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Abstract

In 1997, Darmon and Merel proved the stunning result that the Diophantine equation
xn + yn = z2 has no nontrivial integer solutions for n ≥ 4. This can be interpreted as
saying that if {vn} represents a Lucas sequence of the second kind, defined by a quadratic
polynomial with rational roots, then the equation vn = x2, with x an integer, implies
that n ≤ 3. The goal of the present paper is to prove a similar, but partial, result for
the case that the sequence is a Lucas sequence of the first kind, whose defining polyno-
mial has rational roots. In other words, our goal is to study the Diophantine equation
z2 = (xn − yn)/(x− y). Employing a combination of recently proved Diophantine results
of Bennett and Skinner, Poonen, Darmon and Merel, Wiles, and Ribet, from the mod-
ularity approach, together with recent advances by N. Bruin on the effective Chabauty
method for determining all rational points on a given curve of genus greater than one,
we deduce that the equation in question is not solvable for a substantial proportion of
positive integer values n.

1. Introduction

There are many results on the location of squares in Lucas sequences. In the case that
the Lucas sequence is defined by a polynomial with rational roots, Darmon and Merel

[4] solved the problem for Lucas sequences of the second kind. In particular, they proved
that the equation

xn + yn = z2 (n ≥ 4)

has no solutions in pairwise coprime integers x, y, z, with xyz �= 0. The purpose of this

paper is to prove a similar result for Lucas sequences of the first kind with rational roots.
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In particular, we want to classify those positive integers n for which the equation

(1.1)
xn − yn

x − y
= z2

has solutions in pairwise coprime integers x, y, z with xyz �= 0, which will be referred to

as nontrivial integer solutions.

Theorem 1
(i.) For each 0 ≤ n ≤ 5, equation (1.1) has infinitely many nontrivial integer solutions.

(ii.) For each n > 5, divisible by any of 2, 3,7,or 25, equation (1.1) has no nontrivial
integer solutions.

(iii.) For all other positive integers n, equation (1.1) has finitely many nontrivial integer

solutions, and if such a solution exists, then there is a prime p ≥ 11 dividing n for which
one of the equations

z2 =
xp − yp

x − y
, pz2 =

xp − yp

x − y

has a nontrivial integer solution.

The proof of this result will make use of an array of existing results related to the

modularity of elliptic curves, and also recent extensions of Chabauty’s result. We remark

that the abc conjecture implies that there are no solutions for n sufficiently large, and if
one is willing to believe a certain effective version of the abc conjecture, then one could

deduce from it that there are no solutions for n > 8. We therefore make the following

Conjecture 1 For n > 5, equation (1.1) has no nontrivial integer solutions.

2. Proof of Theorem 1

The proof of the first part of the theorem is trivial for 0 ≤ n ≤ 3. For n = 4, we must
show that the Diophantine equation z2 = x3+x2y+xy2+y3 has infinitely many solutions.

Indeed it is a curve of genus zero, with parametric solutions given by the polynomials

x(u, v) = 4uv(u2 − 2uv + 2v2), y(u, v) = u4 − 4u3v + 4u2v2 − 8uv3 + 4v4

z(u, v) = u6 − 4u5v + 10u4v2 − 20u2v4 + 16uv5 − 8v6,

and moreover, x(u, v) and y(u, v) are coprime integers for nonzero coprime integers u and

v. Hence there are infinitely many nontrivial solutions when n = 4. We now consider
the case n = 5. Nontrivial integer solutions to (1.1), with n = 5, are in correspondence

with rational points on the curve

C4 : y2 = x4 + x3 + x2 + x + 1.
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This curve is birational to the elliptic curve

E : Y 2 = X3 − 5X2 − 45X + 25.

The point (X, Y ) = (−1, 8) does not have order less than or equal to 12, and so by

Mazur’s theorem on rational torsion, E(Q) has positive rank, from which the stated re-
sult follows in the case n = 5.

Throughout the remainder of the proof we will assume that x > y for any solution to

(1.1). We now consider the case that n > 5 and even. The case n = 6 must be dealt
with first, and then all other such values of n can be dealt with by a different argument.

For n = 6, the left-hand side of (1.1) factors as

(x2 + xy + y2)(x3 + y3),

and since these two factors are coprime, there are integers u, v for which

x3 + y3 = u2, x2 + xy + y2 = v2.

All integer solutions to the first of these two equations are given parametrically by 5

homogeneous polynomials of degree 4; x = Fi(X, Y ), y = Gi(X, Y ), i = 1, ..., 5 (see [5],

p.235), and upon substitution into the second equation leads to integer points on the 4
curves (because of duplication)

v2 = X8 − 4X7Y + 16X6Y 2 + 16X5Y 3 − 28X4Y 4 − 32X3Y 5 + 64X2Y 6 + 32XY 7 + 16Y 8,

v2 = X8 + 20X7Y + 184X6Y 2 + 960X5Y 3 + 3012X4Y 4 + 5760X3Y 5 + 6624X2Y 6

+4320XY 7 + 1296Y 8,

v2 = X8 + 102X4Y 4 + 9Y 8,

v2 = 7X8 − 4X7Y − 8X6Y 2 − 28X5Y 3 + 82X4Y 4 − 28X3Y 5 − 8X2Y 6 − 4XY 7 + 7Y 8.

The first two polynomials factor over the integers into two quartics. By checking the

appropriate resultant, one can deduce that there is a point on a corresponding curve
of genus one defined by v2

1 = g(x), where g is a quartic factor of the dehomogenized

polynomial of degree 8, and in both cases, one of the two elliptic curves so determined
has rank zero over the rationals, and one easily deduces that there are no solutions to

(1.1) arising from these two cases. The last of the four curves can be transformed to the
third by a linear change of variables, hence we must only deal with the third curve. But

this curve has the elliptic cover v2
1 = X4 + 102X2 + 9, which is birational to the curve

y2 = x3 − 51x2 + 648x, which has rank zero over the rationals, and hence does not lead

to any solutions of (1.1). The rank of the curve y2 = x3 − 51x2 + 648x was computed
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using Ian Connell’s APECS program.

For n > 6 and even, n = 2m say, then (1.1) can be written as

z2 = (xm − ym)/(x − y) · (xm + ym),

from which it follows that xm + ym = u2 or xm + ym = 2u2 for some integer u. By the

aforementioned result of Darmon and Merel, the first equation has no nontrivial integer
solutions. By a recent result of Bennett and Skinner [1], the equation xm + ym = 2u2 has

no solutions in nonzero pairwise coprime integers x, y, u, with x > y.

Our attention is now restricted to the case that n is odd. We now consider the case that
3 divides n. Let n = 3t for t > 2 and odd, and assume first that 3 does not divide t.

Then (1.1) gives

z2 = (
x3t − y3t

xt − yt
)(

xt − yt

x − y
),

and it follows that there are integers u, v for which either

x3t − y3t

xt − yt
= u2,

xt − yt

x − y
= v2,

or
x3t − y3t

xt − yt
= 3u2,

xt − yt

x − y
= 3v2.

By our assumption that 3 does not divide t, and the fact that t is odd, the latter case is
not possible because xt−yt

x−y
is not divisible by 3. In the former case, we see that

u2 = x2t + xtyt + y2t.

Since one of x or y is odd, we will assume without loss of generality that y is odd.
Completing the square of the last equation yields

4u2 = (2xt + yt)2 + 3y2t.

Writing 3y2t as a difference of squares, we obtain

3y2t = (2u − (2xt + yt))(2u + 2xt + yt).

If p is a prime which divides these two factors, then p divides 3y and p divides 2(2xt +yt),
and so because (x, y) = 1, it follows that p = 2 or p = 3. We show that the case p = 3 is

not possible. If 3 were a factor of both 2u − (2xt + yt) and 2u + 2xt + yt, then 32 would
necessarily divide 3y2t, hence 3 would divide y. Also, 3 would be a factor of 2(2xt + yt),

hence it follows that 3 is a factor of x, contradicting (x, y) = 1. If p = 2 were a divisor of
both 2u − (2xt + yt) and 2u + 2xt + yt, then 2 would necessarily divide y, contradicting
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our earlier assumption that y is odd.

Therefore, there are coprime integers a, b, with y = ab, such that

2u − (2xt + yt) = 3µa2t, 2u + 2xt + yt = 3νb2t,

where (µ, ν) = (1, 0) or (0, 1). We will assume that (µ, ν) = (1, 0), as a similar argument

deals with the other case. Upon taking the difference of the two equations in the last
expression, we see that

b2t − 3a2t = 2(2xt + yt) = 2(2xt + atbt),

and so
b2t − 2atbt − 3a2t = 4xt.

The expression on the left factors, showing that

4xt = (bt − 3at)(at + bt).

The corresponding factors on the right have no common divisor, except possibly a power
of two, and so we find that

at + bt = 2αct

for some integers c, and α ≥ 0. By the results of Wiles [9], and Taylor and Wiles [8], for

α = 0, Ribet [7] for α > 1, and Darmon and Merel [4] for α = 1, (1.1) has no nontrivial

solutions in this case.

We now consider the case that n = 9t, where t ≥ 1 and is not divisible by 2 or 3. In this
case (1.1) gives

z2 = (
x9t − y9t

xt − yt
)(

xt − yt

x − y
).

As in the previous case, this implies that

x9t − y9t

xt − yt
= u2,

for some nonzero integer u. The result will follow by showing that equation (1.1) has no
nontrivial solutions at n = 9. If it did, then from the factorization

x9 − y9

x − y
= (

x3 − y3

x − y
)(x6 + x3y3 + y6),

there is an integer v for which

εv2 = x6 + x3y3 + y6,



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(3) (2005), #A15 6

with ε ∈ {1, 3}, and these equations were shown to have no solutions in section 2 of [6].

We deal finally with the case that 27 divides n. In this case (1.1) gives

z2 = (
x27t − y27t

x3t − y3t
)(

x3t − y3t

x − y
),

and it follows that there is a nonzero integer u for which

εu2 =
x27t − y27t

x3t − y3t
,

with ε ∈ {1, 3}. By the remarks of the previous paragraph, we must have ε = 3. Since
3 divides x27t − y27t, 3 must divide x3t − y3t, as the mapping x → x3 is injective on the

integers modulo 3. Let a ≥ 1 be the highest power of 3 dividing x3t − y3t. The binomial
theorem shows that a + 2 is the highest power of 3 dividing x27t − y27t, and so 3 cannot

divide x27t−y27t

x3t−y3t to an odd power.

To complete the proof of the theorem, we require the following simple observation.

Lemma 1 Let l ≥ 7 denote a prime number, or l = 25. If the equations

z2 =
xl − yl

x − y
, lz2 =

xl − yl

x − y
(l �= 25)

z2 =
xl − yl

x − y
, (l = 25)

have no nontrivial solutions, then the equations

z2 =
xkl − ykl

x − y

have no nontrivial solutions for all k ≥ 1.

Proof We may assume that k is odd. If there is a nontrivial solution to z2 = xkl−ykl

x−y
,

then

z2 = (
xkl − ykl

xk − yk
)(

xk − yk

x − y
),

and it follows from a resultant computation that the greatest common divisor of the two

factors is either 1 or l (1 if l = 25). Therefore, xkl−ykl

xk−yk is either a square, or l times a
square (a square if l = 25), contradicting the hypotheses given.
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To complete the proof of the theorem, it suffices to show that the two equations

z2 =
x7 − y7

x − y
, 7z2 =

x7 − y7

x − y
,

and the equation

z2 =
x25 − y25

x − y
,

have no nontrivial integer solutions. Equivalently, it must be shown that that the set of
(finite) rational points on the curves

y2 = x6 + x5 + x4 + x3 + x2 + x + 1, and y2 = x24 + x23 + · · ·+ x + 1

are {(−1,±1), (0,±1)} and {(1,±5), (−1,±1), (0,±1)} respectively, and that the only

finite rational point on the curve

7y2 = x6 + x5 + x4 + x3 + x2 + x + 1,

is {(1, 1)}.

This was achieved by N. Bruin using his implementation of the effective Chabauty method
in MAGMA. The details of the computation can be found in [3]. For details on the ef-

fective Chabauty method for determining the set of rational points on a curve, we refer
the reader to a recent paper by Bruin [2].

It is worth noting that one could improve upon the main result of this paper by deter-
mining the set of rational points on the curves

y2 = xp−1 + xp−2 + · · ·+ x + 1, py2 = xp−1 + xp−2 + · · · + x + 1,

where p > 7 is prime. In particular, by doing so, the main result would be improved in

such a way as to include all indices divisible by the prime p.
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