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The nonlinear ordinary differential equation resulting from the self-similar reduction
of a generalized Burgers equation with nonlinear damping is studied in some detail.
Assuming initial conditions at the origin we observe a wide variety of solutions —
(positive) single hump, unbounded or those with a finite zero. The existence and non-
existence of positive bounded solutions with different types of decay (exponential or
algebraic) to zero at infinity for specific parameter ranges are proved.
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1. INTRODUCTION

In the present paper we study the self-similar solutions of the
generalized Burgers equation, namely

u,+uﬂux+)\u"=—g-uxx, —00<x<o0, t>0 (1.1)

where a >0, 3> 0, A € R and § > 0 (small) are constants. Here Au® is
the nonlinear damping term. Equation (1.1) reduces to the standard
Burgers equation when =1 and A=0.
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Lardner and Arya [5] studied a special case of (1.1), namely

U = Uty — AU+ guxx, (1.2)
where A>0 and 6 >0 (small) are constants. The transformation
x — —x changes (1.2) to (1.1) with 3=1 and a=1. Equation (1.2)
with A =0 arises when considering the plane motions of a continuous
medium for which the constitutive relation for the stress contains a
large linear term proportional to the strain, a small term which is
quadratic in the strain and a small dissipative term proportional to the
strain rate. The A-term in (1.2) would arise in such a system if the
equation of motion includes a small viscous damping term propor-
tional to the velocity. Lardner and Arya [5] used the method of
matched asymptotic expansions to connect the solution inside the
shock layer with that outside.

Sachdev, Nair and Tikekar [9] reduced (1.1) to the ODE

f” + znfl +a_i_1f _ 23/26—1/2f(a—1)/2fl _ 4Afa — 0, (13)
by a similarity transformation

u=/1"9f(p), n (1.4)

_ X
(260)'/*’

provided that §=(a—1)/2. By a simple scaling, (1.3) can be changed
to

4
g +2ng' + — 8- 23/2gla=1)/2g _ g)g* = 0. (1.5)

Note that X’s in (1.3) and (1.5) are different. Equation (1.5) is
an important special case which after a simple transformation
belongs to a class of nonlinear ordinary differential equations, called
Euler—Painlevé equations first introduced by Sachdev and his
collaborators in a series of papers [9,10] and [11]. These equations
are much more general than the equation studied by Euler and
Painlevé (see Kamke [4], p. 574), which is exactly linearizable; hence
the solutions of the former class are referred to as Euler—Painlevé
transcendents. It was also brought out by Sachdev (7] that this class
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covers a large number of equations enumerated by Kamke [4] (see
also the more recent work of Sachdev [8]). One of the purposes of
studying this class of ODEs is to characterize the generalized Burgers
equations by Euler—Painlevé transcendents in the manner that K-dV
type of equations are characterized by Painlevé transcendents
(see Ablowitz et al. [1,2]). In the present case however we do not
have solitary type of solutions. It becomes possible to replace these
special solutions by the so called single hump solutions or positive
solutions over the whole real line. The study of (1.5) with initial
conditions at zero brings out a rich structure of Euler—Painlevé
transcendents, as evidenced by Theorems 1-5 and Theorems A, B
and C.

Here we study the following initial value problem both analytically
and numerically:

4
g +2ng +mg —2%2g(=D)/2g) _42g* =0, —o0<n< 00
(1.6)

g0)=v, £(0)=0, (1.7)

where v >0, is a constant. Even with these simple initial conditions
with g/(0)=0 a wide variety of solutions with complicated structure
are observed (see Section 2) (see Peletier and Serafini [6] for related
problems). For the special case >3 and A=0 in (1.6), we have
the following results from Srinivasa Rao, Sachdev and Mythily
Ramaswamy [13]:

THEOREM A Assume that a >3 and A=0. Then there exists a unique
V* such that.

() If v > v*, the solution of (1.6)—(1.7) decays algebraically to zero as
11— —oo and is positive on (—o00,0); g has a zero at a finite point
n=m?> 0.

(i) If v=v*, the solution g of (1.6)—(1.7) decays exponentially to zero
as 11— oo and algebraically to zero as n— —oo; g is positive on
(=00, 00).

(iii) If v < v*, the solution g of (1.6)—(1.7) decays algebraically to zero
as n— =+ oo.
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THEOREM B  Assume that a=3 and A=0. Then the solution g of
(1.6)—(1.7) decays algebraically to zero as n— — oo and is positive on
(—00,0); g has a finite zero on (0, 00).

Combining the results of Srinivasa Rao, Sachdev and Mythily
Ramaswamy [13] and Peletier and Serafini [6], we have the following
theorem when 1 <a <3 and A=0.

THEOREM C Assume that 1 <a <3 and A=0. Then there exists a
v* > 0 such that:

(1) If v>v*, the solution g of (1.6)—(1.7) decays algebraically to zero
as n— —oo and vanishes at a finite point n=mn, > 0; g is positive on
(_ 00, 771)
(ii) If v=V*, the solution g of (1.6)—(1.7) decays exponentially to zero
as 11— —oo and vanishes at a finite point n1=mn, > 0; g is positive on
(— 0, 7’1)
(iii) If v < v*, the solution of (1.6)—(1.7) has a zero at a finite point on
(0, 00) and (— o0, 0) each.

In the manner of Brezis, Peletier and Terman [3], we give the
asymptotic behaviour of the positive solution g of (1.6) that decays
to 0 as n— oo exponentially or algebraically, depending on whether
(g’/g) tends to —oo or 0 as n tends to oo in the following two
theorems.

Tueorem 1.1 If g(n) > 0 for all 1) and lim,_,.g'/g= — o0, then

g(n) = Ae~Ty3-2)/(e=1)
a-—Da-3) 1 1
(1—%)7__)-2—7-75—1—0(;7—2—)) as n—oo, (1.8)

where A >0 is a constant.

Tueorem 1.2 If g(n) >0 for all n and lim,_,..g'/g=0, for some
0< K<2, then

gn) =AY V(1 +o(n7¥)) as - oo, (1.9)

where A > 0 is a constant.
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Similar results can also be given for the solutions of (1.6) as
n— —00.

Srinivasa Rao, Sachdev and Mythily Ramaswamy [12] analysed the
positive solutions of (1.6) decaying exponentially to zero as n— oo,
using shooting arguments.

In the present paper we prove the existence of following types of
solutions of the IVP (1.6)—(1.7), which depend crucially on the
parameters o, A and v:

(i) Positive solutions decaying exponentially to zero as n— oo and
algebraically to zero as n— —oo.
(ii) Positive solutions decaying algebraically to zero as n— =+ oo.
(iii) Solutions decaying algebraically (exponentially) to zero at one
end and having a finite zero on the other side.
(iv) Unbounded solutions.

More precisely, we prove the following theorems for A#0.

THEOREM 1  Assume that o >3 and A > 0. Then there exist € and v,
such that, if ve (0,v,) U (vo—¢, 1), the solution g of (1.6)—(1.7) decays
algebraically to zero as n— + oo and is positive on (—o00,00). Here
vo= (M a—1))"Y@=D, the constant sotution of (1.6).

THEOREM 2 Assume that o>3 and A >0. For sufficiently small )\,
there exists a v> 0 such that the solution g of (1.6)—(1.7) is positive,
decays exponentially to zero as n— oo and algebraically to zero as
17— —00.

THEOREM 3 Assume that a>3 and X\ > 0. If )\ is sufficiently large,
the solution g of (1.6)—(1.7) is positive on (—o0,00) and decays
algebraically to zero as n— =+ oo for all v.

THEOREM 4  Assume that a >3 and X < 0. Then there exists a v* such
that for v <v*, the solution g of (1.6)—(1.7) is positive and decays
algebraically to zero as n— =+ oo.

THEOREM 5 Assume that 1 <o <3 and A <0. If g(n,v) is a solution of
the IVP (1.6)—(1.7), g cannot remain positive on (0, co).

The scheme of the present paper is as follows. In Section 2 we
present the numerical study of (1.6)—(1.7). Section 3 details the
analysis. Section 4 contains the conclusions of the present paper.
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2. NUMERICAL STUDY OF THE NONLINEAR
EQUATION (1.6)

We present here qualitative results following from the numerical study
of the IVP

4
g +2mg +—g -2 g0V —axg® =0, n>0,  (21)

g0)=v, g(0)=0, (2.2)

where a>1, v>0 and M\ is real. Let g(n,v) be the solution of
(2.1)—(2.2) on the maximum possible interval of existence. Recall that

v = (Ma —1))7/D (2.3)

is an exact solution of (2.1). The following distinct cases are observed
from the numerical integration of (2.1)—(2.2).

La>3
(a) A=0 There exists a positive value of v=v* such that

(i) If v <v*, g(n,v) decays algebraically to zero as n— =+ oo; g(n, V)
is positive on (— 0o, 00).
(i) If v=1*, g(n, v*) decays exponentially to zero as n—oo and decays
algebraically to zero as n— —oo; g(n, v*) is positive on (— oo, 00).
(iii) If v > v*, g(n,v) has a finite zero on (0, c0) and decays algebra-
ically to zero as n— —oo; g(n, V) is positive on (— oo, 0).

For the case a=5, A=0, v*=~0.97995 (see Fig. 1).

It is observed that all the solutions are bounded on (— o0, 0). Also,
the solutions of IVP (2.1)-(2.2) are bounded on (0, co) for aa=7,11.
There are solutions which tend to — oo at a finite point n=mny >0 for
a=35,9. In fact, our numerical experiments suggest that when g~ /2
is replaced by ||~ "% in (2.1), there are solutions which tend to — oo
at a finite point for any a > 3. If g©@~ 1?2 is replaced by |g|®~V/?
sign(g), the solutions are bounded on (0, c0); when the singularity (that
is, blowing up) is observed on (0, 00), the interval (v*,00) contains
v’s for which g(n, v) is bounded or tends to — oo at a finite point. We
conjecture that there exists a 7 € (v*,00) such that g(n, 7) exists for all
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FIGURE 1 Numerical solution of IVP (2.1)-(2.2) for a=5, A=0; a=9, A=0.01;
a=9, A=0.01; a=9, A=1.

7, has a finite zero and g(n, 7) — —oo as n—oo. If v > 7, g(n, v) tends
to —oo at a finite point.

(b) A > 0 sufficiently small On (—o00,0), all the solutions are positive,
bounded and decay algebraically to zero as n— —oo.
On (0, 00), there exists vy, v, with v; <, such that

(i) If v < 14, g is positive on (0, co) and decays algebraically to zero as

n—00

@ii) If v=v,, g(n, ) is positive on (0, o) and decays exponentially to
ZEro as 7—oo.

(iii) If v € (vy,v5), g(n, V) has a finite zero.

@iv) If v=v,, g(n,v;) decays exponentially to zero as p—oo; g is
positive on (0, 0o).

) If v, <v <y, where v is as in (2.3), g(n, v) decays algebraically
to zero as n—oo; g(n, v) is positive on (0, 0o).

For a=9, A=0.01, we found that v;~1.27858, v, =~ 1.366448 (see
Figs. 2 and 3).

It is interesting to observe that for A positive and small, solutions
with exponential decay to zero are not unique, which is in contrast to
the case A=0, a > 3, for which solutions of (2.1)—(2.2) are unique.
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FIGURE 2 Numerical solution of IVP (2.1)-(2.2) for a=5, A=0; =9, A=0.01;
a=9,A=001; a=9, A=1.
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FIGURE 3 Numerical solution of IVP (2.1)-(2.2) for a=5, A=0; a=9, A=0.01;
a=9, A=001; =9, A=1.

When ) is large, all the solutions decay algebraically to zero as p—oo
and also ordered with respect to v (see Fig. 4). As for the case A=0,
there are solutions which tend to — oo at some 79 > 0 for a =5, 9. For
a=17, 11, all the solutions are bounded on (— o0, 00). In the light of
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FIGURE 4 Numerical solution of IVP (2.1)-(2.2) for a=5, A=0; a=9, A=0.01;
a=9,1=0.01; a=9, \=1.

our numerical study, we conjecture that there exists a Ao > 0 for which
all the solutions decay algebraically to zero as n—oo except for one v,
for which g(n, v) is with exponential decay to zero as n—oo.

(©) A<0 When ) is sufficiently small, there exists v* > 0 such that

@) If v <v*, g is positive on (—o00,00) and decays algebraically to
zero as n— =+ oo.
(i) If v=v*, g(n,v*) decays exponentially to zero as p—oo and
algebraically to zero as n— —o00; g is positive on (— oo, 00).
(iii) If v > v*, g(n,v) has a finite zero on (0, 00); g(n, v) is positive on
(—00,0) and decays algebraically to zero as n— — oo.

For the case a=7, A= —0.001, v*~1.18471 (see Fig. 5). As v was
increased, no second zero was observed. This situation is similar to
that for the case A=0.

When ) <0, || is not small, there exist 4 and v, v; < v,, such that

() If v <1y, g(n,v) is positive on (— oo, 00) and decays algebraically
to zero as 17— = oo.

(ii) If v=wvy, g(n,vy) decays exponentially to zero as n—oo and
algebraically to zero as n— — oo; g(n, v;) is positive on (— 00, 00).
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(iii) If ve(vy,v,), g(n,v) has a finite zero on (0, 00); g(n,v) decays
algebraically to zero as n— — oo and is positive on (— oo, 0].

@iv) If v=v,, g(n,vy) has a finite zero on (0,00); g(n,v,) decays
exponentially to zero as n— — oo and is positive on (— o0, 0).

(v) If v > v,, g has a finite zero on (0, 00) and (— o0, 0) each.

For a=7, A=-0.4, we found that v;=~0.97081, v,=1.71276
(see Figs. 6 and 7).

As for the cases A >0, there are values of v for which g(r, v) tends
to —oo at a finite point for a=5, 9 at some no >0 which is in
contrast to the case a =7, 11 for which all the solutions are bounded
on (—o00,00). It should be noted that all the solutions are bounded
on (—o0,0) for all a’s. When |)| is large, the number of zeros
increases with increase in v. We conjecture that there exists 7>y
such that g(n, ¥) exists for all n, g has a finite zero on (0,00) and
gl —o0 as n—oo for a=35.

II. a=3

(@) \=0 All the solutions are positive on (— 0o, 0] and decay algebra-
ically to zero as n— — oo; they have a finite zero on (0, o) (see Fig. 8).

g
1.5
o=7,A=--0.001

r:’l'ﬁ,/
v=1.18471

v=1.0

1

05

-05 -

FIGURE 5 Numerical solution of IVP (2.1)-(2.2) for a=7, A= —0.001; a=7, A=
—-04;a=7,A=-04; a=3, \=0.
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FIGURE 6 Numerical solution of IVP (2.1)-(2.2) for a=7, A=-0.001; a=7,
A=-04;a=7,A=-04; a=3, A=0.

(b) A>0 There exists v* > 0 such that

(i) If v<v*, g(n,v) has a finite zero on (0, 00); g(n, v) is positive on
(—00,0] and decays algebraically to zero as n— —oo.
(i) If v=v*, g(n,v) decays exponentially to zero as n—oo and
algebraically to zero as n— —oo; g(n, V) is positive on (— 00, 00).
(iii) If v > v*, g(n,v) is positive on (— o0, 00) and decays algebraically
to zero as n— =+ oo.

For aa=3, A=3, it is found that v*~0.2109 (see Fig. 9).

(€) A<0 When |} is sufficiently small, all the solutions have a finite
zero on (0, 0o); they are positive on (— oo, 0) and decay algebraically to
Zero 1— —0o.

When || is large, there exists v* such that

(i) If v<v*, g(n,v) has a finite zero on (0, 00); g(n, v) is positive on
(—o00,0] and decays algebraically to zero as n— —oo.
(i) If v=v*, g(n,v) has a finite zero on (0, 00); g(n, V) is positive on
(—00,0] and decays exponentially to zero as n— — oo.
(iii) If v > v*, g(n,v) has one zero on (— o0, 0) and (0, co) each.

For =3, A= -3, v*~0.2542 (see Fig. 10).
Note that in this case, all the solutions are bounded.
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o=7,A=--04 2 p—>v=2
—>v=1.71276
v=14

FIGURE 7 Numerical solution of IVP (2.1)-(2.2) for a=7, A=-0.001; a=7,
A=—-04;a=7,A=-04; a=3, A=0.

v=0.6

v=0.4

v=0.2

FIGURE 8 Numerical solution of IVP (2.1)-(2.2) for a=7, A= —-0.001; a=7,
A=-04;a=7,A=-04; a=3, A=0.

III. 1 <a <3 For this case, we have taken a=2. Also we replaced
g~ V2 in (2.1) with |g|®~ D7 sign(g) for the Eq. (2.1) to be defined
when g becomes negative. The following was observed from our
numerical study of (2.1)-(2.2).
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0.3 v=0.3

v=0.2109

FIGURE 9 Numerical solution of IVP (2.1)-(2.2) for a=3, A=3; a=3, A= -3;
a=2,A=0;a=2, A=1.

=3, h=—3 04 v=0.4

FIGURE 10 Numerical solution of IVP (2.1)-(2.2) for a=3, A=3; a=3, A\=-3;
a=2,2=0;a=2, A=1.

(@) A=0 There exists v* such that

(i) If v < v*, g(n,v) has one finite zero on (0, o0) and (— o0, 0) each.
(i) If v=v*, g(n, v*) is positive on (—oo,0] and decays exponentially
to zero as n— — o00; g(n, v) has a finite zero on (0, 0o).
(iii) If v > v*, g(n, v) is positive on (— oo, 0] and decays algebraically to
zero as 7— — oo g(n, v) has a finite zero on (0, 0o).
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FIGURE 11 Numerical solution of IVP (2.1)-(2.2) for a=3, A=3; a=3, A=-3;
a=2,A=0;a=2, A=1.

For a=2, A=0, v*~0.7096 (see Fig. 11).
(b) A>0 There exist vy, v, with v; < v, such that

() If v<wvy, g(n,v) has a finite zero on (0,00) and (—o00,0)
each.

(i) If v=wv,, g(n,v,) is positive on (— oo, 0] and decays exponentially
to zero as n— —oo; g(n, v1) has a finite zero on (0, co).

(i) If ve(vy,vy), gn,v) is positive on (—o00,0] and decays
algebraically to zero as 7— —o0; g(n,v) has a finite zero on
(0, 00).

@iv) If v=v,, then g(n,v,) decays exponentially to zero as n—oo
and algebraically to zero as n— —oo; g(n,v,) is positive on
(— 00, 00).

) If v, <v <y, then g(n,v) is positive on (—o0,00) and decays
algebraically to zero as n— =+ 0o. Here vy is the value of v for
which an exact solution exists (see (2.3)).

For the case a=2, A=1, we found that v;=0.2973, v,=0.97506
(see Figs. 12 and 13).

(c) A<0 When |}| is sufficiently small, then there exists v* such
that
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v=0.4

v=0.2973

v=0.2

FIGURE 12 Numerical solution of IVP (2.1)-(2.2) for a=3, A=3; a=3, A=-3;
a=2,A=0;a=2,A=1.
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FIGURE 13 Numerical solution of IVP (2.1)-(2.2) for a=2, A=1; a=2, A=
—-0.001; a=2, A= —1.

@) If v <v*, g(n,v*) has a finite zero on (0, co) and (— o0, 0) each.
(ii) If v=v*, g(n, v) has finite zero on (0, 0o); it is positive on (— oo, 0]
and decays exponentially to zero as n— —oo.
(i) If v>v*, g(n,v) has finite zero on (0, 00); g(n, v) is positive on
(—00,0) and decays algebraically to zero as n— —oo.
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v=0.6

FIGURE 14 Numerical solution of IVP (2.1)-(2.2) for a=2, A=1; a=2,
A=-0.001; a=2, A= -1.
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I—71 0 W’ﬂ
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qt

FIGURE 15 Numerical solution of IVP (2.1)-(2.2) for a=2, A=1; a=2, A=
—0.001; a=2, A= —1.

For a=2, A= —0.001, we found that v*~0.71068 (see Fig. 14).
When || is large, all the solutions have a finite zero on (— o0, 0) and
(0, 00) each (see Fig. 15).
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3. ANALYSIS OF THE SOLUTIONS OF IVP (1.6)-(1.7)

In this section, we study the behaviour of the solutions of the initial
value problem

4
g'(n) + 2ng' () + — 8(n) — 228"V (n)g/ () — 42" (m) = 0,
(3.1)
g0)=v, £(0)=0, (3.2)
on (— 00, 00). For this purpose, we study the IVP (3.1)—(3.2) on (0, o)
and (— o0, 0), separately.
3.1. Analysis of IVP (3.1)~(3.2) on [0, o0)

Local existence and uniqueness of the solution of the initial value
problem (3.1)-(3.2) are guaranteed by the standard existence
theorems. Let the unique solution defined on the largest possible
interval be g(n,v). For simplicity we shall write g(n,v) as g(n) when
there is no ambiguity.

LemmA 3.1 Let a>1, A<0. Then no solution of (3.1) can have a
positive local minimum and hence g’ <0 for all 1> 0.

Proof Suppose 7 is a point such that g(ne) > 0 and g’(n9) =0. Then

4
g'(m) = — ——8(10) + 42g"(m0) < 0.
Thus g can only have local maximum at 5 =1,. [ |
LemMMA 3.2 Let a>1 and A>0. Then

@) Ifv>Na-1)"Ye*"D gm)>v for alln>0
(i) If v=Na—1))" Y@=y, g=v,.
(i) If v <Ma—1))""C=D gn) <v foralln>0andg <0 as long as
g is positive.

Proof Suppose that at =g, g'(m0) =0. This by (3.1) implies that
4
g"(m) = — —— 8(m) +4rg* (o)

—axm) (- 5oyt m). 6
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Thus

g"(mo) <0 if g(mo) < w,
g"(mo) =0 if g(m) = w,
g"(mo) >0 if g(mo) > w.

If v> vy, we have that g”’(0)>0. Thus g has a local minimum
at n=0. It also follows from (3.3) that g cannot have a positive
local maximum. Thus the solution g of (3.1)—(3.2) is always greater
than v,,.

If v=v, and g'(0) =0, by the uniqueness of the solutions, we have
g=v,. This solution was noted earlier by Sachdev, Nair and Tikekar
[9].

If v < v, g has a local maximum at =0 and, in addition, by (3.3) g
cannot have a positive local minimum.

Therefore, g <0 if g > 0. |

Since we are interested in the solutions of IVP (3.1)-(3.2) that
vanish as n— — oo, we consider in detail the case g(0) < v, for a > 1,
A > 0. These two lemmas show that both the cases o> 1, A> 0, v <y,
(see (2.3)) and a> 1, A <0, the solutions are monotonic decreasing
provided g is positive. They may either become zero at a finite point or
remain positive and decreasing for all n > 0.

LEMMA 3.3 Let o> 1 and AeR. If g(n,v) >0 for all n>0, g, g&—0
as n—oo.

Proof Integrating (3.1) from 7y to 7, we get

(a+l)/2 (77)

g'(n) = & (m0) + 2m0g(mo) — +1g(a+l)/2(’7°)+(a+1)

( 2 +2(( 1))/ gds+4)\/m dy). (3.4)

Since g’ < 0 for all n > 0 and g is bounded below, g — g >0 as n—oo.
We will show that g = 0. Suppose on the contrary that g # 0. This
implies from (3.4) that

2(a -3
g’(n)~C1+(—2?7§+TE§_—1))71§+4/\17§“> as 17— 0o
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where C, is a constant consisting of the terms evaluated at 7y and
(2%/2g(@+1)/2) /(a + 1). Therefore,

gn)~C + (— a—f:-l—+4/\§“"l)n§ as n— oo.
If > 1, A <0 and g # 0 by assumption, g'()— — oo as n—oo. This is
also true for a> 1, A > 0 (since g < vy). This implies that g cannot be
positive for all n > 0, leading to a contradiction. Hence g—0 as n—oo.
We will now show that g’—0 as —oo. We note that there exists a
point n; such that g’(n;)=0, otherwise g’ <0 for all » and hence g
cannot always remain positive, a contradiction to our assumption.
From the differential Eq. (3.1), we have

g"(m)=— 2((::L 11)) g'(m) +2'2(c - 1)g=2(my)g" (m)

+4xag® ! (m)g' (m). (3.5)

When a>1, A<0, we use the fact that g/(n;) <0. We thus have
g"(m) >0, implying that g” has exactly one zero. It follows that g” is
ultimately positive.

When a>1, A>0,

"(m) = ¢ () -T2 + 4rag ' (m)
+2'2(a = )8 (m)g" (m). (3.6)

Since g(n;)—0 as 7;—o0, we have —2(a:+1)/(a—1)+4 ag® ™ () < 0
for large 7; and hence g"'(n) >0 at n, where g"(m;) =0, m large.
Hence for 7 sufficiently large g” cannot change sign. We claim that
g’ is ultimately positive. Otherwise g’ <0, g” <0 for n > 7, implying
that g cannot remain positive, a contradiction. Therefore, for o> 1,
X arbitrary, g’ >0 for n sufficiently large. Since g’ is ultimately
increasing and bounded above by 0, g’ should converge to a constant
g1. We shall show that g, =0. Suppose on the contrary that g, #0; let
g1 <0, since g’ <0 for all n> 0. This implies g’ < — K, for some K >0,
7 sufficiently large. An integration of g < — K from 7, to n with respect
to 7 gives

g(n) —g(m) < —K(n—m), for n>mno
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which implies that g(n) cannot remain positive. This is a contradiction
to our assumption that g is positive on (0, 0o). Therefore g’ should tend
to zero as n—oo. Hence the lemma. u

To understand how the solution decays as —oo0, we analyse as a
first step, the asymptotic behaviour of g and g’ as n—oo, in the case
when g(n) > 0 for all n > 0. We show that lim,_,., g’/g can be either 0
or —oo and correspondingly the positive solution decays algebraically
or exponentially to zero as n—oo, respectively. Following the work of
Brezis, Peletier and Terman [3], we have the Lemmas 3.4-3.6.

LemMmA 3.4 (Trapping Region for a > 1, A<0) For given p>0 and
a>1, A <0, define
DL ={(g1,82) €R*: g1 >0, g2 <0 and g + pg; > 0}.

Let g be a solution of the IVP (3.1)—(3.2). Further assume that there
exists a number

(o) o

such that (g(r), g'(r)) €D}, then (g(n), & (n)) €D}, for all n> .

LemmA 3.5 (Trapping Region for o> 1, A>0) Let p>0, and o> 1,
A > 0. Define

D ={(g1,82) €R*: 0< g1 <w, g2 <0 and g + gi >0}.

If g is a solution of the IVP (3.1)—(3.2) and if there exists

> (—i— + 282 Di2 g MZ) (3.8)
2u\a-1

such that (g(r), g'(r)) € D%, then (g(n), &' (n)) €D}, for all n> .

LemMA 3.6  Suppose that o > 1 and A€ R and g(n,v) > 0 for all > 0.
Then lim,_,, g[g exists and is either —oo or 0.

Remark 1 (Asymptotic Behaviour of the Solution of (3.1)-(3.2)
as n—oo) From Lemma 3.6, we have that if g(n,v) >0, g’/g—0 or
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—o00 as n—oo, when o> 1 and A€ R. From Theorems 1.1 and 1.2 of
Section 1, we know that

@) If lim,_, g'/g=0, g decays algebraically to zero as n—oo.
(i) If lim, ., g'/g= —o0, g decays exponentially to zero as n—oo.

Remark 2 For a >3, we have the following asymptotic characteri-
sation.

(i) g decays algebraically to zero as n—oo if and only if exp(n’) g is an
increasing function for 7 sufficiently large.

(ii) g decays exponentially to zero as n—oo if and only if exp(17®) g is a
decreasing function for 7 sufficiently large.

We now look for positive solutions with algebraic decay to zero as
n—oo in the next four lemmas.

LemMmA 3.7 Assume that a>3 and A>0. If g is a solution of the
IVP (3.1)-(3.2) with g(0) < min(((a—3)*/8(a.— 1))@ =D 1), then g is
positive on [0, 00) and decays algebraically to zero as n—oo. Here, v, is
as in (2.3).

Proof We shall show that g’ +2#g > 0 for all > 0, i.e. (g exp(r?))’ >0
for all > 0; this, in view of Remark 2(i), would imply that g decays
algebraically to zero as n—oo.

An integration of (3.1) with initial conditions (3.2) gives

n/2 -3 n
g +2ng= / (-(—(5‘-‘——1—)g + 23/2g<a-'>/2g')ds+4,\ / g%ds. (3.9)
0 o — ) 0
Define
2(a—3 -
h(n) = _((a - 1))g +232gl-1)/2g. (3.10)
This implies that
2(a—3
h(0) = ((a — 1))V> 0,

since o > 3. We claim that h(n) > 0 for all > 0. If this is not the case,
there exists 7, such that h(n;) =0, #'(7;) <0. We shall now show that
this is not possible under the assumptions of the lemma.
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By the definition of A,

2(a 3) g
ICEDN

Using (3.1), (3.11) becomes

hl( ) 21/2(a l)g(az—i’a)/2gl2 +23/2g(a—1)/28”. (3‘11)

2(0c—3
hl(n) — (( 1)) I+21/2(a l)g(a 3)/2 P _25/2ng(a—l)/231
27
a lg(a+1)/2 +8ga—-lgl+27/2Ag(3a 1)/2
5 2Ae—3) 2(a-3) g +22(a — 1)g@-/2g"

@-1¢
27/2

2R gt g gty gipge-n, (.12

since g’ < 0 as long as g > 0. Now, A(n;) =0 implies that

#(n) = = g ) (3.13)

On using (3.13) in (3.12), we get

o —3)3
h’(’l’[l) > g—(a—3)/2(,m) (ﬁ)

_ 25/2g(a+1)/2(m) + 27/2Ag(3a—l)/2(,m).

(3.14)

Thus, if g(0) < (a—3)*/8(a—1)*)@~D_ then from (3.14) K(n;) >0,
contradicting that #'(n;) <0. Therefore A(n) cannot have a zero and
remains positive throughout.

From (3.9), since A>0 and the integrals are greater than O,
g +2ng >0 for all n> 0. Hence the lemma. [ |

The following lemma shows that for a > 3 and ) sufficiently large,
every solution of the IVP (3.1)—(3.2) decays algebraically to zero as
7—00.

LeEMMA 3.8  Assume that o.>3 and A>0. If A > 8(a—1)/(a—3)%, all
the solutions with v <wvy (see (2.3)) are positive on (0,00) and decay
algebraically to zero as n—oo.
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Proof A simple manipulation shows that

_1\3 \ V(e-)
= MNa-— 1))4/(‘1—1) < (—‘—“;& __31))2) )

provided that A > 8(a:—1)/(a—3)°. This implies by Lemma 3.7 that all
solutions decay algebraically to zero as n—oo. Hence the lemma. W

In the following lemma, we prove that, when a>1, A>0, v<yy
and v is sufficiently close to v, every solution of the IVP (3.1)-(3.2)
decays algebraically to zero as n—oo. To prove this we follow the work
of Brezis, Peletier and Terman [3] (see Lemmas 3 and 4 there).

Lemma 39 If a>1 and A\>0, there exists € >0 such that if
vE(vy—e,vy), the solution of the IVP (3.1)—(3.2) is positive for all
11> 0 and decays algebraically to zero as n—o0.

Proof For 6> 0, define
A5 = {(81,82) : 81 >0, 82 <0, "(gl)gZ) - (V070)“ <6}’

where || || is the Euclidean norm. Choose 6 so small that A; C D,zl By
using the continuous dependence of the solutions on initial conditions,
it is possible to find ¢, such that if v € (vo—ep, vo), (8,&’) €As C D? for
0<n<7. Thus by Lemma 3.5, for v € (vo—ep, vp) the solution does
not leave Df, This implies that g’/g > — u for n > 0. Therefore g > 0 on
(0, 00) and g decays algebraically to zero as n—oo. |

For 1 < a <3, A <0, there are no solutions, which are positive for
all n>0. We show in Lemma 3.11 later on that in this case every
solution of IVP (3.1)—(3.2) has a finite zero.

Remark 3 We observe that g cannot have a zero before

2(a—3)
(@=1)

has a zero. Suppose this is not the case. Then there exists 7; such that
g(m) =0 but k(1) 2 0 on [0,7;]. By (3.9),

hi(s) = 8(s) +2°7267D2(s5)g/(s) + 4Xg%(s) (3.15)

& (m) = /0 " hi(s)ds > 0.

This contradicts that g’(n;) < 0 at n=m,, the first zero of g.
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LemMA 3.10  Assume that a >3 and A < 0. For g(0) sufficiently small,
solutions of the initial value problem (3.1)—(3.2) are positive on (0, c0)
and decay algebraically to zero as n—oo.

Proof An integration of (3.1) with initial conditions (3.2) implies that

n -
g +2ng = / (%g + 23/2g(a—l)/2 !+ 4)g® )ds
0 —

n n
- / 28D/ (5)h(s)ds = / h(s)ds (3.16)
0 0
where A, is as in (3.15) and
h(s) = Ea 3; gB=2(5) 4 2172g' (5) 4 22+ V/2(s). (3.17)

It suffices to show that for v sufficiently small the integrand on the

right hand side of (3.16) is positive for all > 0, which in turn would

imply that g’ +2ng > 0 for all n> 0 and the lemma would follow.
Note that h(0) = v ~2((a.— 3)/(a— 1)+ 22>~ ). Thus h(0) > 0 if

a—3 1/(a-1)
v< (—_(a — 1)(_2)\)) (3.18)

Hence there exists a neighbourhood (0, €) such that & is positive on
(0,€). We know from Remark 3 that g cannot have a zero before the
integrand of the right hand side of (3.16) becomes zero. This implies
that as long as the integrand in (3.16) is non-negative, g > 0 and hence
h(s) in (3.17) is well defined.

We will show that for v sufficiently small, 4(s) cannot become zero
on [0, co). By (3.17) and (3.1),

2
Hin) = - é?a——33)

+ 4+ Ma+1))g@ D2 + 25/2)\g (3.19)

B 25/2
g(l a)/2gl _ 23/2ngl - lg

Let n; be the first zero of A, if possible. Then necessarily #'(n;) <0.
Further

1 (=3 _
g(m)=- 21,2E 1; G=a)/2(p) = 21220g@D2 (). (3.20)
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Using (3.20) in (3.19) and dropping the second term in (3.19),
we get

1 (a-3)°

, —
H(m) > 272 (o — 1)

g% (m) = 2'2X%(a + 1)g*(m)

_ &1_1(23/2()‘ + 1) (e — 3) + 25%)g(my)

> g2—a(m)( (Ol - 3)3 5 - 21/2/\2((1 + l)gl(a—l)

B12(a-1)
" (a 1 1) (2*(c - 3) +2¥ 2)g"’“‘(m))
Thus, since g(m) < v,
3
K (m) > g~*(m) (275;'1(72%)1')7 — 22X + 12D
@ L @ =3)+ 2 -1).

Choose v sufficiently small so that #'(;) > 0 and the condition (3.18) is
satisfied. Thus 4 cannot have a zero for v sufficiently small. Hence the
lemma. n

Now we look for situations where the solutions of the IVP
(3.1)—(3.2) become zero at a finite 7.

LemMA 3.11  Assume that 1 < o < 3 and X <0. Then all the solutions of
the IVP (3.1)—(3.2) have a finite zero.

Proof By the differential Eq. (3.1),

2(a=3) (7 22y
=) ), ¥t aTi8

gm) =-2ng+
25/2

n
_ L (at+])/2 a
ari’ +4)\/0 gods. (3.21)

Suppose g > 0 for all  for contradiction. Then

g,< - K, for n>m,
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where K is a positive number. This implies that g cannot remain
positive, a contradiction. Thus g must have a finite zero. ]

LeEMMA 3.12  Assume that a > 3. For |\ sufficiently small, there exists
a v such that the solution of (3.1)—(3.2) has a finite zero.

Proof By Theorem A in Section 1, there exists a solution go(n, vo) of
(3.1)—(3.2) such that go(n,v0) <0 for a >3 and A=0. By using the
continuous dependence of the solutions on J, there exists a sufficiently
small A such that g(n, vp) < 0. Hence the lemma. |

In the next three lemmas, we show that there exists some v for which
the corresponding solution of the IVP (3.1)-(3.2) has exponential
decay at n= +oo when a > 3 and A sufficiently small.

Suppose v€ R*. Define

Si={vr>0:g(n,v) is positive on [0,7;] and g(n;,v)=0 for some
m >0},

Sy={v>0:g(n,v) is positive on (0,00) and decays algebraically to
zero as n—oo}, and

S3={v>0:g(n,v) is positive on (0,00) and decays exponentially to
Zero as 1—oo}

Clearly S, S, and S3 are disjoint. Also, S;US,US;=(0, 00).
Lemma 3.13 S, is open.

Proof Suppose g(n,v;) has a finite zero at n=m;. Then by the
uniqueness of the solutions, we have g(n,v;)#0 and hence
g(m,v1) <0. This implies that there exists 7, >n; such that
g(m2,v1) <0. By the continuous dependence on the initial data, there
exists a neighbourhood U around v, such that for all v in U,
g(m2,v) < 0. Hence the proof is complete. [ ]

Lemma 3.14 S, is open.

Proof Suppose vy € S,. By the definition of S5, for any u > 0, there
exists 7,>7, (see Egs. (3.7) and (3.8)) such that (g(n,u),
g (nﬂ,ul))eDL or Df‘. By the continuous dependence on the initial
data, there exists a neighbourhood U around v, such that (g(n,,v),
g (M, v)) GD,“ or Di for all ve U. It follows from Lemmas 3.4 and
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3.5 that (g,¢')€ D), or D2 for all 5> 17,. This implies that g decays
algebraically to zero as n—oo. |

LeMMA 3.15 Assume that either a.>3, A€R and |)| is sufficiently
small. Then there exists an exponentially decaying solution as n—oo.

Proof Lemmas 3.7, 3.8, 3.9, 3.12, 3.13, 3.14 imply that S;, S, are non-
empty and open. Since (0, c0) is connected, there exists v* ¢ S;US,.
Thus g(n, v*) decays exponentially to zero as n—oo. ]

3.2. Analysis of IVP (3.1)-(3.2) on (—0,0)

Here, we consider IVP (3.1)-(3.2) for n<0. Let n= —s. Then the
differential Eq. (3.1) becomes

4
gas + 258s + — 8 + 2250V, — 4xg* = 0. (3.22)

The initial conditions are
g(0) =v, g'(0)=0. (3.23)

Notice that (3.22) and (3.1) differ only in the sign of the term
232g(@=DI2g Therefore the analysis regarding the local extrema is the
same as before. In particular a lemma analogous to Lemma 3.2 is true
here also. Further the above term on integration yields cg®* 2 where
c is a constant. In the analysis of a solution g >0 for all s >0 and
g — g >0 as s — oo, this term remains bounded. Hence following the
analysis of Lemma 3.3, we can show that g — 0 as s — oo. It is easy to
see that g — 0 as s — oo implies that g’ — 0 as s — co. Thus we have the
following lemma.

LEMMA 3.16 Assume that a > 1 and A€ R. If g is a solution of (3.22)—
(3.23),

(i) g <0 as long as g>0 when A<0 or A\>0 and g(0) <vy (see
Egq. (2.3)).

Using the trapping region argument for A<0 and A>0 as in
Lemmas 3.4 and 3.5, respectively, we can prove the asymptotic behav-
iour as in Lemma 3.6, when s — oo. Thus we have
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LemmA 3.17 (Asymptotic behaviour as s — 0co0)  Assume that o.> 1 and
A€ R. Suppose g(s,v) >0 for all s> 0. Then

() If limy_.g' /g =0, g decays algebraically to zero as s — oo and (1.9)
gives the asymptotic behaviour for g with n replaced by s.

(i) If lims_ oo &' /g = — 00, g decays exponentially to zero as s — oo and
the asymptotic expansion is given by (1.8) with n replaced by s.

For the case a > 3 and A\ > 0, we can prove that every solution of the
IVP (3.22)—(3.23) decays algebraically to zero as s — oo for any v > 0.

LemMA 3.18  Assume that o> 3 and A > 0. If g is a solution of the IVP
(3.22)—(3.23), g is positive and decays algebraically to zero as s — oo,
Jorv>0.

Proof An integration of (3.22) with initial conditions (3.23) gives

g +2sg = / (Mg —23/2g(a=D)/2g 4 4)\g") dt. (3.24)
o \ (a—1)
We claim that g is positive for all s > 0 and decays algebraically to zero
as §— oo.
Suppose, on the contrary, that g > 0 on (0, s;) and g(s;) =0. Then by
Eq. (3.24), we have

S

g'(sl) = / ! (2(a - 3)g _ 23/2g(a—1)/2gl + 4)\ga)dt > 0’
o \(a—1)

since g <0, g>0 on (0,s;) and >3, A>0. On the otherhand

£ (s1) <0, because s is the first zero of g. We arrive at a contradiction.

Hence g is positive on (0, 00).

Since g’ <0 when g > 0 by Lemma 3.16, it follows from (3.24) that
g +2sg>0 for all s>0. This in turn implies that gexp(s®) is an
increasing function on (0,00). Hence by Lemma 3.17, and the
arguments as in Remark 2, it follows that g decays algebraically to
zero as s — 0o. Hence the lemma. |

In the following lemma we give the existence of a positive solution
with algebraic decay as s — oo, for the case @ >3 and A <0.

LemMmA 3.19 Assume that o> 3 and A <0. For v sufficiently small,
g(s, v) decays algebraically to zero as s — oo.
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Proof From (3.24), if v< ((a=3)/(—2Xa—-1))"@"D, we have
g +2sg >0 provided that g > 0. This implies that g is positive and
decays algebraically to zero as s — oo. n

Theorem 1 is a consequence of Lemmas 3.7, 3.9 and 3.18. Theorem
2 follows from Lemmas 3.15 and 3.18. Theorem 3 results from
Lemmas 3.8 and 3.18, while Theorem 4 follows from Lemmas 3.10 and
3.19. Theorem 5 is a simple consequence of Lemma 3.11.

4. CONCLUSIONS

In this paper, we have studied the self-similar form of solutions of
GBE (1.1) governed by (1.6), subject to the initial conditions at x=0.
We have shown the existence of bounded, positive solutions with
different types of decay (exponential or algebraic) to zero as x — +oo
or x— —oo for different sets of parameters o and A. The analysis
shows a rich structure of solutions.
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