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Nonnegative and compartmental dynamical systems are governed by conservation laws and are comprised
of homogeneous compartments which exchange variable nonnegative quantities of material via
intercompartmental flow laws. These systems typically possess hierarchical (and possibly hybrid)
structures and are remarkably effective in capturing the phenomenological features of many biological and
physiological dynamical systems. In this paper we develop several results on stability and dissipativity of
hybrid nonnegative and compartmental dynamical systems. Specifically, using /inear Lyapunov functions
we develop sufficient conditions for Lyapunov and asymptotic stability for hybrid nonnegative dynamical
systems. In addition, using linear and nonlinear storage functions with linear hybrid supply rates we
develop new notions of dissipativity theory for hybrid nonnegative dynamical systems. Finally, these results
are used to develop general stability criteria for feedback interconnections of hybrid nonnegative dynamical
systems.
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1 INTRODUCTION

Nonnegative systems [1-5] are essential in capturing the phenomenological features of a wide
range of dynamical systems involving dynamic states whose values are nonnegative. A sub-
class of nonnegative dynamical systems are compartmental systems [6—15]. These systems are
derived from mass and energy balance considerations and are comprised of homogeneous
interconnected macroscopic subsystems or compartments which exchange variable quantities
of material via intercompartmetnal flow laws. Since biological and physiological systems have
numerous input—output properties related to conservation, dissipation, and transport of mass
and energy, nonnegative and compartmental systems are remarkably effective in describing the
essential features of these dynamical systems. The range of applications of nonnegative and
compartmental systems is not limited to biological and medical systems. Their usage includes
demographic systems, epidemic systems [13, 16], ecological systems [17], economic systems
[18], telecommunication systems [19], transportation systems, power systems, and large scale
systems [20, 21], to cite but a few examples.
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Complex biological and physiological systems typically possess a multiechelon hierarchical
hybrid structure characterized by continuous-time dynamics at the lower-level units and logical
decision-making units at the higher-level of the hierarchy. The logical decision making units
serve to coordinate and reconcile the (sometimes competing) actions of the lower-level units.
Due to their multiechelon hierarchical structure, hybrid dynamical systems are capable of
simultaneously exhibiting continuous-time dynamics, discrete-time dynamics, logic com-
mands, discrete-events, and resetting events. Hence, hybrid dynamical systems involve an
interacting countable collection of dynamical systems wherein control actions are not inde-
pendent of one another and yet not all control actions are of equal precedence. For example, in
physiological systems the blood pressure and blood flow to different tissues of the human body
are controlled to provide sufficient oxygen to the cells of each organ. Certain organs such as the
kidneys normally require higher blood flows than is necessary to satisfy basic oxygen needs.
However, during stress (such as hemorrhage) when perfusion pressure falls, perfusion of
certain regions (e.g., brain and heart) takes precedence over perfusion of other regions and
hierarchical controls (overriding controls) shut down flow to these other regions. The mathe-
matical descriptions of many hybrid dynamical systems can be characterized by impulsive
differential equations [22-25]. Impulsive dynamical systems can be viewed as a subclass of
hybrid systems and consist of three elements; namely, a continuous-time differential equation,
which governs the motion of the dynamical system between impulsive or resetting events; a
difference equation, which governs the way the system states are instantaneously changed
when a resetting event occurs; and a criterion for determining when the states of the system are
to be reset.

In this paper we develop several basic mathematical results on stability and dissipativity of
hybrid nonnegative and compartmental dynamical systems. Specifically, using linear
Lyapunov functions we develop sufficient conditions for Lyapunov stability and asymptotic
stability for hybrid nonnegative dynamical systems. The consideration of a linear Lyapunov
function leads to a new set of Lyapunov-like equations for examining the stability of linear
impulsive nonnegative systems. The motivation for using a linear Lyapunov function follows
from the fact that the state of a nonnegative dynamical system is nonnegative and hence a
linear Lyapunov function is a valid Lyapunov function candidate.

Next, using linear and nonlinear storage functions with linear hybrid supply rates we
develop new notions of classical dissipativity theory [26, 27] and exponential dissipativity
theory [28] for hybrid nonnegative dynamical systems. The overall approach provides a new
interpretation of a mass balance for hybrid nonnegative systems with linear hybrid supply
rates and linear and nonlinear storage functions. Specifically, we show that dissipativity of a
hybrid nonnegative dynamical system involving a linear storage function and a linear hybrid
supply rate implies that the system mass transport (resp., change in system mass) is equal to
the supplied system flux (resp., mass) over the continuous-time dynamics (resp., the resetting
instants) minus the expelled system flux (resp., mass) over the continuous-time dynamics
(resp., the resetting instants). In addition, we develop new Kalman—Yakubovich—Popov
equations for hybrid nonnegative systems for characterizing dissipativity with linear and
nonlinear storage functions and linear hybrid supply rates.

Finally, using concepts of dissipativity and exponential dissipativity for hybrid
nonnegative dynamical systems, we develop feedback interconnection stability results for
nonlinear nonnegative impulsive systems. Specifically, general stability criteria are given for
Lyapunov and asymptotic stability of feedback hybrid nonnegative systems. These results can
be viewed as a generalization of the positivity and the small gain theorems [29] to hybrid
nonnegative systems with linear supply rates involving net input—output system flux.

The contents of the paper are as follows. In Section 2 we establish definitions, notation,
and introduce the notion of impulsive nonnegative dynamical systems. Furthermore, we



HYBRID NONNEGATIVE DYNAMICAL SYSTEMS 495

present Lyapunov, asymptotic, and invariant set stability theorems for impulsive nonnegative
dynamical systems. Then, in Section 3, we specialize the results of Section 2 to show that
nonlinear hybrid compartmental dynamical systems are a special case of hybrid nonnegative
dynamical systems. In Section 4 we extend the notion of dissipativity theory to hybrid
nonnegative dynamical systems with linear and nonlinear storage functions and linear hybrid
supply rates. In addition, we develop new Kalman—Yakubovich—Popov equations in terms of
linear and nonlinear storage functions and linear hybrid supply rates for characterizing
dissipativeness for hybrid nonnegative dynamical systems. Furthermore, a generalized hybrid
mass balance interpretation involving the system’s stored or, accumulated mass, expelled
mass over the continuous-time dynamics, and the expelled mass at the resetting instants is
given. In Section 5 we specialize the results of Section 4 to linear impulsive nonnegative
dynamical systems. In Section 6, we use the results of Section 4 to state and prove feedback
interconnection stability results for dissipative hybrid nonnegative dynamical systems.
Finally, we draw conclusions in Section 7.

2 STABILITY THEORY FOR NONLINEAR HYBRID NONNEGATIVE
DYNAMICAL SYSTEMS

In this section we provide sufficient conditions for stability of state-dependent impulsive
nonnegative dynamical systems; that is, state-dependent impulsive dynamical systems [30]
whose solutions remain in the nonnegative orthant for nonnegative initial conditions. First
however, we establish notation and definitions that are necessary for developing the main
results of this paper. Let R denote the set of real numbers, let R” denote the set of n x 1
column vectors, let ()T denote transpose, let NV denote the set of nonnegative integers, and let
I, denote the n x n identity matrix. Furthermore, let S and 0S denote the closure and the
boundary of the subset S C R", respectively. We write || - || for the Euclidean vector norm,
B:(a), 2 € R", & > 0, for the open ball centered at o with radius &, V’(x) for the Fréchet
derivative of Vat x, N (M) for the null space of M, and M > 0 (resp., M > 0) to denote the
fact that the Hermitian matrix M is nonnegative (resp., positive) definite. For x € R” we write
x >> 0 (resp., x > 0) to indicate that every component of x is nonnegative (resp., positive).
In this case we say that x is nonnegative or positive, respectively. Likewise 4 € R™"™ is
nonnegative or positive' if every entry of 4 is nonnegative or positive, respectively, which is
written as 4 >> 0 or 4> 0, respectively. Let R} and R’ denote the nonnegative and
positive orthants of R"; that is, if x € R”, then x € R} and x € R, are equivalent, respec-
tively, to x >> 0 and x > 0. The following definition introduces the notion of Z-, M-, and
essentially nonnegative matrices.

DEFINITION 2.1 [18] Let A € R™". 4 is a Z-matrix if A;jy <0, i,j=1,...,n, i #j Ais
an M-matrix (resp., a nonsingular M-matrix) if 4 is a Z-matrix and all the principal minors
of A are nonnegative (resp., positive). A is essentially nonnegative if —4 is a Z-matrix; that
iS, A(,'J) 20,1,_]: 1,...,n,i7$j.

The following definitions introduce the notions of essentially nonnegative and nonnegative
vector fields.

"In this paper it is important to distinguish between a square nonnegative (resp., positive) matrix and a
nonnegative-definite (resp., positive-definite) matrix.
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DEFINITION 2.2 Let f; =[f,,....fo,]": D — R", where D is an open subset of R" that
contains R” Then f is essentially nonnegative if f,,(x) > 0, foralli=1,...,n,andx € IR"
such that x; = 0, where x; denotes the ith entry of x.

DEFINITION 2.3 Let fy = [fy,, ..., f3,]": D — R", where D is an open subset of R" that
contains R. Then f; is nonnegative if fz,(x) > 0, forall i=1,...,n, and x € R.

Note that if f.(x) = A.x, where 4, € R™", then f; is essentially nonnegative if and only if
A, is essentially nonnegative. Similarly, if f;(x) = (44 — I,)x, where 4; € R™™”", then
x + f4(x) is nonnegative for all x € R], if and only if 4, is nonnegative.

In the first part of this paper we consider nonlinear state-dependent impulsive dynamical
systems of the form

X0 =fe(x(®), x0)=x0, x(1) ¢ Z, M
Ax(9) = fax(0), (1) € Z;, @

where t>0, x(f) e DCR", D is an open subset of R” that contains R” with 0 € D,
Ax(t) = x(t*) —x(t), fo: D — R” is Lipschitz continuous and satisfies £,(0) = 0 fi:D—> R*
is continuous, and 2, C D is the resetting set. We refer to the differential Eq. (1) as the
continuous-time dynamics, and we refer to the difference Eq. (2) as the resetting law.
Note that since the resetting set Z, is a subset of the state space R’ and is independent
of time, state-dependent impulsive dynamical systems are time-invariant. For a particular
trajectory x(¢), we let tx(xo) denote the kth instant of time at which x(¢) intersects Z,, and we
call the times t4(xo) the resetting times. Thus the trajectory of the system (1), (2) from the
initial condition x(0) = xo is given by s(z, xo) for 0 < ¢ < 7;(xp). If and when the trajectory
reaches a state x; =x(t;(x)) satisfying x; € Z,, then the state is instantaneously transferred
to x| éxl + fa(x1) according to the resetting law (2). The trajectory x(£), T1(xo) < ¢ < T2(x0),
is then given by s(f — 71(xo), x]), and so on. Note that the solution x(f) of (1), (2) is left-
continuous; that is, it is continuous everywhere except at the resetting times 7;(xy), and

5 £ x(ri0)) = lim x(ze(o) — ), )
£ x(wkx0) + e m(x0)), @

fork=1,2,...
We make the following additional assumptions:

Al. If x(t) € Z,\Z,, then there exists ¢ > 0 such that, for all 0 < § < ¢, s(5, x(t)) & 2.
A2, If x € Z,, then x + f3(x) & Z,.

Assumption Al ensures that if a trajectory reaches the closure of Z, at a point that does not
belong to Z,, then the trajectory must be directed away from Z,; that is, a trajectory cannot
enter Z, through a point that belongs to the closure of Z, but not to Z,. Furthermore, A2
ensures that when a trajectory intersects the resetting set Z,, it instantaneously exits Z,. Finally,
we note that if xo € Z,, then the system initially resets to xj = xo + fa(x0) & Z, which serves
as the initial condition for the continuous dynamics (1). It follows from Al and A2 that
0Z,N 2, is closed and hence the resetting times 74(xo) are well defined and distinct.
Furthermore, it follows from A2 that if x* € R, satisfies f;(x*) = 0, then x* ¢ Z,. To see this,
suppose x* € Z,. Thenx* + fz(x*) = x* € Z,, contradicting A2. In particular, we note 0 & Z,.
For further insights on Assumptions A1l and A2 the interested reader is referred to [30, 31].
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Next, we present a result which shows that I]-%f’F is an invariant set for (1), (2) if f: D — R” is
essentially nonnegative and fy: D — R” is such that x 4 fy(x) is nonnegative for all x € R

PROPOSITION 2.1  Suppose Il—%:’L C D. Iff.: D — R" is essentially nonnegative and f3: Z; —
R”" is such that x + f3(x) is nonnegative, then R’ is an invariant set with respect to (1), (2).

Proof Consider the continuous-time dynamical system given by
Xe(t) = felxe(®),  x:(0) = x0, £20. ®

Now, it follows from Theorem 3.1 of Ref. [32] (see also Proposition 6.1 of [4]) that since
Jfo: D — R” is essentially nonnegative, IR is an invariant set with respect to (5); that is, if
X € IR then x.(¢) € R}, ¢ > 0. Now, since with x, = xo, x(£) = xc(¢), 0 < ¢ < 71(x0), it
follows that x(?) € IR 0 <t < 11(xp). Next, since f;: Z, — R” is such that x + fy(x) is
nonnegative it follows that xI = x(t1(x0)) + f‘}(x(‘cl(xo))) € R” Now, since s(f, xp) =
s(t — t1(x0), x1), T1(x0) < ¢ < rz(xo) withxeo = x7, it follows thatx(t) =x(t — T1(x%)) € RY,
Ti(x0) <t < Tz(Xo), and hence xj = x(_rz(xo)) + fa(x(T2(x0))) € IR” Repeating this procedure
for 7i(xo), i = 3,4, ..., it follows that R’} is an invariant set with respect to (1), (2). |

Remark 2.1 1t is important to note that unlike continuous-time nonnegative systems [4] and
discrete-time nonnegative systems [5], Proposition 2.1 provides only sufficient conditions
assuring that R, is an invariant set with respect to (1), (2). To see this, let Z, = OR" and
assume x + ﬁ;(x) x € Z,, is nonnegative. Then, R, remains invariant with respect to (1) 2)
irrespective of whether f(-) is essentially nonnegative or not.

Next, we specialize Proposition 2.1 to linear state-dependent impulsive dynamical systems
of the form

X(t) = Acx(t)’ X(O) = X0, X(t) ¢ Zx’ (6)
Ax(t) = (a — L)x(®),  x(1) € Z,, (M

where t > 0, x(f) € R” A, € R™" is essentially nonnegative, 4; € R"*" is nonnegative, and
Z, C R" Note that in this case A2 implies that if x € Z,, then Azx & Z,.

PROPOSITION 2.2 Let A, € R™" and Ay € R™™". If A, is essentially nonnegative and Ay is
nonnegative, then R, is an invariant set with respect to (6), (7).

Proof The proof is a direct consequence of Proposition 2.1 with f.(x) = 4.x and fz(x) =
(Ad - I,,)x.

The following definition introduces several types of stability corresponding to the equili-
brium solution x(f) = x, of (1), (2) whose solutions remain in the nonnegative orthant R, .

DEFINITION 2.4 Let I]_R'jr be invariant with respect to (1), (2) and let x, € R’.. Then, the
equilibrium solution x(f) = x, of the hybrid nonnegative dynamical system (1), (2) is
Lyapunov stable if for every & > 0 there exists = (&) > 0 such that if xo € Bs(x.) "R},
then x(f) € By(x.) "R, ¢t > 0. The equilibrium solution x(t) = x, of the hybrid nonnegative
dynamical system (1), (2) is asymptotically stable if it is Lyapunov stable and there exists
0 > 0 such that if xo € Bs(x.) N R, then lim,_, oo x(t) = x,. Finally, the equilibrium solution
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x(t) = x. of the hybrid nonnegative dynamical system (1), (2) is globally asymptotically
stable if the previous statement holds for all xo € R.

Next, we present several key results on stability of nonlinear hybrid nonnegative dynamical
systems. We note that standard Lyapunov stability theorems [30] and invariant set theorems
[30, 33] for nonlinear hybrid dynamical systems can be used directly with the required
sufficient conditions verified on R, .

THEOREM 2.1 Suppose there exists a continuously differentiable function V" @1 — [0, 0)
satisfying V(x,) =0, V(x) > 0, x # x., and

Vyex) <0, x¢ Z, (8)
Vix+fax)) < V(x), xe€ 2. )

Then the equilibrium solution x(f) = x. of the hybrid nonnegative dynamical system (1), (2) is
Lyapunov stable. Furthermore, if the inequality (8) is strict for all x # x,, then the equilibrium
solution x(t) = x, of the hybrid nonnegative dynamical system (1), (2) is asymptotically stable.
Finally, if V(x) — o0, as ||x|| — oo, then the above results are global.

Proof The proof is identical to the proof of Theorem 2 of [30] with D = Ri and
Z, CRL. n

Next, we present a generalized Krasovskii-LaSalle invariant set stability theorem for
nonlinear hybrid dynamical systems. The following key assumption is needed for the
statement of this result.

ASSUMPTION 2.1 [30, 33] Consider the impulsive nonnegative dynamical system G given by
(1), (2) and let s(t, xp), t > 0, denote the solution to (1), (2) with initial condition xo. Then
Jforevery xy € D, there exists a dense subset T, C [0, 00) such that [0, 00)\Ty, is (finitely or
infinitely) countable and for every ¢ > 0 and t € T,,, there exists (¢, xo, t) > 0 such that if
Ixo — yll < 6(g, X0, 1), y € D, then ||s(t, xo) — s(t, )|l <.

Assumption 2.1 is a generalization of the standard continuous dependence property for
dynamical systems with continuous flows to dynamical systems with left-continuous flows
and insures continuous dependence over a dense subset of [0, 00). Henceforth, we assume
that £(-), fa(-), and Z, are such that Assumption 2.1 holds. Necessary and sufficient con-
ditions that guarantee that the nonlinear impulsive dynamical system G given by (1), (2)
satisfies Assumption 2.1 are given in Ref. [33]. For further discussion on Assumption 2.1 see
Refs. [30, 33].

THEOREM 2.2 Consider the hybrid nonnegative dynamical system G given by (1), (2),
assume D, C R, is a compact positively invariant set with respect to (1), (2), and assume
that there exists a continuously differentiable function V:D, — R such that

V' (x)f(x) <0, xe€D, x¢&2Z, (10)
V(x + fa(x)) < V(x), x€D,, xe2Z,. (11)

Let ’R—A-{x €D.x & Z, V(X)fe(x) =0} U {x € Doix € Z,, V(x + f3(x)) = V(x)} and let M
denote the largest invariant set contained in R. If xy € D,, then x(f) > M as t - oo.
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Proof The proof is a direct consequence of Theorem 3 of Ref. [30] with D = [@1. |

Finally, we give sufficient conditions for Lyapunov stability and asymptotic stability for
linear hybrid nonnegative dynamical systems using linear Lyapunov functions.

THEOREM 2.3 Consider the linear hybrid dynamical system given by (6), (7) where
A. € R™" is essentially nonnegative and Ay € R™" is nonnegative. Then the following
statements hold:

(i) If there exists vectors p,r.,rq € R” such that p > 0, r. >> 0, and r4 >> 0, satisfy
0=x"Ulp+r), x¢&2Z., (12)
0=x"lp—p+rs), x€2Z, 13)

then the zero solution x(t) = 0 to (6), (7) is Lyapunov stable.
(ii) If there exist vectors p,r.,rq € R” such that p > 0, r. > 0, and vy >> 0 satisfy (12),
(13), then the zero solution x(t) = 0 to (6), (7) is asymptotically stable.

Proof The result is a direct consequence of Theorem 2.1 with V(x) = pTx, fi(x) = 4.x, and
fa(x) = (44 — I,)x. Specifically, in this case, V'(x)f.(x) = pTdx = —rIx <0, x € Z,, and
V(x+f3(x)) — V(x) = pTAax — p"™x = —rlx < 0, x € Z,, so that all the conditions of
Theorem 2.1 are satisfied which proves Lyapunov stability. In the case where r. > 0 it
follows that V'(x)f.(x) = pTd.x = —rlx < 0, x € Z,, which proves asymptotic stability.

||

Remark 2.2 For asymptotic stability, conditions (12) and (13) are implied by p > 0,
ATp «0,and (4, — 1 )'p << 0 which can be solved using a linear matrix inequality (LMI)
feasibility problem [34]. Specifically, for a given r, € R" and 7, € R”", note that there exists
p € R" such that

0= Azp + 7, (14)
O=A§p—p+rd, 15)

if and only if rank [4 7] = rank 4, where

Al AT Al 7
el A el "

Now, there exist p > 0, . > 0, and r; >> 0 such that (12), (13) are satisfied if and only if
p> 0and —4p >> 0.

3 HYBRID COMPARTMENTAL DYNAMICAL SYSTEMS

In this section, we specialize the results of Section 2 to hybrid compartmental dynamical
systems. Specifically, we show that nonlinear hybrid compartmental dynamical systems are a
special case of hybrid nonnegative dynamical systems. To see this, let x;(¢), i=1,...,n,
denote the mass (and hence a nonnegative quantity) of the ith subsystem of the hybrid
compartmental system shown in Figure 1, let a;(x) > 0, x & Z,, denote the rate of flow of
material loss of the ith continuous-time subsystem, let w;(f) > 0,¢> 0,i =1, ..., n, denote
the rate of mass inflow supplied to the ith continuous-time subsystem, and let ¢;(x(?)),
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wei(t) wai(tk) acij(z(t)) we;(t)

/A

wq;(tk)

ith Subsystem aqij(z(tk)) jth Subsystem
=) s =(t) =
ac;i(z(t))

acii(z(t)) aqii(z(tk)) acj;(z(t)) aq;;(z(tk))

FIGURE 1 Nonlinear hybrid compartmental interconnected subsystem model.

t>0,i#]j,i,j=1,...,n, denote the net mass flow (or flux) from the jth continuous-time
subsystem to the ith continuous-time subsystem given by ¢;(x(£)) = a.;(x()) — agi(x(?)),
where the rate of material flows are such that a,;(x) >0, x¢ Z,, i#j, i,j=1,...,n.
Similarly, for the resetting dynamics, let ag;(x) > 0, x € Z,, denote the material loss of the
ith discrete-time subsystem, let wg(#%) > 0,i =1, ..., n, denote the mass inflow supplied to
the ith discrete-time subsystem, and let ¢,;(t), i #j, i,j = 1,..., n, denote the net mass
exchange from the jth discrete-time subsystem to the ith discrete-time subsystem given by
G4y (x(t)) = aa(x(t)) — agi(x(tk)), where # = tx(xo) and the material flows are such that
aqi(x) >0, x€ Z,, i#j, i,j=1,...,n. Hence, a mass balance for the whole hybrid
compartmental system yields

n

() = —aci(®) + Y, Gy (O) +wail®), x() & Zxr i=1,...,n,  (17)

J=Li#
Ax(D) = —auGx) + Y $GO) +wald), XD € Zy, i=1,...,n,  (18)
J=Li#
or, equivalently,
x(0) = fox(D) +we(®),  x(0) =xo, x(t) & Zx, 19)
Ax(?) = fax(D)) + wa(®),  x(?) € Zx, (20)

where x(£) 2[x1(2), - . . , (DT, W) 2[We1 (?), - . . , Wen(OIF, wa(t) 2[war(?), - . . , wan()], and
fori,j=1,...,n,

fo®) = —aci(®) + Y [aqy(x) — agi(x)], @1)
J=Li#j

fa®) = —az() + Y [aa(x) — agi(x)]. 22)
J=Li#f

Since all mass flows as well as compartment sizes are nonnegative, it follows that for all
i=1,...,n, fi(x) > 0 for all x ¢ Z, whenever x; = 0 and whatever the values of x;, j # i,
and x; + f4i(x) > 0 for all x € Z,. The above physical constraints are implied by a.;;(x) > 0,
acii(x) = 0, x & Zx, agi(x) > 0, agi(x) =0, x € Z,, wy; =0, wg; >0, foralli,j=1,...,n,
and if x; = 0, then a¢;(x) =0 and ag;(x) =0 for all i,j =1,...,n, so that x; > 0. In this
case, f-(x), x € Z,, is essentially nonnegative and x + fz(x) > 0, x € Z,, and hence the hybrid
compartmental model given by (17), (18) is a hybrid nonnegative dynamical system. Taking
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the total mass of the compartmental system ¥ (x) = e'x = Y _%_, x;, where e’ é[l, 1,...,1],
as a Lyapunov function for the undisturbed (w.(f) = 0 and w,(#;) = 0) system (17), (18) and
assuming a.;(0) =0, i,/ =1,...,n, it follows that

V(x) = zn:fci
=- Z 2@+ 3 3 laey) - aio]

i=1 j=1,i#j
= - Z Acii(X)
i=1
<0, x¢2,,

and

AV(x) = Zn: Ax;
= - Z adu(x) + Z Z [ady(x) - adjl(x)]

i=1 j=1,i#j
=- Z agii(x)
t=1

<0, xe2Z,

which, by Theorem 2.1, shows that the zero solution x(f) =0 of the nonlinear hybrid
compartmental system given by (17), (18) is Lyapunov stable. If (17), (18) with w.(f) =0
and wy(#) = 0 has losses (outflows) from all compartments over the continuous-time
dynamics, then a.;(x) > 0, x € Z,, x # 0, and by Theorem 2.1 the zero solution x(f) = 0 to
(17), (18) is asymptotically stable.

It is interesting to note that in the linear case a.;(x) = agixi, ¢c,-j(x) = AcijXj — AgjiXi,

agii(x) = agixi, and ¢ (x) = agixj — aqyx;, where a; > 0, and ag; > 0,i,j=1,...,n, so
that (19), (20) become
x(#) = Acx() + we(0),  x(0) = xo, x(£) & 2, (23)
Ax(t) = (Aa — L)x(®) + wa(®), x(2) € Z;, (24)
where fori,j=1,...,n,
( n
- Aclis l =,]
Aoy = ; I (25)
L Qcij» i#],
l - Adlis i =j
Aagj) = ; (26)
Aadij, i #.1 .

Note that since at any given instant of time compartmental mass can only be transported,
stored, or discharged but not created and the maximum amount of mass that can be trans-
ported and/or discharged cannot exceed the mass in a compartment, it follows that
1> 27=1 agq;i. Thus A, is an essentially nonnegative matrix and A, is a nonnegative matrix
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and hence the hybrid compartmental model given by (19), (20) is a hybrid nonnegative
dynamical system.

The hybrid compartmental system (17), (18) with no inflows; that is, w.(f) =0 and
wai(ty) =0,i=1,...,n,is said to be inflow-closed. Alternatively, if (17), (18) possesses no
losses (outflows) it is said to be outflow-closed. A hybrid compartmental system is said to be
closed if it is inflow-closed and outflow-closed. Note that for a closed-system ¥ (x) = 0,
x & Z,, and AV(x) = 0,x € Z, which shows that the total mass inside a closed system is
conserved. Alternatively, in the case where a.;;(x) # 0, x & Z,, azi(x) # 0,x € Z,, w(t) # 0,

and wy(t) #0,i =1, ..., n, it follows that (17), (18) can be equivalently written as
T
50 = Uns0) = DO (31 60) ) 400, 50 # 25 e
T
8() = Ua60) = D)5 6O ) 4wa0, 30 20 @)

where Jg,(x) and Jy,(x) are skew-symmetric matrix functions with Joui i)(x) = 0, Jan(i,i(x) =
0, Jen(i )(¥) = acij(x) — agi(x), and  Janij)(x) = aayi(x) — agii(x), i # j, Do(x) = diag[ac11(x),
a022(x)’ ERX] acnn(x)] == Oa and Dd()C) = diag[adll(x)9 ad22(x)9 ) adnn(x)] >> 07x € RZ_
Hence, a linear hybrid compartmental system is a hybrid port-controlled Hamiltonian system
with a Hamiltonian H(x) = V(x) = e"x representing the total mass in the system, D.(x)
representing the outflow dissipation over the continnuous-time dynamics, D,;(x) representing
the outflow dissipation at the resetting instants, w,.(¢) representing the supplied flux to the
system over the continuous-time dynamics, and w,(#;) representing the supplied mass to the
system at the resetting instants. This observation shows that hybrid compartmental systems
are conservative systems. This will be further elaborated on in the following sections.

4 DISSIPATIVITY THEORY FOR HYBRID NONNEGATIVE DYNAMICAL
SYSTEMS

In this section we extend the notion of dissipativity to nonlinear impulsive nonnegative dyna-
mical systems. Specifically, we consider nonlinear impulsive dynamical systems G of the form

(1) = fe(x(0) + G x(Duc(®),  x(0) =x0, (x(2), uc(?)) & Z, (29)
Ax(1) = fa(x(®)) + Ga(x(D))ua(®),  (x(), uc()) € Z, (30)
Ye(t) = ho(x(1)) + Jx(Ouc(®),  (x(0), uc0) & Z, G
ya(t) = ha(x(?)) + Jax(@®)ua(?),  (x(2), uc(?) € Z, (32)

where ¢t > 0,x(t) e DCR", D is an open set with 0 € D, Ax(¢) éx(t“') —x(2), uc(?) €
U: € R™, us(ty) € Us € R™, 1, denotes the kth instant of time at which (x(¢), u.(f))
intersects Z C D x U, for a particular trajectory x(f) and input u.(¢), y.(f) € Y. C R,
va(ty) € Yy € RH, fo:D — R" is Lipschitz continuous and satisfies f.(0) =0,G.:D —
R™™ f: D — R" is continuous, G4:D — R"™™ h,:D — R* and satisfies 4.(0) = 0,
Ji: D — R¥™ py:D — R4, J;: D — R“™ and Z C D x U,. Here, we assume that u,(-)
and u,(-) are restricted to the class of admissible inputs cons1st1ng of measurable functions
such that (u.(f), ua(tx)) € U. x Uy for all >0 and k € N _{k 0 <t < t}, where the
constraint set U, x Uy is given with (0, 0) € U, x U,. Furthermore, we assume that the set
Z é{(x, uc): x(x, u;) = 0}, where y: D x U, — R. In addition, we assume that the system
functions f2(+), fa(-), Gc(+), Ga(*), hc(:), ha(-), Jo(-), and Jy(-) are continuously differentiable
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mappings. Finally, for the nonlinear dynamical system (29) we assume that the required
properties for the existence and uniqueness of solutions are satisfied such that (29) has a
unique solution for all £ € R [22, 24].

Next, we provide definitions and several results concerning dynamical systems of the form
(29)—(32) with nonnegative inputs and nonnegative outputs.

DEFINITION 4.1 The nonlinear dynamical system G given by (29)—(32) with x(0) =0 is
input—output? nonnegative if the hybrid output (y.(t), ya(te)), t > 0, k € N, is nonnegative
for every nonnegative hybrid input (u.(t), us(t)),t > 0,k € N.

DEFINITION 4.2 The nonlinear dynamical system G given by (29)—(32) is nonnegative if for
every x(0) € R}, and nonnegative hybrid input (uc(t), ua(t)),t >0,k € N, the solution
x(8),t > 0, to (29), (30) and the hybrid output (y.(£), ya(t)), t > 0, k € N, are nonnegative.

PROPOSITION 4.1 Consider the nonlinear dynamical system G given by (29)—~(32). If
Jo: D — R” is essentially nonnegative, f;: D — R" is such that x + f3(x) is nonnegative for
allx € R, Go(x) 2> 0, Ga(x) == 0, he(x) 2> 0, ha(x) == 0, Jc(x) == 0, and J4(x) == 0,
x € R, then G is nonnegative.

Proof The proof is similar to the proof of Proposition 2.1 and hence is omitted. |

For the impulsive dynamical system G given by (29)—(32) a function (sc(uc, y.), S4(#d, ¥a)),
where s.: U, x Y. = R and s4: U; x Y; — R are such that 5.(0, 0) = 0 and 54(0,0) = 0, is
called a hybrid supply rate if s.(u., y.) is locally integrable; that is, for all input—output pairs
uc(t) € Ug, yc(t) € Yo, sc(:, -) satisfies f: [sc(uc(s), ye(s)lds < oo, t, ? > 0. Note that since all
input—output pairs u,(tx) € Uy, ya(tk) € Y4, are defined for discrete instants, s4(-, -) satisfies
Y ke, 1Sa(ta(te), ya(t)] < o0, where k € N A(k:t <t < 7). The following definition
introduces the notion of dissipativity and exponential dissipativity for a nonlinear hybrid
nonnegative dynamical system.

DEFINITION 4.3 The impulsive dynamical system G given by (29)~(32) is exponentially
dissipative (resp., dissipative) with respect to the hybrid supply rate (s, s4) if there exists a
continuous, nonnegative-definite function Vi:R!, — Ry called a storage function and a
scalar ¢ > 0 (resp., ¢ = 0) such that Vs(0) = 0 and the dissipation inequality

T
eTV(x(T)) < Vi(x(t)) + J esc(ue(t), ye(t)) dt
+ Y Esauat), ), T =1, (33)
kGN[,o_,)

is satisfied for all T > ty. The impulsive dynamical system given by (29)—(32) is lossless with
respect to the hybrid supply rate (s., sq) if the dissipation inequality (33) is satisfied as an
equality with e =0 for all T > 1.

The following result gives necessary and sufficient conditions for dissipativity over an
interval ¢ € (, #;+1] involving the consecutive resetting times #; and #,. First, however, the
following definition is required.

2 The outputs here refer to measured outputs or observations and may have nothing to do with material outflows of
the nonnegative compartmental system.
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DEFINITION 4.4 An impulsive dynamical system G given by (29)—(32) is zero-state
observable if (uc(f), ua(tr)) = (0, 0), (¥c(£), ya(t)) = (0,0), k € N, implies x(f) =0. An
impulsive dynamical system G given by (29)—(32) is strongly zero-state observable if
u(t) = 0,y.(0) =0 implies x(t) =0. An impulsive dynamical system G is completely
reachable if for all (ty, x;) € R x D, there exist a finite time t| < ty, square integrable inputs
uc(t) defined on [t;, to], and inputs ua(ty) defined on k € Ny, ), such that the state x(t),
t > t;, can be driven from x(t;) = 0 to x(to) = xi. Finally, an impulsive system G is minimal if
it is zero-state observable and completely reachable.

THEOREM 4.1 Assume G is completely reachable. Then G is dissipative with respect to the
hybrid supply rate (sc,sq) if and only if there exists a continuous, nonnegative-definite
Sfunction V: R, — R such that, for all k € N,

V(@) — Va(a(0)) < j 5o(tels), ye()ds, 1 <1 <P tepn, (34)
Vs(x(te) + fa(x(t6)) + Gax(te)ua(te)) — Vex(tx)) < sa(ua(t), ya(te)). (35)

Furthermore, G is exponentially dissipative with respect to the hybrid supply rate (s., sq) if
and only if there exists a continuous, nonnegative-definite function Vs:R) — R, such that

V() — ETix(0) < j Fisoluels) o) ds, i <t<i<f,  (36)
Vs(@x(te) + fa(x(t0)) + Ga(x(t)ua(te)) — Vx (%)) < sa(ua(tr), ya(t))- 37

Finally, G is lossless with respect to the hybrid supply rate (s, sq) if and only if there exists a
continuous, nonnegative-definite function V: R}, — Ry such that (34) and (35) are satisfied
as equalities.

Proof The proof is identical to the proof of Theorem 6 of Ref. [30]. |

Remark 4.1 If Vy(-) is continuously differentiable then an equivalent statement for
dissipativeness of the impulsive dynamical system G with respect to the hybrid supply rate
(8¢, 84) s

Vs(x(t)) = sc(uc(t)’ yc(t))’ e <t =<trt1, (38)
AVy(x(t)) < sa(ua(t), yate)), keN, (39)

where V,(-) denotes the total derivative of V,(x(f)) along the state trajectorles x(2),
t € (ty, try1), of the impulsive dynamical system (29)~(32) and AVi(x(%)) = V(x(t+))—
Vi(x(t2)) = Vs(x(ty) + fa(c(te)) + Ga(x(te))ua(te)) — Vs(x(t)), k € N, denotes the difference
of the storage function V(x) at the resetting times #, k € N, of the impulsive dynamical
system (29)—(32). Furthermore, an equivalent statement for exponential dissipativeness of the
impulsive dynamical system G with respect to the supply rate (s, s4) is given by

Vix(0) + eVs(x(0) < scwet), ye(@), e <t < thin, (40)

and (39).
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The following result presents Kalman—Yakubovich-Popov conditions for hybrid non-
negative dynamical systems with linear hybrid supply rates of the form (s.(u., yc),
Sa(Ud,ya)) = (qcyc + r U, qdyd +rdud), where g, € R Qe # 0,7, € R™, 1. #0,qq4 € R4,
qa #0,rg € R™, and rqg 7 0. For the remainder of the section we assume that
U =R}, Uy = IR’” and Z = Z, x R™ so that resetting occurs only when x(f) intersects 2.

THEOREM 4.2 Let q. € Re, r, € R™, q4 € R“, and r; € R™. Consider the nonlinear
hybrid dynamical system G given by (29)—(32) where f.: D — R" is essentially nonnegative,
Ja: 2y — R" is such that x+ fy(x) nonnegative, G.(x)>>0,Ga(x) >> 0, h(x) >> 0,
hd(x) 2> 0,Je(x) 2> 0, and Jy(x) >> 0,x € R, If there exist functions Vs: R} — IR+,

<R — R,,.,Zd IR — IR+,W RL — IR'” Wd R} — IR+ , and a scalar8>0 (resp.,
£= O) such that V() is contmuously dyﬁ’erentzable, nonnegative definite, V5(0) = 0,

Ve(x + fa®) + Ga®ua) = Velx + fax)) + Vi + fi()Ga@ua, x € 2., ug € R, (41)

and
0 = V(@)fe(x) + eVs(x) — qrhe(x) + Le(x), x & 2y, (42)
0 =V(0)G.(x) — qiJe@) — ry + WL(x), x¢ 2, 43)
0 = Vi(x +£u(x) — Vs(x) — quha(x) + La(x), x € Z,, (44)
0 = V}(x + fa())Ga(x) — quJa(x) — ry + Wix), x € 2, (45)

then the nonlinear impulsive system G given by (29)~(32) is exponentially dissipative (resp.,
dissipative) with respect to the linear hybrid supply rate (sc(uc, yc), Sa(ua,ya)) = (@ v+
riuc, qya + riug).

A

Proof For any admissible input u.(-), t,_? eR, 4 <t <t<ty,andk e N, it follows from
(42), (43) that for all x ¢ Z, and u. € RT",

Vi) + eVi(x) = V&) (o) + Ge(xue) + eVi(x)
= grhe(x) — £e(x) + qrJ(Xuc + riuc — WI(x)u,
= qoye + rotte — £(x) — Wi (@),
< qrye +riue
= Sc(uc, ye)- (46)
Next, it follows from (44), (45), and the structural storage function constraint (41) that for all
x € Z, and uy € R,
AV(x) = Vi(x + fa(x) + Ga(x)ua) — V(x)
= Vs(x +£a(0) — Vs(x) + V(¢ + fa(x))Ga(X)ug
= qgha(x) — £a(x) + qgJa(ua + rgus — W(xua
= 54(ta, ya) — La(x) — Wix)ua
< sa(ud, ya)- (47)

Now, using (46) and (47) the result follows from Theorem 4.1. |
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Remark 4.2 The structural constraint (41) on the system storage function is similar to the
structural constraint invoked in standard nonlinear discrete-time dissipativity theory [35,36]
and hybrid dissipativity theory [30]. However, since V;: R}, — R, we can take a first-order
Taylor expansion in (41) as opposed to the second-order Taylor expansion given in Refs.
[30, 35, 36].

Remark 4.3 As in standard dissipativity theory with quadratic supply rates [37], the con-
cepts of linear supply rates and linear storage functions provide a generalized mass balance
interpretation. Specifically, using (42)—(45), it follows that for 7 > ¢ > 0 and k € N )

[0 + rluconas + 3 labyat) + e
t keN, [0}

— V) — Vilx(®) + j’[eZ(x(s»x(s) W Gx($))uels)] ds
+ Y a6t + Wiet))ua(te)], (48)

keN| (2]

which can be interpreted as a generalized mass balance equation where V(x(?)) — V;(x(?)) is
the stored mass of the nonlinear hybrid dynamical system, the second path-dependent
term on the right corresponds to the expelled mass of the nonnegative system over the
continuous-time dynamics, and the third discrete term on the right correspond to the expelled
mass at the resetting instants. Equivalently, it follows from Theorem 4.1 that (48) can be
rewritten as

V(@) = qoye(t) + riuct) — [EL @O0 + Wi, & <1<, (49)
AV(x(t)) = qava(te) + raua(te) — [(e)x(t) + Wit )ua@)l, ke N, (50)

which yields a set of generalized mass conservation equations. Specifically, (49) and (50)
show that the system mass transport (resp., change in system mass) over the interval
t € (t, te+1] (resp., the resetting instants) is equal to the supplied system flux (resp., mass)
minus the expelled system flux (resp., mass).

Remark 4.4 Note that if a nonnegative dynamical system G is dissipative with respect to the
linear hybrid supply rate (q'y. + rluc, qlys +rius) with a continuously differentiable,
positive-definite storage function and if g. << 0,¢9s << 0, and (u.(), ua(#%)) = (0, 0), it
follows that V(x(?)) < qly.(f) <0, > 0, and AV,(x(#)) < qlya(t) < 0,k € N. Hence, the
undisturbed ((#.(¢), ua(t)) = (0, 0)) system G is Lyapunov stable. Furthermore, if a non-
negative dynamical system G is exponentially dissipative with respect to the hybrid linear
supply rate (qTy. + rXuc; qlya + rfug) with a continuously differentiable, positive-definite
storage function and ¢, <<0, gs << 0, and (u.(?),uqs(t)) =(0,0), it follows that
Vi(x(?)) < —eVi(x(£)) + qlye(f) < 0,x() #0,¢ >0, where ¢>0, and AV,(x(t)) < g}
ya(t) <0,k € N. Hence, the undisturbed ((u.(2), us(#)) = (0, 0)) system G is asymptoti-
cally stable.

Next, we provide necessary and sufficient conditions for the case where G given by
(29)—(32) is lossless with respect to the linear hybrid supply rate of the form (s.(uc, yc),

sa(ua, ya)) = (qlye + rluc, qlya + riua).
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THEOREM 4.3 Let g, € R-, r, € R™, qq € R“, and r; € R™. Consider the nonlinear
hybrid dynamical system G given by (29)-(32) where f.: D — R” is essentially nonnegative,
Ja: Zx — R" is such that x + fy(x) is nonnegative, G.(x) >> 0, G4(x) >> 0, ho(x) >> 0,
hy(x) >> 0,J.(x) >> 0, and Jy(x) >>0,x € Rg’_. Then G is lossless with respect to the
supply rate (se(uc, yo), sa(Ua,ya)) = (qLye + rluc, qyya + riug) if and only if there exists a
Sunction Vi:RY — Ry such that V() is continuously differentiable, nonnegative definite,
Vi(0) =0, and for all x € Z,,uq € R}, (41) holds, and

0 = Vi@ — g he(x), x & Zs, 1)
0= V;(x)Ge(®) — g, Je(x) — 17, x & 2, (52)
0 = Vi(x +fa(®) — Vs(®) — qiha(x), x € Z,, (53)
0 = V(x +f3(x)Ga(x) — goJu(x) — 73, x€ Z,, (54)

Proof Sufficiency follows as in the proof of Theorem 4.2. To show necessity, suppose that
the nonlinear impulsive dynamical system G is lossless with respect to the linear supply rate
(Scy84). Then, it follows that for all k € N,

~

Vi) — Vo(x(0)) = j 5e(te(6), ye©) ds, e <1 <F < fepn, (55)

and
Vi(x(te) + fax(t)) + Gax(t))ua(te)) = Vi(x(t)) + sa(a(te), ya(te))- (56)
Now, dividing (55) by 7 — ¢+ and letting  — ¢, (55) is equivalent to
Vs@(0) = Vi) + G O)ueD] = se@e(®, ye®), # <t<tiyr.  (57)
Next, with # = 0, it follows from (57) that
Vixo)feo) + Go@o)ue(0)] = 5c(uc(0), 9e(0), X0 & Zx, u(0) € Ry, (58)
Since xo ¢ Z, is arbitrary, it follows that

VIOIf() + Geucl = qrye +riue
= qlhe() + (7 + g e, x & 25, u, € R™.

Now, setting u, = 0 yields (51) which further yields (52). Next, it follows from (56) with
k =1 that

Vs(x(tr) +fa(x(11)) + Gax(t1))ua(t1)) = Vi(x(t1)) + sa(ua(tr), ya(t1)). (59)

Now, since the continuous-time dynamics (29) are Lipschitz, it follows that for arbitrary
x € Z, there exists xo € Z, such that x(#;) = x. Hence, it follows from (59) that

Vo(x + fa(x) + Ga(x)ua) = Vi(x) + qoya + ryua
= V() + quha(x) + () + quJa@)ua, x € Zx,ug € R, (60)
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Since the right-hand-side of (60) is linear in u, it follows that V(x + fz(x) + Ga(x)ua) is
linear in u; and hence there exists Py,,: R, — R'™™ gych that

Vs(x +£a(x) + Ga(¥)ua) = Vs(x + fa(x)) + Pru,()ua. (61)

Since Vi(-) is continuously differentiable, applying Taylor series expansion on (61) about
ug = 0 yields

Vs(x + fa(x) + Ga())ua
aud

Py, () = = Vi(x + fa(x))Ga(x). (62)

ud=0
Now, using (61) and equating coefficients of equal powers in (60) yields (53), (54). |

Next, we provide a key definition for hybrid nonnegative dynamical systems which are
dissipative with respect to very special supply rate.

DEFINITION 4.5 A hybrid nonnegative dynamical system G of the form (29)—(32) is non-
accumulative (resp., exponentially nonaccumulative) if G is dissipative (resp., exponentially
dissipative) with respect to the supply rate (sc(uc,yc),Sq(ua,va)) = (€Tu. — ey,
eTuy —elyy).

If G is nonaccumulative, then it follows that

V(@) < e"uct) — ey, <t <, (63)
AVy(x(t)) < e"ua(te) — €'ya(te), ke N. (64)
If the components uy(-),i=1,...,m., and wuy(-),i=1,...,my, of u.(-) and wuy(-),

respectively, denote flux and mass inputs of the hybrid system G and the components
V() i=1,...,1,and yz(-),i = 1,...,1; of y.(-) and y4(-), respectively, denote flux and
mass outputs of the hybrid system G, then nonaccumulativity implies that the system mass
transport (resp., change in system mass) is always less than or equal to the difference between
the system flux (resp., mass) input and system flux (resp., mass) output.

Next, we show that all hybrid compartmental systems with measured outputs corres-
ponding to material outflows are nonaccumulative. Specifically, consider (27), (28) with
storage function V;(x) = e"x and hybrid outputs y. = D (x)(@V /3x)" = [ac11(%), @ (X), . ..,
aen(®)]T and y; = Dy(x)(0V /0x)T = [az11(X), aana (%), . . ., Aamm(x)]". Now, it follows that

T
Vs(x) =e' [[Jcn(x) — Dc(x)] (aa_V> +Wc]
X

=e'w, —e'y. + el (x)e
=e'w, — eTyc, x¢ Z,, (65)

and
T
AV =" [[Jd,,(x) -0.)(%,) +wd]

=elwg —elys + e Tpx)e

=e'wy — eTyd, x € Z,, (66)
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which shows that all hybrid compartmental systems are lossless with respect to the linear
supply rate (s, s4) = (e"w. — e'y., e"w,; — ely;). Alternatively, if the hybrid outputs y. and
ya correspond to a partial observation of the material outflows, then it can easily be shown
that the nonlinear hybrid compartmental system is dissipative with respect to the supply rate
(8¢5 84) = (eTWc - eTyu eTWd - eTyd)'

5 SPECIALIZATION TO LINEAR IMPULSIVE DYNAMICAL SYSTEMS

In this section we specialize the results of Section 4 to the case of linear impulsive dynamical
systems. Specifically, setting f.(x) = 4cx, G.(x) = B, ho(x) = Ccx, J(x) = D., fa(x) =
(Ag — L)x, G4(x) = By, hg(x) = Cyx, and Jy(x) = D;, the nonnegative state-dependent
impulsive dynamical system given by (29)—(32) specializes to

x(t) = AcX(t) + Beuc(t), x(t) € Z;, (67)
Ax(f) = (g — L)x(?) + Baua(t), x(t) € Zx, (68)
Ye(t) = Cox(t) + Deuc(t), x(f) € Zx, (69)
Ya(t) = Cax(t) + Daua(t), x(t) € 2,4, (70)

where 4. € R™" is essentially nonnegative, B, € R, C, € R=*", D, € R=*™ 4, e
R™" is nonnegative, B; € R™™ C; € R“*" and D, € R“*™

THEOREM 5.1 Let gq. € R-, r, € R™, qq € R“, and ry e R™. Consider the linear
impulsive dynamical system G given by (67)—(70) and assume that A. is essentially
nonnegative, Ay is nonnegative, B. >>0,B; >>0,C. >>0,C4 >>0,D, >> 0, and
Dy >> 0. If there exist vectors p € R" ,l eR},lie R+,wc € R+ ,Wg € IR and a scalar
& > 0 (resp., € = 0) such that

0=x"Ap+ep—Clq.+1), x¢2Z, (71)
0=Blp—Djqc—re+We, (72)
0=x"dep—p—Ciga+l) xe€Z, (73)
0= Bgp — Dyqa — 74 + Wa, (74)

then the linear impulsive dynamical system G given by (67)—(70) is exponentially dissipative
(resp., dissipative) with respect to the linear supply rate (s.(uc,yc),Sa(Uq,ya)) =
(geye + rite, qyya + ryua)-

Proof The proof follows from Theorem 4.2 with f.(x) = A.x, G.(x) = B,, h (x) = Cex,
Je(x) = D,, ﬁ(x) (A4 — L)x, G4(x) = By, ha(x) = Cyx, Js(x) = Dg, Vs(x) = p"x, £c(x) =
ITx, £4(x) = ITx, We(x) = we, Wa(x) = wq.

Remark 5.1 For a given I. € R",w, € R™,l; € R", and w,; € R™, note that if rank
[M y] =rank M, where

AT el TC;rqc—lc

A B, Al D,q. +r.—w,
ME| Do |, R PedgreTve 75
451 d Ciqa—la (73)

B} Diqa+ra—wa
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then there exist p € R” such that (71)—(74) are satisfied. Now, if there exists p € R” such that
inequalities

p=>0 (76)
z—Mp>>0, (77)
where
TCch

A| D,g.+r.
= , 78
‘ C;qzi (78)

D}qd +rg

are satisfied, then there exists [, >> 0, w, >> 0, l; >> 0, and wy; >> 0 such that (71)—(74)
hold. Equations (76), (77) comprise a set of 3n + m.+ m,; linear inequalities with
pi,i=1,..., n, variables and hence the feasibility of p >> 0 such that (76), (77) hold can be
checked by standard linear matrix inequality (LMI) techniques [34].

Next, we provide sufficient conditions for the case where G given by (67)—(70) is lossless
with respect to the linear supply rate (s.(uc, ye), Sa(ua, ya)) = (q-ye + rluc, glya + riug).

THEOREM 5.1 Letq. € Re, r. € R™, q4 € R, and r; € R™. Consider the linear impulsive
dynamical system G given by (67)—(70) and assume that A, is essentially nonnegative, Ay is
nonnegative, B, >> 0,B; >> 0,C, >> 0,Cy >> 0,D, >> 0, and Dy >> 0. If there exist

pPE II_%'J'r such that

0=x"(4p—Clq.), x¢&Zx, (79)
0=BZP_D£qc_rc’ (80)
0=x"jp—p—Cqa), x€2Z, (81)
0=Blp—Dlgs—ra, (82)

then the linear impulsive dynamical system G given by (67)~(70) is lossless with respect to
the linear supply rate (sc(uc, yc), Sa(ta, ya)) = (qrye + ritie, 4ava + riua).

Proof The proof follows from Theorem 4.3 with f.(x) = A.x, G.(x) = B, h.(x) = Ccx,
Je(®) = De, fa(x) = (Ag — L)x, Ga(x) = By, ha(x) = C4x, Ja(x) = Dy, and Vy(x) =p'x. W

6 FEEDBACK INTERCONNECTIONS OF NONLINEAR HYBRID
NONNEGATIVE DYNAMICAL SYSTEMS

In this section we consider stability of feedback interconnections of hybrid nonnegative
dynamical systems. We begin by considering the nonlinear impulsive hybrid dynamical system
G given by (29)-(32) with the nonlinear impulsive nonnegative feedback system G, given by

X (1) = fec(xe(1)) + Geclxe(@)ee(®),  xc(0) = xco, (Xc(2), uee(?)) & Ze, (83)
Axc(t) = fac(xc(®)) + Gaclxe(Duac(®),  (xc(0), ucc(?)) € 2, (84)
Yee(t) = hee(xc(t)),  (xc(2), uee(?)) & Zes (85)
Yae(t) = hac(xc(8)),  (xc(1), uc(t)) € Ze, (86)
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where ¢ > 0, x.(f) € R, Ax.(f) éxc(t“‘) —x,(2), tee(t) € U C Il-%ﬁ'r'“, uge(tr) € Uge © "E\QQ”_"‘,

1 denotes the kth instant of time at which (x.(#), uc()) intersects Z. C Rl x U for a par-
ticular trajectory x.(£) and input ue.(2), yec(?) € Yoo € R, yae(t) € Yae € R, it R™ — R™
is Lipschitz continuous and is essentially nonnegative, G, : R* — R">*™e and satisfies
Geelxe) 2> 0,x. € RY, fg. : R™ — R™ is continuous and is such that x. + fa(x.) is
nonnegative for all x. € R, G4 : R — R"*™* and satisfies Ga(xc) >> 0, x. € R, he:
R"™ — R’ and satisfies A(x;) >> 0, x, € R, kg : R" — R and satisfies hgc(xc) >> 0,
xe € R, Mee = ley mae = 1y, lee = me, lge = my, and 2, éZcxc X Zey,, C R x Ug. Here,
we assume that u..(+) and u4(-) are restricted to the class of admissible inputs consisting of
measurable functions such that (uc(?), uac(t)) € Uee x Uy, for all > 0 and k € Ny 4
{k:0 <# <1}, where the constraint set U, x Uy is given with (0,0) € U, x Ug.
Furthermore, we assume that the set 2. = {(x., tec) : Xc(xe, tee) = 0}, where X : Rl x
U.. — R. In addition, we assume that the system functions f..(:), fi(*); Gec(+)s Gac(+), hcc(),
and Ag4.(-) are continuously differentiable mappings. Finally, for the nonlinear dynamical
system (83) we assume that the required properties for the existence and uniqueness of
solutions are satisfied such that (83) has a unique solution for all # € R [22, 24]. Note that with
the positive feedback interconnection given by Figure 2, (ucc, tge) = Ve, ¥a) and (Vee, Vae) =
(uc, ug). Furthermore, even though the input-output pairs of the feedback interconnection
shown on Figure 2 consist of two-vector inputs/two-vector outputs, at any given instant of
time a single-vector input/single-vector output is active. Next, we define the closed-loop
resetting set

2R Z, X Zo U x0) : (he®) + Jehee®e)s heex0) € Zeu, X 24}, (87)

Note that since the positive feedback interconnection of G and G, is well posed, it follows that
Z; is well defined and depends on the closed-loop states X é[xTxZ]T. As in Section 2, here we
assume that the solution s(¢,X,) to the dynamical system resulting from the feedback
interconnection of G and G, is such that Assumption 2.1 is satisfied.

The following theorem gives sufficient conditions for Lyapunov and asymptotic stability of
the positive feedback interconnection given by Figure 2. For the statement of this result let
T¢ ., denote the set of resetting times of G, let 7, , denote the complement of 7¢ , ; that

X0,Uc Xo,Uc?

i8, T xpu, = [0, 00)\T ;O,uc’ let 7" ;Co‘ucc denote the set of resetting times of G, and let 7, ,,.
denote the complement of 7, ; thatis, 7, = [0,00\7; , .

THEOREM 6.1 Let g, € R, r, € R™, q4 € R4, r; € R™, Gec € R, 7. € R, Qac € Rl
r4c € R™*, Consider the nonlinear impulsive nonnegative dynamical systems G and G, given
by (29)—(32) and (83)—(86), respectively. Assume G and G, are dissipative with respect to the
linear hybrid supply rates (g y. + rTuc, qiya + riuq) and (qLyee + r-uee, qhyac+ rhvdc)

Ge

FIGURE 2 Feedback interconnection of G and G,.
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and with continuously differentiable, positive definite storage functions Vi(-) and Vi(-),
respectively, such that V,(0) = 0 and V(0) = 0. Furthermore, assume there exists a scalar
o >0 such that q. + oree << 0,7. + 0qcc << 0,94+ 0r4. << 0, and rs+ o0q4 <<0.

Then the following statements hold:

(i) The positive feedback interconnection of G and G, is Lyapunov stable.
@ii) If' G and G, are strongly zero-state observable and q. + or.. < 0 and r. + 0q.. < 0,
then the positive feedback interconnection of G and G, is asymptotically stable.

(iii) If G is strongly zero-state observable, G, is exponentially dissipative with respect to the
linear hybrid supply rate (q~yee + rLvtce, qSyac + rivac), and rank Ge(0) = me,, then
the positive feedback interconnection of G and G, is asymptotically stable.

(iv) If G and G, are exponentially dissipative with respect to linear hybrid supply rates
(qzyc + r;ruca qud + r;”d) and (qzoycc + rzcucc’ q;cydc + "}cudc), then the positive
feedback interconnection of G and G, is asymptotically stable.

Proof LetT® A27°¢ UTS , andt € T k € N. Note that it follows from Assumptions

X0,Uc Xc0sUce
Al and A2 that the resetting times # = tx(Xo) for the feedback system are well defined and
distinct for every closed-loop trajectory. Furthermore, note that the positive feedback inter-

connection of G and G, is defined by the closed-loop dynamics given by

[qub SG0) + Golx( e ) ]ﬁ@%@¢%
xc(t) ec(xc(?)) + Geclxc(O)he(x(1)) + Gee(xe(O)We(x())hec(xc(8))
(83)
[mm]=b Sie)) + Gax(t)hacse () }@@%@méh
Ax(7) ac(xc(1)) + Gac(xc(O)ha(x(?)) + Gac(xe())a(x(£))hac(xc(2))
(89
which implies that
o A Je@®) + Ge(X)hec(x,)
&= [fcc(xc) + Golrohe®) + Gcc(xcyc(x)hcc(xc)] 0
is essentially nonnegative and
=, P A X +ﬁ1(x) + Gd(x)hdc(xc)
X +/a®) —I:xc + fae(xe) + Gac(xe)ha(x) + Gdc(xc)Jd(x)hdc(xc)] Ol

is nonnegative. Hence, it follows from Proposition 2.1 that l]_Rf'F X [l_%'_’ﬁ is an invariant set with
respect to the closed-loop system (88), (89), and thus x(¢f) >> 0,x.(t) >> 0, u.(¢t) =
Yee(®) 2= 0, ug(te) = yac(te) 2= 0,yc(t) = uee(t) 2> 0, and  yu(t) = uac(tx) 2> 0,2 > 0,
keN.

(1) Consider the Lyapunov function candidate V(x,x.) = Vi(x) + oVs(x;). Now, the
corresponding Lyapunov derivative of V(x,x.) along the state trajectories (x(¢),x.(?)),
t € (t, te41), 1S given by

V() x:(8)) = Vs(x(2) + 0Ve@e()) < qve + rlute + 0(qLyee + rLttee)
<0, (), x() € 25, (92)
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and the Lyapunov difference of V(x, x.) at the resetting times #, k € N, is given by

AV (x(te), (1)) = AVi(x(tr)) + 0AVee(xe(tr)) < gya + Fhug
+ 0(q 5 yae +rhua) <0, (x(t), x(0) € Zz. 93)

Now, Lyapunov stability of the positive feedback interconnection of G and G, follows as a
direct consequence of Theorem 2.1.

(i) With V(x, x;) = Vs(x) + oV,(x.), Lyapunov stability follows from (i). Furthermore, if
qc + oree K 0 and 7. + 0g.. K 0, then, using the observability assumptions, it follows from
(92), (93) that the largest invariant set contained in

RA((x,x) € D x R™ : (v, x,) & Zs, V(x, x.) = 0}
U{(x,x.) € D x R™ : (x,x,) € Zz, AV(x,x.) = 0} 94)

is given by M = {(0, 0)}. Hence, asymptotic stability of the closed-loop system follows from
Theorem 2.2.
(iii) If G, is exponentially dissipative it follows that for some scalar ¢, > 0

V(x(2), x:(2)) = Vy(x(2)) + 0Vse(x:(8))
< —0¢& Vsc(xc(t)) + qzyc + }‘Zuc + U(CIEJcc + chuCC)
< =08 Vee(%:(D) < 0, (x(t), x:(8)) & 2, (95)

and the Lyapunov difference AV (x(#;), x.(t)), k € N, at the resetting times for the closed-
loop system satisfies (93). Since Vi.(x.) is positive definite, note that V(x,xc) = 0 for all
(x,x;) & Z5 only if x. = 0. Furthermore, since rank G..(0) = m,,, it follows that on every
invariant set M contained in R given by (94), u..(f) = y.(¢) = 0 and hence y..(f) = u.(f) =0
so that x(r) = f.(x()). Now, since G is strongly zero-state observable it follows that
R ={(0,0)} U {(x,x.) € R} x R : (x,x.) € Z3, AV(x, x.) = 0} contains no solution other
than the trivial solution (x(¢), x.(f)) = (0, 0). Hence, it follows from Theorem 2.2 that the
closed-loop system is asymptotically stable.
(iv) Finally, if G and G, are exponentially dissipative it follows that

V(x(t), x(0)) = Vs(x()) + 0Veelxe(1)
< —é& Vs‘(x(t)) — O&cc Vsc(xc(t)) + quc + r.cruc + O'(chyL‘C + rcTcuCC)

< —min{ec, e} VO0), xe(1), (), %)) & Zs, (96)
and AV (x(ty), x:(t)), (x(2), x.(?)) € Z: k € N, satisfies (93). Now, Theorem 2.1 implies that
the positive feedback interconnection of G and G, is asymptotically stable. |

Remark 6.1 Theorem 6.1 also holds for the more general architecture of the feedback
system G, wherein y.. = heo(xc) + Jec(Xe)tiee and yge = hae(xe) + Jac(xc)uge, where Jg.:
R — RlXmee J. iR — Rlaxmae J () >>0,x, & Z,, and Jp(x) >> 0,x. € Z.. In
this case however, we assume that the positive feedback interconnection of G and G, is well
posed; that is, det[f, +Joc(xc)(X)] # 0, (x,x;) & Z5, and det[ln, + Jac(x.)Ja(x)] # O,
(x, xc) € Z;.

The following corollary to Theorem 6.1 addresses linear hybrid supply rates of the form
(5c(ttes o), sa(ua, ya)) = (eTuc - eTyc: eTud - eTyd) and (Sce(tees Ydc)s Sac(tdes Yec) = (eTucc_
€ Vee, € thae — €"yac).
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COROLLARY 6.1 Consider the nonlinear impulsive nonnegative dynamical systems G and
G. given by (29)-(32) and (83)—(86), respectively. Assume G is nonaccumulative with a
continuously differentiable, positive-definite storage function V(-) and G, is exponentially
nonaccumulative with a continuously differentiable, positive-definite storage function Vi(-).
Then the following statements hold:

(i) If G is strongly zero-state observable and rank G..(0) = m,., then the positive feedback
interconnection of G and G, is asymptotically stable.

(ii) If G is exponentially nonaccumulative, then the positive feedback interconnection of G
and G, is asymptotically stable.

Proof The proof is a direct consequence of (iii) and (iv) of Theorem 6.1 with ¢ =1,
ge = —FVee = —€,4d = —Vdc = —€,Vc = —{cc =6, and ¥qg = —qdc = €. u

7 CONCLUSION

Nonnegative and compartmental dynamical systems play a key role in understanding
numerous processes in biological and physiological sciences. Such systems are composed of
homogeneous interconnected compartments with conservation laws describing transfers,
accumulations, and elimination between compartments and the environment. In this paper we
developed stability and dissipativity results for state-dependent hybrid nonnegative and
compartmental dynamical systems. In addition, using these results general stability criteria
were obtained for Lyapunov and asymptotic stability of feedback interconnections of nonlinear
hybrid nonnegative dynamical systems. Finally, since the theory of dissipative time-dependent
hybrid dynamical systems [30] closely parallels that of dissipative state-dependent dynamical
systems, many of the results of this paper can be easily extended to time-dependent hybrid
nonnegative dynamical systems.
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