can be used
to compute the expected value of the miss distance, given the statistical
properties of the cut-off errors.

This paper also presents a new guidance law that is developed using
the Point of Closest Approach (PCA) miss vector. In the absence of
gravity, the guidance law ensures that the magnitude of the PCA miss
decays exponentially, and that the magnitude of the relative velocity is
constant. The same guidance law will be applied to interceptors in a
gravity field under the assumption that the gravitational acceleration
is much smaller than a characteristic acceleration. We also assume that
the interception engagement, in the presence of gravity, has relatively
short duration, and uses relatively low thrust so that the velocities of
the interceptor and target do not change substantially. This justifies
the assumption of quasi-rectilinear motion.

The performance of the guidance law depends primarily on the
measured data, which is the relative position and velocity of the missile
and target. We will investigate the performance degradation, in terms
of the rms of the predicted PCA miss, due to random navigation errors
in implementing the guidance law. In addition we study how the
guidance gain affects the accuracy on the interception engagement
perturbed by random sensor noise.
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The content of the paper is as follows. In Section 2, we show how to
compute the PCA miss of two particles under the assumption of
rectilinear uniform motion. We also state the well-known trajectory
equation for the restricted two-body problem. In Section 3 we
compute the PCA miss vector in the case of a stationary target. In
Section 4, we compute the time at which the closest approach is
achieved. Section 5 presents the predicted PCA miss vector in the
case of a moving target, as a linear function of the cut-off errors. In
Section 6, we develop a new guidance law to ensure that, in the absence
of gravity, the magnitude of the PCA miss decays exponentially and
that the magnitude of the velocity remains constant. Section 7 presents
the application of the guidance law to interceptions in the presence of
gravity. Section 8 studies the effect of the guidance law gain on the
engagement duration, the miss distance, and the interceptor velocity.
In Section 9, we investigate the performance degradation in terms of
the rms of the predicted PCA miss, due to random navigation errors
in implementing the guidance, through numerical simulations. We
conclude in Section 10.

2 PRELIMINARY RESULTS

In this section, two preliminary results are introduced. The first result
quantifies the PCA miss vector of two particles undergoing rectilinear
uniform motion. This results will be used to obtain a linear approxi-
mation of the PCA miss, once the position and velocity of the inter-
ceptor and target are known at a common time.

Consider two particles in rectilinear, not necessarily coplanar
motion, as shown in Fig. 1. Suppose that the velocities of the particles
are constant and denoted by the vectors V, and V,. Let X,(#y) and
X3(2o) be the position of the particles at some time #,. Let

R(2) = X,(2) — Xp(2), (2.1)
and
V=V,—V,, (2.2)

be the position and velocity of particle a relative to particle b, respec-
tively. Let #* be the time of closest approach, that is |R(#*)| < |R(?)],
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3 CASE OF A STATIONARY TARGET

We derive a linear approximation of the PCA miss vector under the
assumption that the target is stationary at the point of nominal
intercept. Under the assumptions of the restricted two-body problem,
let h(r(2), 0(%); 1, 61, v, vg,) be defined as in Eq. (2.10), where r and 0
are the coordinates of an arbitrary point along the perturbed
trajectory, and let (rr., f1.) be the coordinates of some fixed point
in the plane of motion. Let m°(r, 6) denote the distance from a point
on the perturbed trajectory to the point (1., f1), that is

m°(r,0) = \/(rsinﬁ — rpo sin B0 )? + (rcos 6 — rro cos O )2 (3.1

Consider all points (r,8) that satisfy h(r(t), 0(t); r1, 61, vr,, ve,) =0.
Equation (2.10) may be expressed in the form

% +o(6) = 0, (32)

where the definition of () is evident. By implicitly differentiating
Eq. (3.2) with respect to 6 and solving for dr/df, we obtain that

dr ,do

a6~ " a0 (33)
dh
_ 2
=r TR (3.4)

Now suppose that (r*,0*) satisfies h(r*,0";ri,0;,v,,,v5)=0 and
minimizes m°(r, 8). Then clearly 6 minimizes

me (—;(%) 0) = 7°(6). (3.5)

The right-hand side of Eq. (3.5) is a differentiable function defined on
an open set and is therefore minimized only if

dm®
de

(") = 0. (3.6)
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The derivative of /7° with respect to § becomes

dm° 6m ome dr

90 —~t+—- 5 do (3.7)
- ‘98"; 12 aa”: (gg) (3.8)
= g(r,0). (3.9
Hence it follows that if (+*, 6*) minimizes m°(r, #) and satisfies
h(r(1), 0(2); 71,01, 1,5 v,) = 0, (3.10)
then it must also satisfy
g(r,0") =0. (3.11)

Based upon the above characterization of the closest approach, we
can now derive a linear approximation of the PCA miss vector against
a stationary target. Suppose the mission objective is to intercept a
fixed target at some nominal time 72, where the target position vector
is given by Rro, with polar coordinates (s, f1.). Also assume nominal
initial conditions 7,67, v, and vy are known, such that the mission
objectives are nominally achieved.

Differentiating Eqgs. (3.10) and (3.11) with respect to parameters,
we have

Oh Oh oh oh oh oh
dh—adr'r%de'i‘%d a d01+8r| dvr|+5v_o:dv91 (312)
=0, (3.13)
and
_0Og og .,
dg =7 dr+75d0=0. (3.14)

Equation (3.14) implies that

§° = — (g”; gﬁ') 56°, (3.15)
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where the subscript o denotes that the derivatives are to be evaluated
at (rro,071.). Substituting Eq. (3.15) into Eq. (3.12), we have the
relation

oh  Oh 0g\\ .0 [Oh oh
(5(3” or (ae 6r>) 00" = [anLé "o [801]069‘
oh oh
[avrl}oévrl B iia 01]06"01 (3.16>

Now suppose that the initial conditions are perturbed, and consider
the resulting trajectory. Let ry, 0y, v,, and vy, be the actual initial condi-
tions and define the perturbation vector as

A=T[r—13,00 — 65, v, — 2, v — 3" (3.17)

Define the following useful matrices

0h Oh]"
H= _5,55}0, (3.18)
[0h Oh Oh Oh1T
H = |—, = = 19
! _87’1,691’6\’”,8119[:‘0 (3 )
[ g ag)"
G 5?6’"37]0’ (3.20)

where the subscript o denotes that the derivatives are evaluated at the
nominal initial conditions and the nominal target position. Let
R*(r*,0*) denotes the position of the intercept vehicle along the
perturbed trajectory when m°(r, §) is minimized. That is,

m°(r*,6*) < m°(r,0), (3.21)
for all r and 6 such that A(r(?), 0(2); r1, 61, vr,, ve,) =0.
Let
6r° =r* — rro, (3.22)
66° = 6" — O, (3.23)
and

= [6r°,86°]". (3.24)
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The PCA miss vector against a stationary target is then linearly
approximated by

Mo = {;} (3.25)
-([)-LG/z)e o
LG/

= — | T

=~ "% —on (o5 /o HTA (3.27)
960 or\o6/ or

_ [-eH{

= [HTG LA. (3.28)

4 DETERMINATION OF TIME DIFFERENCE

This section presents a linear approximation of the time difference
between the closest approach and the nominal interception, under the
assumption of a stationary target. The difficulty of this derivation is
that the characterization of closest approach (3.28) is based upon the
trajectory equation (2.10) where time has been eliminated. To recover
information about elapsed time, we have to evaluate how some inte-
grals of motion are perturbed. Considering the case of hyperbolic
nominal motion, the perturbed semi-major axis and some variables in
Lambert’s equation are evaluated in terms of the booster cut-off per-
turbation vector. Finally from these results, the elapsed time between
nominal intercept and closest approach has a linearly approximated
expression.

As shown in Fig. 3, radius vectors r; and r are the position vectors
of points P, and P. The endpoints are separated by the transfer angle
w and the chord c¢. Then, from Lambert’s theorem, the transfer time
between specified endpoints is determined by the semi-major axis of
transfer orbit g, the chord length ¢ and the sum of the radii from focus
to points Py and P.
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FIGURE 3 Geometry of Lambert’s theorem.

Consider the off-nominal launch of an intercept vehicle moving
toward a fixed target with polar coordinates given by (rro, f-). Let a°
and a be the semi-major axis for the nominal and perturbed trajec-
tories, respectively. Since the semi-major axis satisfies

= (4.1)

where v? =12 +v3, the difference between the actual and nominal
semi-major axis, éa = a — a°, is linearly approximated by

20 | k
ba = A JV;JO_Z 0 Vr(]) VGOIJA =: ATA, (42)

where the definition of 4 is evident. It should be noticed that the semi-
major axis a is negative in the case of hyperbolic transfer.
Let ér=r —rro and ér; =r; —r{. Then

or=M°= [—GH‘T]A

HTG

1000
bry = A. (4.4)
0100
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The perturbed radii from focus to points P; and P are evaluated as

sr=AA, & =AA, dw=AA, (4.5)
where
B ~GHI"
A= [[1 0][HTGH , (4.6)
A, =[1000]T, (4.7)

T
—GHT 1 0 00
Ao=|[01 ——‘—] - . 4.8
[[ ]HHTG [o 100 48)
The chord length ¢ can be expressed in terms of radii r,7; and the
transfer angle w,

= (r2 +rf —2r1rcosw)l/2 =:f(r,r1,w). (4.9)
We define
_(rtnto (4.10)
2
q= ——”ercos; =:q(r,r,w,s), (4.11)
—cosh-1(1-3%
~nh = cosh (1 a)’ (4.12)
_ ~1(gsinh (22
¢h = 2cosh (qsmh(z)). (4.13)

Then the perturbations in ¢, s, ¢, v, and (;, are linearly approximated
by

" of
sc= | L] 6, + af} &r + [ fJ = CTA, (4.14)
_67‘]_0 L or o o
bs =5 (6r1 + 6r + b6c) = 1 STA, (4.15)
_ [94] 9q 9q 9 T
bq = _arl_oérl + _Br]f + [&Joé + [8 bs=:30TA,  (4.16)

1 T
5’7}1 m’)l— ( ba — ) = q)h A, (417)
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and
1
=—— 12 =z
6¢n cosh(CS/2) [ smh( )5q+ q cosh( )&yh} AW
(4.18)
where the subscript o denotes that the derivatives are evaluated at the

nominal conditions.
The nominal intercept time is given by

—a°)?
1= ( i ) [(sinh4° — sinh ¢°) — (7° — ¢°)]. (4.19)

Then the time at PCA can be expressed as

=17 +6t (4.20)

——
_ \[ (—“"_k_‘i’l)_ [(sinh(7° + &) — sinh(¢® + 80))
= (7 +67) — (¢°+6Q))]- (4.21)

Then the time difference between nominal intercept and closest
approach, é1 = ty — 17, is linearly approximated by

2\/ k [s1nh27 oy — sinh? 54] (4.22)

128 gy [0 (e () g7 — sinn2(8) 27| & (4.23)
2a0 k 2 h 2 h .

RN (4.24)

where the definition of I’ is evident and subscript h pertains to a
hyperbolic trajectory.

We have determined the PCA time for an interceptor on a hyper-
bolic trajectory and a fixed target. We now treat the case of an
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interceptor on an elliptic trajectory in a similar way. Let

s
Ve = arccos(l - 2), (4.25)
_ . (e
(e = 2arcsin (q sm(2 )), (4.26)
1 T
oY = — prpE ( ba — 65) =9 A, (4.27)

— 1 e o ’7_::) . 7T
6Ce —c_—os(gg/2) [2sm(2)6q+ q cos(z)é%J =Z,A. (428)

The nominal intercept time is given by

o\3
0= Cle - )~ (siny —sine). (429)

Then the time at PCA can be expressed as
1r=17 +6t (4.30)

o 3
L) (40 + 89) - (¢ +80)
— (sin(7° + &) —sin(¢° + 6¢))].  (4.31)

The time difference between nominal intercept and closest
approach, 6t = tr — 7, is linearly approximated by

369 0)3 0 o
=7 (@) [. 27 . 2C°
ot = 70 ba+2 e [sm > by — sin 5 6{] (4.32)
317 [@)’T . (7 e
T e —
[ZaoA +2 A [sm (2)¢e sin ( ) } A (4.33)
=TTA, (4.34)

where the definition of T'. is evident and subscript e pertains to an
elliptic trajectory.
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5 CASE OF A MOVING TARGET

To determine the PCA miss of a ballistic interceptor against a moving
target, we first compute the position and velocity vectors of the inter-
ceptor and target at a common time. This common time is chosen as
the time at which the interceptor, flying along the perturbed trajectory,
is closest to the point of nominal intercept. Consider a particle moving
due to the gravitational forces of an attracting body under the assump-
tions of the restricted two-body problem. Suppose that at some time 1
the polar components of the particle position and velocity are given by
Fro, 010, Vrpo and vg,,. Let 6f be a small time increment. Then at time
17+ ot the particle position and velocity are linearly approximated by

PT = Iro + Vypo 01, (5.1)
Or = 6o + Vr"“’ st, (5.2)
TO
2
Voo K
Vrr = Vrro + <r;o - r'2r°> 5[, (53)
Vor = Voro — &I:T—v:)ﬁéz. (5.4)

Since the position of the intercept vehicle at the common time has
been obtained, its velocity is evaluated at that time. Suppose that at
some initial time ¢, the polar coordinates of the particle position and
velocity are given by ry, 6y, v,, and vy,.

Recall that

h(r(2),0(2); 1,01, vr,, v9,) = 0 (5.5)

for all r(¢r) and 6(¢) along the trajectory. The total derivative of A(¢)
with respect time ¢ is

dh  Ohdr 0Ohdf

& ordi T a0dr (56)
-0 (5.7)
Since
dr
'&; Vry (58)
o _re (5.9)
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Equation (5.6) becomes

oh | Oh
Vg = —rv, (E / %) (5.10)
t
= —1vp (5.11)
= Vo(r(1),6(2); 1,61, vr,, v4,), (5.12)

where the definitions of p and Vy are evident, and the subscript ¢
denotes that the derivatives are evaluated at time z.

For the determination of v,, we apply the energy conservation law
along the trajectory,

k1o oy _k 1,5
p +5 0 ) =2 +5 07 + ), (5.13)
for all r and 6, satisfying
h(r(1), 0(1); 11,01, vy, vg,) = 0. (5.14)

Replacing vy in Eq. (5.13) by Eq. (5.11), we have
okl + (/203 + )~k
’ 1/2(1 +r2p?)
= Vi(r(2),0(2); 71,01, v, ve,), (5.16)

(5.15)

where the definition of V, is evident.

Let  Vy(r(2),0(8); 71,61, vr,,v9,) and  V,(r(?),0(9); r1, 01, vr,,ve,) be
defined as in Egs. (5.12) and (5.16), respectively. Let év,, = v,, — vy
and 6vg, = v, — vg_, where () ,vg ) are the polar components of the
intercept vehicle velocity at nominal intercept and (v, ,vs,) are the
polar components of the intercept vehicle velocity at the time of
closest approach to the target. Then v, and évy can be linearly
approximated by

5 _ L [[0% 0% [-GHT] [V, o¥, ov, o¥i) ],
m _2v$m or’ 90 |,| H'G ory’ 06y’ Ov,,” Ove, ||
(5.17)
_ oVy OVy —GH]T OVy OVy OVy OV
§vg, = Har : aoHHTG ory° 96, oy ovg )| C1Y
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where A is defined in Eq. (3.17), H, H;, and G are defined in
Eqgs. (3.18)—(3.20), respectively, and the subscript o denotes that the
derivatives are evaluated at the nominal intercept. Denote this approxi-
mation by

[‘”’m} = VTA. (5.19)

Hence the position and velocity of the interceptor at the point of
closest approach are expressed in terms of the perturbation vector:

. 570
[rm] "™+ [ rm]’ (5.20)
Om | O1o | 065,
_[rre] | [-GHT
= o + [———HTG ]A, (5.21)
v [vo ] ov,
"= " "1, 5.22
[Vom] | V6 i {51’0,“} (522
o
= | |4+ vTA. (5.23)
vy

Similarly, the position and velocity of the target at the PCA time is
expressed in terms of the perturbation vector:

[y
r r rre
[ T] = [ ol veJ 8, (5.24)
U S
r’]'o- vr-ro T
= + | vo |TTA, (5.25)
bl Lo
o[ &
V Vyo . 2
[ ’T} =| T+ T8, (5.26)
vo‘l’ v6% ] _ vrTo ve-ro
L e
Fvgw k T
Vo )
= T+ '™|TTA. (5.27)
V()% _vr1~ov0-ro
L Fro
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For the determination of the PCA miss, we transform polar com-
ponents of the relative position and velocity to a Cartesian reference
frame. The position of the interceptor relative to the target in a polar

coordinate is given by
Fm F
—| T, (5.28)
em 0T

or

60
_ T VrTo
[;THC;]— Voro I'T|A. (5.29)

e

Il

The position of the interceptor relative to the target in a Cartesian
frame is linearly approximated by

o)
oy
. o § 0 o _ T Vrro
_ [cos@T Fro SIN T} [ GHI} _ XiTTg rT A, (5.30)
Fre

= PTA. (5.31)

sinfpo  rro cOS fo HTG

The velocity of the interceptor in Cartesian coordinates can be

l lxm
Ym

cosfpe  —rro sin fro } I: v

0
ng

sinfto  rqo COS Oro

coSfro  —ryo Sin fye

+ VTA

Sinfto  rpe cOS B0

vy Sinfre + vy cosfyo
- 66°

(o} 0 1
=V, €osfre + vy sinbre

= VS + VIA. (5.32)
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Similarly, the velocity vector of the target in a Cartesian coordinate
has the form

Var Cosfre  —ryesinfye | | Ve
Vyr sinfro  ro cosfyo Voo

i ek
0 0 —_ 0 i 0 0 -2
4 C?S T Fre SIN U7 Fro r_2[0 I‘TA
| sinfre  ryo COS fre Vrro Véro
¥rro
~ Vys 81N O + vgo co.s Oro Voo A
| —Vrs cos O1o + Vgo Sin Oro | 1o
=V + VIA. (5.33)
Define the velocity of the interceptor relative to the target,
Ve T T
=Vo+V,A—(Vi+V5A) (5.34)
VYm/T

= Voo + VarA. (5.35)
Applying the expression of PCA miss vector, Eq. (2.4), we obtain:

(PTA) (Voo + VD)

M= PTA - o T Ti10 T
(Voo + V2 A (VS + VI LA

(Vayr + V;/TA)‘

(5.36)

Finally, the PCA miss vector of a ballistic interceptor against a
moving target can be approximated linearly. Let M ° be defined as in
Eq. (3.28). Let T' be defined as in Eqs. (4.24) or (4.34), respectively,
depending on whether the nominal trajectory of the interceptor is
hyperbolic or elliptic. Let (1., f10) be polar coordinates of the nominal
intercept point. Let (vﬁ’m R vgm) and (v, , Ve, ) be the polar components of
the velocities of the intercept vehicle and the target at nominal intercept,
respectively. Then the linear approximation of the PCA miss vector is

T
~ _ VXI/T(V;/T) )PTA’

A =~ —_— 5.37
( Vo) Ve (337
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where
3 vr o
PTA = cgs Ot —ro sin fo Mo v.g:(, A |, (5.38)
sinfro  rro cOS B0 —
Fro
and
cosfo  —sin fro v Vrro
= | ml— ). (5.39)
sinfpo  COS Bro Vg, Voro

We can use the expression of the PCA miss vector in Eq. (5.37) to
evaluate the statistical properties of the miss distance, for given statis-
tical properties of the cut-off errors. Denote

ve (ve,)"
M = (1 - —“‘/i;“—/})—) P'A (5.40)
(Vm/T) Vm/T

= UTA, (5.41)

and suppose the perturbation in cut-off parameters has a normal
distribution, with mean A and covariance matrix P, that is

A ~N(A,Py). (5.42)

Then the miss vector M is also normal with mean ¥TA and covariance
matrix UTPAU,

M ~ N(UTA, UTP, ). (5.43)

Furthermore, the expected square miss distance (i.e., the expected
value of the square of the miss distance) is given by

E[[M|[3] = ir(¥7(P5 + AA)D), (5.44)

and can be used as a figure of merit for guidance.

A closed form linear expression has been presented for the predicted
PCA miss vector in terms of perturbations of the cut-off conditions.
Of course, the value of this result must be judged by how well it
approximates the actual PCA miss in practice. While such an error
analysis is difficult to make in general, we have substantial numerical
evidence to suggest that this process works well for small perturbations
in cut-off conditions. Roughly speaking, when the perturbations in
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cut-off conditions are of the order of a few percents, the difference
between the actual PCA miss and that predicted by the linear approx-
imation will be of the order of a few percents also. Accordingly, this
section presents a typical example where this comparison is made.
Suppose that the interceptor and target are above the sensible atmo-
sphere, and the earth is a perfectly non-rotating homogeneous sphere.
Also suppose that there is no interaction with other celestial bodies.
Assume that the mission of the interceptor, in hyperbolic motion, is to
intercept the target at the given nominal point (rr., f10) = (9099 km,
0.7854 rad) and the nominal cut-off conditions of the intercept vehicle
for the mission are r{ = 6877.2024km, 69 = Orad, vy = 0.2383km/s,
v, = 17.0224km/s. The radius of the earth is 6378.135km. The k
is 3.98601 x 10°km?/s. The nominal semi-major axes of the missile
and target are given by a°=-2292.14km and ar= —14864.04 km,
respectively.

Consider the different cases of small perturbations in cut-off condi-
tion as shown in Table I. ||M||actual and ||M||iinearizea in Table I repre-
sent the magnitude of the exact numerical calculation and the linear
approximation of the PCA miss developed in this paper, respectively,
and the numbers in parentheses are the perturbations relative to nomi-
nal. As seen in Table I, the closed form expression for the predicted
PCA miss satisfactorily approximates the actual PCA miss, and the
approximation is better for smaller perturbations in cut-off conditions.

TABLE 1 Comparison of magnitudes of linearly approximated PCA miss vector and
actual PCA miss vector

Case 0 1 2 3 4 5
ry (km) 6877.20  6882.70  6885.45 6888.20 6890.95 6893.70
(0%) (0.08%)  (0.12%) (0.16%) (0.20%)  (0.24%)
0, (rad) 0 0.0012 0.0018 0.0024 0.0030 0.0036
(0%) (0.12%)  (0.18%) (0.24%) (0.30%) (0.36%)
v, (km/s) 0.2383 0.2387 0.2389 0.2391 0.2393 0.2395
(0%) (0.16%) (0.23%)  (0.34%) (0.42%)  (0.50%)
vg, (km/s) 17.0224 17.0560 17.0730 17.090 17.1070 17.1240
(0%) (0.20%)  (0.30%) (0.40%) (0.50%)  (0.60%)
[IMactya]| (km) 0 4.5100 6.7075 8.8892 11.0444 13.1782
[Mpredicteall (km) 0 4.5020 6.7529 9.0094 11.2603 13.5114
Difference (km) 0 0.0161 0.0552 0.1325 0.2329 0.3561

(0%)  (0.35%) (0.82%) (1.49%) (2.10%) (2.71%)
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6 GUIDANCE LAW IN THE ABSENCE OF GRAVITY
In the absence of gravity, the equations of relative motion between
interceptor and target are
R=V, (6.1)
V=U, (6.2)

where R, V and U are relative position vector, relative velocity vector
and guidance acceleration vector of the interceptor, respectively. The
PCA miss is then evaluated by Eq. (2.4), that is, if at time ¢, we turn
off the boosters (i.e. U=0, > t,), then the resulting miss M(z,) will
be given by Eq. (2.4). Let us postulate a guidance law of the form

U=aR+ 3V, (6.3)
where o and [ are parameters that we choose to ensure

d(M - M)

5 <0. (6.4)

Taking the derivative of Eq. (2.4) with respect to time, we have

- 2R-V)(V-V) . (R-V)
M=""vv VT vv vV

By substituting V = U = aR + 3V, we obtain

2((3.:))22 B Eﬁ:?f% v_ag:z; R, (6.6)

which, remarkably, is independent of 4. Hence
AM) _om- W (6.7)
=28V m.m), 6.9)
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where we have used the identity

(R-V)?

M-M:(R-R)—W.

(6.10)

Since Eq. (6.9) is independent of 3, 3 does not contribute to the time
derivative of the magnitude of the miss vector. For a chosen time
constant 7, we let

1 (R-V)
= 11
- za(V-V)’ (6.11)
which can be solved for « as
_(V-V)
a_ZT(R-V)' (6.12)

Although the parameter 8 has no influence on the reduction of the
miss distance, it can be used to prevent the magnitude of the relative
velocity vector from increasing. Set the time history of the magnitude
of relative velocity constant:

[V(1)]| = constant. (6.13)

Differentiation of the magnitude of the relative velocity with respect
to time yields

d(v-v)
d:

=2V.V (6.14)
=0. (6.15)

By substituting V=U =aR+ 8V in Eq. (6.3) into Eq. (6.15),
we have

V.V=V.U (6.16)
=V-(aR+BV) (6.17)
=a(R-V)+6(V-V) (6.18)
=0. (6.19)

Solving for the parameter 8 in Eq. (6.18), we obtain

B= —av—:—‘—,. (6.20)
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Replacing « in Eq. (6.20) by Eq. (6.12), g is determined by

1
=——, 6.21
27 ( )
From the above derivations, we conclude that, in the absence of
gravity, the guidance law

(V-V) 1
=———R—-—— 6.22
27(R-V) 27 v, (622)
ensures that the magnitude of the PCA miss decays exponentially

according to
dM-M) 1
——=—-—M-M 23
T ~(M-M), (6.23)
and simultaneously ensures a constant magnitude of the relative
velocity.

7 APPLICATION TO INTERCEPTIONS IN THE GRAVITY FIELD

In the presence of gravity, consider the equations of motion for a
missile and a target,

I'm = Vm, (7.1)
. k

Vm = —;E;rm + U, (7.2)
It = VT, (7.3)
vr = —%rT, (7.4)

respectively, where U is the guidance acceleration as defined in
Eq. (6.22).

The equations of relative motion of the interceptor and target
become

R=V, (7.5)
V=A+U, (7.6)

where

k k
A= El”r - Frm. (77)

m
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Originally, in Section 2, the PCA miss vector was computed as a
projection of the relative position onto the relative velocity for two
particles undergoing rectilinear uniform motion. In the absence of
gravity, the magnitude of the PCA miss vector is constant with respect
to time. In the presence of gravity, we still use the expression (5.37) for
the miss vector, under the condition that the engagement is relatively
short so that the velocities of the interceptor and target do not change
much, which justifies the assumption of quasi-rectilinear motion. We
will call the expression (5.37), in the presence of gravity, the Predicted
Point of Closest Approach (PPCA) miss vector. The time derivative of
the square of the magnitude of the PPCA miss vector M, over the
relatively short engagement, has the form

M- M) _
— =MW (7.8)
. (R-V) (R-V) R-V)
(7.9)
Let
1 (R-V)
7_'_2a(V-V)' (7.10)

Equation (7.9) then becomes

d(M - M)
dr

e 11 1(R-V)
~—;(M-M)——[E(R-A)——&(V'V)(V-A)]. (7.11)

T

Since the missile is close to the target around the PCA, Eq. (7.7) can
be approximated by

k k
ANF‘(rT—l’m)erR. (712)
m m
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Substituting Eq. (7.12) into (7.11), we have

dM-M) _;(M-M) 1 [J‘_ [—(R-R) + (R'V)zﬂ (7.13)

ds T |ard, (V-V)
:—;(M-M)—f—%[a—%(M-M)] (7.14)
1 k
:—;(M-M)[] —@]. (7.15)

Equation (7.15) implies that if the ratio of gravitational acceleration
to « is much less than the unity, then the guidance law (6.22) causes
the miss to decay approximately exponentially, that is,

3 .
K/l 4 M

o o~ —}—(M ‘M). (7.16)

Let us now analyze the effect of the guidance law (6.22) on the
magnitude of the relative velocity in the presence of gravity.
Since

V=A+1, (7.17)
=A+aR+ 3V, (7.18)

the time derivative of relative velocity becomes

V-V=V.(A+aR+3V), (7.19)
=A-V+aR-V)+3(V-V). (7.20)

Replacing A by Eq. (7.12), a by Eq. (6.12) and § by Eq. (6.21),
Eq. (7.20) is approximated by

.k (V-V)R-V) (V-V)
V-VNE(R~V)+ TRV E (7.21)
RV (7.22)

=3
rm
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Hence
Moo L o
~ .331; (5 y (7.24)
= rfnliw' (7.25)

Equation (7.25) implies that if the ratio of gravitational acceleration
to « is small, then the guidance law (6.22) will keep the magnitude of
the velocity approximately constant, that is
Ik /ol
o

<1 = (V-V) ~ constant. (7.26)

8 NUMERICAL EXAMPLE

In this section, we study the performance of the guidance law against a
non-maneuvering target in the presence of gravity. The effect of the
guidance law gain on the engagement duration, the miss distance and
the interceptor velocity will be investigated. Assume that the inter-
ceptor moves in a gravitational inverse-square central force field above
the sensible atmosphere. Suppose that there is no interaction with
other celestial bodies. Also assume that the interceptor is on a hyper-
bolic orbit, and has small perturbations in cut-off conditions which
cause a miss. Suppose that the implementation of the guidance law is
not contaminated by navigation errors. Assume that the interceptor
has initial conditions x.,(0) = 6566.69 km, y,(0) = 5679.22 km, v,,(0) =
—2.08km/s, vm,=16.55km/s, and the target has initial conditions
x1(0) =6613.32km, y1(0)=>5827.58km, v1,(0)=-2.94km/s, v, =
10.42km/s. The radius of Earth is 6378.135km. The constant k is
3.98601 x 10° km?>/s.

Figure 4 illustrates the time histories of the magnitudes of the PPCA
miss distance vector near the PCA, corresponding to various time
constants. The dash-dotted line in Fig. 4 represents the time history
under the condition that the interceptor is moving on a perturbed
hyperbolic trajectory toward the target without guidance law. Notice
that the flat dash-dotted line states that the magnitude of the PPCA
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without Guidance Law

Magnitude of Miss Distance Vector (km)
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Time(Sec.)

FIGURE 4 Time histories of the predicted PCA miss distance with respect to differ-
ent guidance law gains in case 4 of Table 1.

miss vector is constant, as expected from the definition of PPCA miss
vector for the case of relatively short engagement. The solid lines show
the time histories after the interceptor activates its guidance law.
Parameter 7 is a time constant in the PCA miss dynamics after the
guidance law is activated. This parameter affects how fast the PCA
miss decays exponentially, specifically a small 7, which increases the
guidance law gain, reduces the PCA miss rapidly. The results show
that the magnitude of the miss vector decreases quasi-exponentially
with respect to time in the presence of gravity under the condition
that the ratio of gravitational acceleration to « is much less than unity,
as illustrated in Fig. 5.

Figure 6 shows the engagement duration as a function of the guid-
ance law gain 1/27 in the absence of measurement errors. As expected,
reducing 7, which increases the guidance law gain, shortens the PCA
time. This yields a tighter engagement as seen in Fig. 7.

Figure 8 illustrates the time histories of the relative velocity after the
guidance law is implemented. As shown in Fig. 8, the relative velocity
remains approximately constant, corresponding to various guidance
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FIGURE 5 Time histories of the ratio of gravitational acceleration to a.
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FIGURE 6 Duration of intercept engagement as a function of guidance law gain.

gains applied. This implies that an interception with high guidance
gains does not require an increase in the interceptor velocity.

From these simulations, an interception with small time constant
yields a tighter engagement. On the contrary, an interception with
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FIGURE 7 Intercept trajectories with respect to different guidance law gains in case
4 of Table 1.
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FIGURE 8 Time histories of interceptor velocity with respect to different guidance
law gains in case 4 of Table 1.
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large time constant lasts longer. However, in either case, the inter-
ception in the presence of gravity requires approximately constant
velocity of the interceptor.

9 RMS OF MISS DUE TO NAVIGATION ERRORS
IN GUIDANCE LAW

We have developed a new guidance law that causes the magnitude of
the PPCA miss vector to decrease exponentially or quasi-exponen-
tially, depending on the relative magnitude of the gravity field. The
performance of the guidance law depends primarily on the measured
data, which is the relative position and velocity of the missile and
target. We will investigate the performance degradation in terms of the
rms of the PPCA miss, due to random navigation errors in implement-
ing the guidance. In addition we will study how the guidance gain
affects the accuracy on the interception when the engagement is per-
turbed by sensor noise.

In the presence of gravitational forces, consider the equations of
motion for the missile and target,

m = Vm, 9.1)
Vm = gy + U, (9.2)
and
i‘T = VT, (93)
where subscripts m and T represent missile and target, respectively,
V-V 1
= ' R-_—_— .
v 27(R-V) 27 v, ©:3)
R=r,—rp, (9.6)
V=vn—Vr, (9.7)
k
8m = — - Tm, (9.8)
k
gT = ——1IT. (99)

rr
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Equations (9.1)—(9.4) yield, in expanded form

)'Cm = Vmx> (910)
J}m = mea (911)
Vmy = — k X
T T
(me - "T)c)2 + (me - VTy)2
+ Xm — X
3G = 1) (e — ¥12) + Oim = 31) Gy — )] O 1)
1
_E‘;(me - VIx), (9.12)
Vmy = — k y
Y+
(me - VTx)2 + (me - V'l"y)2
+ m
27[(xm = X1) (Vmx — v1x) + (Ym — yT)(me - VTy)] (v »r)
1
T2 (Vmy — V1y)s (9.13)
XT — VTx, (914)
T = V195 (9.15)
k
Vo = — ————= X7, (9.16)
(x4 +53)"?
k
Iy = —————<75 JT- (9.17)
(x4 +33)*2

T
Let X= [xla X2, X3, X4, X5, X6, X7, x8] = [Xm, Ym> Ymx> Ymys XT> V1> VTx,
va]T. Then we have a state-space representation of the motion:

fC] = X3, (9.18)
562 = X4, (919)

k
@t
(x3 — x7)2 + (x4 — Xg)2
27[(x1 — x5)(x3 — x7) + (%2 — x6) (x4 — x3)]
1

_Z(X3 - x7), (9.20)

X3 = —

(x1 = xs)
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——————k X
3272
(o +x3)*

(X3 — X7)2 + (X4 — Xg)2

X4 = —

27[(x1 — x5)(x3 — x7) + (x2 — X6) (X4 — X3)] (x2 — xe)
_%T(X4 "Xg), (921)
Xs = x1, (9.22)
X6 = X, (9.23)
: k
S (924
fo= -t (9.25)

—_— Xg.
3/2
(x} +x2)"

Now suppose that vectors R and V are corrupted by measurement
errors and become

-Rx+ p
R+v= ’ ] (9.26)
LRy + vy
[ Xm — XT + vy
= | } (9.27)
.ym—y'l"‘f'vy
-Vx pe
Viw= +°"] (9.28)
LVy +w
_ -me—VTx‘{‘wx] (9 29)
L Vmy — V1y + Wy ' .

v w .
where v = [ v"] and w = [w" } represent errors in the measurement of
y 'y

relative position and velocity, respectively.
Then Egs. (9.20) and (9.21), perturbed by sensor noise, become

k
RE X1

X3 ==
(x{ +x3

[(363 — %7 + wy)® + (x4 — x5+ wy)*] (x1 — X5+ vs)
27[(x1 — x5+ i) (X3 — X7 + wy)+ (X2 — X6 + vy) (X4 — X5 + wy)]

1
— ; (X3 — X7+ wx), (930)
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_ k
Xg=——""""—-X2
(o] + )2
[(x3 = X7 4 wy)? + (x4 — x5 + wy)*](x2 — X6 + v,)
27[(x1 = X5 4 vx) (X3 — X7 + wy)+(x2 — X6 + V) (X4 — X8 + w))]

1
—Z—T(X4—xg +wy). (9.31)
Hence the complete system of equations of perturbed motion
becomes Eqs. (9.18), (9.19), (9.30), (9.31) and (9.22)—(9.25).
If we define a miss vector as the relative position at nominal
predicted PCA time, 2, then

M =R() (9:32)

_ [x‘“ B XT] (1) 9.33)
Ym — VT

_ [x‘ - xf'] (19). (9.34)
X2 — Xg

Assume that the sensor noise processes v and w are small. Lineariza-
tion of the dynamic system about the nominal trajectory in the
presence of sensor noise yields

T T T
bx = (?L) ox + <?f—> v+ (QL> w, (9.35)
0x ) 1o 0v) o ow) o
where the partial derivatives are evaluated along the nominal trajec-
tory. Let us define

A(f) = (gix): (9.36)
T

B(1) = (:V);" . (9.37)
(%),

Su(f) = H (9.38)
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Hence the equations of relative motion become a standard linear
dynamic system:

x(t) = A(1)ox(t) + B(t)bu(r). (9.39)

Explicitly, the elements of 4(¢) and B(¢) can be evaluated as follows.
We have

. 0

5x1 = (5%))(06)(:3, (940)
_ (on

(5)62 = (8X4>x06x4, (9.41)

. 19) 0, 0
bx3 = ((—9-;[—31 bx1 + (a—fz> oxy + (—%) 6x3
=+

(8x4 Oxs ( )
() o ) e (8]

* (8Vx) xoévx * <6Vy)x°6vy * (3“’76 xoéwx - Owy xoéwy’

+

N

(9.43)
Sis (%) 50, (9.44)
X7/ xo
(%

6x¢ = ( xg>x06xg, (9.45)

6x7 = (-(?—ﬁ—) bxs + (%) X, (9.46)
X5/ yo 8x6 X0

OxXg = <?£—i) bxs + (%) 6x¢. (9.47)
x° x°
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Hence we have the complete expression of the matrices A(f) and B(?),

A(l) =
r 0 0 1 0 0 0 0 0 0 01
0 0 0 1 0 0 0 0 0 0
A31(f) Axn(r) As(f) Aa(r) Ass(t) Ass(t) Ax(f) Ass(t) 0 0
A4](t) A42(t) A43(l‘) A44(Z) A45(l‘) A46(t) A47(t) A4g(t) 0 0
0 0 0 0 0 0 1 0 00
0 0 0 0 0 0 0 1 0 0}
0 0 0 0  Ars(t) Aw() O 0 00
0 0 0 0 Ags(t)  Ase(2) 0 0 00
0 0 1 0 0 0 -1 0 00
L 0 0 0 1 0 0 0 -1 0 0
(9.48)
r 0 0 0 0 7
0 0 0 0
B31(l‘) B32(Z) B33(t) B34([)
Ba(1) Ba(t) Bas(1) Bas(1)
0 0 0 0
B(1) = 0 0 0 N (9.49)
0 0 0 0
0 0 0 0
0 0 0 0
L 0 0 0 0

where the non-zero entries are obvious from Egs. (9.40) to (9.47).
Now assume that

(1) The initial covariance matrix of the states is zero,

P(1,) = 0. (9.50)

(2) The noise process u is a zero-mean stationary Gaussian white
process,

Efu] =0, (9.51)

Elu(tu”(0)] = R,6(t — 0), (9.52)

where §(¢ — o) is the Dirac delta function.
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Consider the model of Eq. (9.39) under the assumptions of Egs.
(9.50)—(9.52). The covariance matrix then P(¢) satisfies the Lyapunov
equation

P(t) = A(t)P(t) + P(t)A™(t) + B({)R,B™ (1), (9.53)

hence

P(t) = / t /t t@(t,a)B(a)R,,&(cr—s)BT(s)@T(t,s) dsdo  (9.54)

_ / '8(t, 0)B(0) RuB"(0) 0" (1,0) do, (9.55)

where the state transition matrix of the linearized dynamic system,
d(1, 0), satisfies
0%(t,0)
ot
®(0,0) = Lxs. (9.57)
Recall that the miss distance vector is defined as the relative position

at nominal predicted PCA time 77. Then the small perturbation of the
nominal predicted PCA miss vector due to sensor noise becomes

= A(1)d(1,0), 9.56)

6xm — 5XT

M = [5ym B 6yT} (1) (9.58)
The magnitude of the miss at tj? is
I6MI)5 = (8xm — 8x7)*(2) + (6ym — &1)*(17)- (9-59)
The mean-square miss distance is given by
E[[|MI[3] = E[éx;,] + El6xt] + El6y) + El8yi)
— 2(E[6xmbx1]) + E[6ymdyT]). (9.60)

Hence the root mean square of the predicted PCA miss becomes

\ ElIsM3]
= \/17“ (1) + Poa(12) + Pss(12) + Pes(12) — 2(P1s(12) + Pag(12)).
(9.61)
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Suppose that the interceptor and target are above the sensible atmo-
sphere, and the earth is a perfectly non-rotating homogeneous sphere.
Also suppose that there is no interaction with other celestial bodies.
Assume that the interceptor, on a hyperbolic orbit, has small perturba-
tions in cut-off conditions which cause a miss and the interceptor
activates the guidance law around the nominal intercept point to
reduce the predicted PCA miss. In this numerical example, we investi-
gate the effect of navigation errors on the performance of the guidance
law in terms of rms miss. The performance of the guidance law
depends primarily on the navigation measurements, which are the rela-
tive position and velocity of the missile and target. Assume that the
interceptor has the initial conditions x,,(0)=6566.69 km, y,(0)=
5679.22km, vp,,(0) = —2.08 km/s, vy, = 16.55km/s, and the target has
the initial conditions x7(0) = 6613.32 km, y1(0) = 5827.58 km, v1,(0) =
—2.94km/s, vr, =10.42km/s. The radius of the earth is 6378.135km.
The constant k is 3.98601 x 10°km?/s. Assume that, in Eq. (9.52),
R, = diag[0.01 km?, 0.01 km?, 0.01 (km/s)?, 0.01 (km/s)?].

Figure 9 describes the nominal PPCA miss as a function of the
guidance law gain in the absence of navigation error. The plot

0014 T T T T T T T T -
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FIGURE 9 Nominal PCA miss as a function of guidance law gain.
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FIGURE 10 Rms PCA miss as a function of guidance law gain.

shows that using large guidance gains for the interception reduces
the nominal PCA miss.

In the presence of sensor error, however, it is no longer true that a
larger gain yields a better performance of the guidance law in the sense
of the predicted PCA miss. Figure 10 illustrates the rms of the PPCA
miss as a function of guidance law gain when the measurements of the
relative position and velocity of the missile and target are contami-
nated by noise. Contrary to the case of nominal miss, increasing the
guidance law gain increases the rms of the PPCA miss, which results
in a degradation of the interception performance.

10 CONCLUSION

For an interceptor that follows a Keplerian trajectory and nominally
intercepts a moving target, we have obtained a closed form linear
expression for the miss distance in terms of the perturbations of the
booster cut-off conditions, where the miss distance reflects the
predicted miss at the point of closest approach between the interceptor
and the target. This has been accomplished by first determining the
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position and velocity of the interceptor and target at a common time,
then computing the miss distance under the assumption of rectilinear
uniform motion. This common time was itself chosen as the time at
which the interceptor, flying along the perturbed trajectory, is closest
to the point of nominal intercept. The results of this miss distance
analysis can in principle be applied in a variety of situations, from
comet interception missions to anti-ballistic missiles. They can also be
used to compute the expected value of the miss distance, given the
statistical properties of the cut-off errors.

Next, we have proposed a new guidance law to ensure that, in the
absence of gravity, the magnitude of the PCA miss decays exponen-
tially and that the magnitude of the relative velocity remains constant
as a function of time. The same guidance law has been applied to inter-
ceptors flying in a gravity field under the assumption that the gravi-
tational acceleration is much smaller than a characteristic acceleration.
The time histories of the magnitude of the miss distance were illus-
trated with various guidance law parameters. The results of numerical
simulations show that the predicted PCA miss decays quasi-exponen-
tially with respect to time, and state that a large guidance law gain
reduces the predicted PCA miss rapidly. In addition an interception
with a large gain yields a tighter engagement, but requires approxi-
mately constant velocity of the interceptor as a function of time.

Finally, we studied the performance degradation of the new
guidance law in terms of the rms of the predicted PCA miss, due to
random navigation errors in implementing the guidance system. The
effect of the guidance law parameter on the accuracy on the intercep-
tion was investigated, when the engagement was perturbed by sensor
noise. The results of numerical examples suggest that increasing the
guidance law gain increases the rms of the predicted PCA miss, which
results in a degradation of the interception performance, despite the
fact that it reduces the nominal predicted PCA miss. Hence a trade-
off is required for the optimal value of the guidance gain.
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