
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01

MATHEMATICS OF GHALY’S MACHINE

David Joyner
Department of Mathematics, US Naval Academy, Annapolis, MD, USA

wdj@usna.edu

Received: 5/20/05, Revised: 1/20/06, Accepted: 1/21/06, Published: 2/1/06

Abstract

This paper mathematically models and then analyzes an electronic device (referred to as
Ghaly’s machine in the title) described in the 1994 Patent 5,286,037.

0. Introduction

This paper sketches some mathematical models of an electronic device (referred to as Ghaly’s
machine in the title) described in the 1994 Patent 5,286,037. We show, among other things,
the following facts.

• The game begins with a “random” initial assignments of codes (as the game is described
in the patent in its easiest mode), displayed as an initial color configuration of the
4 × 4 array of buttons. There are 4!4 = 331776 possible initial assignments, though it
is possible for different initial assignments to have the same initial display of colored
buttons.

• Given a random initial configuration of colors (including off) on the 4 × 4 array, the
probability that it arises from an initial assignment of codes (with no buttons pressed)
as in Ghaly’s patent is no more than 2.17... × 10−6.

• In a sense to be made precise below, “most” button presses cannot correspond to a
solution of any initial assignment of codes (as the game is described in the patent in
its easiest mode).

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 2

1. Some history

1.1. Ghaly’s machine

In 1994, the U.S. Patent Office granted Nabil Ghaly patent 5,286,037 for an electrical device
using “state of the art” circuitry. In its most basic form, this device is a 4×4 array of buttons
which, when pressed, can display any one of 4 colors (or “off”, which could be regarded as a
fifth color though we shall not do so here). We shall call this device (and its general version,
discussed below) Ghaly’s machine. The goal is to take a “random” starting position, where
each of the buttons on a 4 × 4 array can be one of the four colors or off, and press buttons
until all the buttons are the same color1.

The rule for how the buttons of Ghaly’s machine changes colors is left to another section.

1.2. Merlin’s machine

What is necessary to point out here, regarding the history of events, is that Ghaly’s game was
patented at least 12 years after Parker Brothers marketed another electronic device called
“Merlin’s Magic” (the rules book was published copyright 1979). This device was a marketed
as a square array of buttons which could turn off or on. We shall call this device (and some
of its generalizations 2, discussed below) Merlin’s machine. Here the rule for how the
buttons of change’s machine toggles on/off is very simple: pressing any button toggles the
certain neighboring buttons (see Example 4 below and the survey in [J]).

2. Finite state machines

This section introduces a precise language which is helpful for comparing two different elec-
trical devices, such as, for example, Ghaly’s machine and Merlin’s Magic.

A finite state machine (or Mealy machine) is a 5-tuple (S, I, O, f, g) where S is a
finite set of objects called states, I is a finite set of symbols called the input alphabet, O
is a finite set of symbols called the output alphabet, f : S × I → S is the transition or
next state function, and g : S × I → O is the output function. (One reference for this is,
for example, Grimaldi [Gr].)

Remark 1. The states of the machine can be roughly regarded as the “memory registers” of
the machine. The input alphabet be be roughly regarded as a labeling of the buttons on might
press (or moves you make, depending on the constitution of the machine).

1The rules of the patent do not seem to restrict to this case, so we shall allow several buttons to be
pressed simultaneously, if desired, in our mathematical models below.

2Tiger Electronics (a subsidiary of Hasbro) later marketed several generalizations under the name Lights
Out.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 3

Remark 2. More precisely, f and/or g need not be defined on all of S × I. One or both
may only be defined on some subset of S × I (in other words, f and g need only be what is
called a partial function). When both f and g are functions (each defined on all of S × I)
then the machine is called complete.

In the theory of finite state machines, one studies morphisms between machines, subma-
chines, components of a state of a machine, and experiments to determine whether or not
machines are isomorphic. For more details on these topics, we refer the reader to Conway
[C].

2.1. Examples of machines

Example 3. (Rubik’s cube) A Rubik’s cube is a cube, which has been sliced into 27
subcubes of equal sizes, each of which has 6 smaller faces parallel to the 6 faces of the larger
cube. In the “solved state” each face of the larger cube is colored a different (solid) color.
To be concrete, suppose we have fixed such a cube in space (say on a table top in front of
you, the reader). The 9 facets of the front face shall be colored yellow, the 9 facets of the
back face shall be colored green, the 9 facets of the up (top) face shall be colored red, the 9
facets of the down (bottom) face shall be colored orange, the 9 facets of the right face shall
be colored blue, the 9 facets of the left face shall be colored white. There are 9 · 6 = 54
colored facets total. Each of the 6 faces has 3 parallel slices of 9 subcubes, each of which
may be independently rotated at angles of 90o, 180o, and 270o.

With the yellow-colored center facet facing front, and the red-colored center facet facing
up, let R denote the 90o clock-wise rotation (as you face that side) of the right slice, let L
denote the 90o clock-wise rotation of the left slice, let F denote the 90o clock-wise rotation
of the front slice, let B denote the 90o clock-wise rotation of the back slice, let D denote
the 90o clock-wise rotation of the down slice, and let U denote the 90o clock-wise rotation
of the up slice. Note that each of these rotations leaves the center facets fixed. There are
9 · 6 − 6 = 48 colored non-central facets total.

Let S denote the set of all possible permutations of the 48 colored facets on the cube
(leaving the center facets fixed). Let I = {R, L, F, B, U, D}. Let O = S. Let the transition
function f : S × I → S be the function sending (s, i) (s ∈ S and i ∈ I) which takes the state
s (the cube with 48 non-central facets scrambled according to some permutation) and the
input i (one of the moves R, L, ..., U) to the new state s′ obtained by performing the move
i on the scrambled cube s: f(s, i) = s′. Let the output function g be the same as f .

This describes the Rubik’s cube as a finite state machine.

Define Ei,j to be the N ×N matrix all of whose entries are 0 except for the (i, j)-th entry
which is equal to 1. An elementary matrix is an N × N matrix which is equal to Ei,j for
some i and j with 1 ≤ i ≤ N , 1 ≤ j ≤ N . Clearly, Ei,j ∈ MN(F2). (Recall MN(F2) denotes

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 4

the set of all N × N matrices whose entries are either equal to 0 or equal to 1.) We can,
if we want, add to elements of MN(F2) (adding each corresponding matrix element mod 2)
and get another matrix in MN(F2).

Example 4. (Merlin’s machine) In this example, N > 2 be any integer. Let

S = MN(F2), I = {Ei,j | 1 ≤ i ≤ N, 1 ≤ j ≤ N}, O = MN(F2).

We interprete the input Ei,j to mean that the (i, j) − th button of the array was pressed.
The effect of pressing any button it to toggle the button itself and those which are directly
north, south, east, or west of the button pressed. There is no wrap-around (at least not in
the most basic version) so there are

• 3 buttons toggled, in case a corner button is pressed,

• 4 buttons toggled, in case a edge button is pressed,

• 5 buttons toggled, in case a central button is pressed.

To model this as a finite state machine, let the transition function f : S × I → S be
defined by

f(s, E) = s + t(E), s ∈ S, E ∈ I,

where addition is coordinate-wise mod 2 and t(E) is the toggle matrix:

t(Ei,j) =






Ei,j + Ei−1,j + Ei,j−1 + Ei+1,j + Ei,j+1, 1 < i < N, 1 < j < N,
Ei,j + Ei−1,j + Ei+1,j + Ei,j+1, 1 < i < N, j = 1,
Ei,j + Ei+1,j + Ei,j+1, i = 1, j = 1,
Ei,j + Ei−1,j + Ei,j+1, i = N, j = 1,
Ei,j + Ei,j−1 + Ei+1,j + Ei,j+1, i = 1, 1 < j < N,
Ei,j + Ei−1,j + Ei,j−1 + Ei,j+1, i = N, 1 < j < N,
Ei,j + Ei−1,j + Ei,j−1 + Ei+1,j, 1 < i < N, j = N,
Ei,j + Ei,j−1 + Ei+1,j, i = 1, j = N,
Ei,j + Ei−1,j + Ei,j−1, i = N, j = N.

For example, if N = 3 and E = E1,2 then

t(E) =




1 1 1
0 1 0
0 0 0



 ,

and if E = E2,2 then

t(E) =




0 1 0
1 1 1
0 1 0



 .

Finally, let the output function g : S × I → O be the same as the transition function:
g = f .

This describes Merlin’s Magic/Lights Out as a finite state machine.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 5

Let RN+1 denote the set {0, 1, ..., N} and let MN(RN+1) denote the set of N×N matrices
with coordinates in RN+1. Both RN+1 and MN(RN+1) are closed under coordinate-wise
addition mod N . If X is a finite set, let SX denote the symmetric group of permutations of
X. As usual, if X = {1,, n} then write Sn = SX .

We shall fix a correspondence between the set of N colors in the machines multi-color
display and the elements of RN+1.

Example 5. (Ghaly’s machine) Let N ≥ 4 be a power of 2. Let σ ∈ SI × SJ ⊂ S2N and
τ ∈ SI ×SJ ⊂ S2N be choosen arbitrarily (“at random” in the terminology of [Gh]) but fixed
for the remainder of this example. Different choices of (σ, τ) will (in general) yield different
machines.

Let

S = MN(F2), I = {Ei,j | 1 ≤ i ≤ N, 1 ≤ j ≤ N}, O = MN(RN+1).

Let the transition function f : S × I → S be defined by

f(s, E) = s + E, s ∈ S, E ∈ I,

where addition is coordinate-wise mod 2. Let the output function f : S × I → O be the
N × N color codes matrix (cij) ∈ MN(RN+1), as defined in Section 3.6 below, computed
using

• σ, τ ,

• the wiring diagram for f(s, E), and

• the rules for color assignments.

Since σ, τ are fixed, the present state of the machine, namely the wiring matrix s ∈ S,
completely determines the coloring of the buttons, which is represented by an element o ∈ O.
The effect of pressing the (i, j)th button is represented by the value of the output function
o′ = f(s, Ei,j). We may, if we wish to reformulate this to look a little more similar to the
above example of Merlin’s machine, also represent this as follows: o′ = o+ t(s, Ei,j). In other
words, the output function is “additive” as in the case of Merlin’s machine, but it required
addition by an array which depends on both the value of the input variable and the state
variable.

This describes Ghaly’s machine as a finite state machine.

3. Rules of the game

“We shall now give a brief summary of the beginnings of the Glass Bead
Game.” Magister Ludi, Hermann Hesse

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 6

In this section, the operation of Ghaly’s machine (at least, on the simplest of the four
levels of difficulty) shall be described.

3.1. Notation

Most of the notation is taken from the section “Mathematical description of the logic prob-
lem” starting on column 10 of Ghaly’s patent [Gh].

N a power of 2, at least 4
(N = the array dimension = the number of colors)

n log2(N) + 1, so 2n = 2N
F2 Boolean field {0, 1}
D Fn

2 , the set of all n-tuples of 0’s and 1’s
di, 1 ≤ i ≤ 2N ith element of D - labeled so

di corresponds to the binary representation of i − 1
Xi, 1 ≤ i ≤ 2N labels for “transmitter codes”

(the Xi ∈ D are pairwise distinct, see (2))
CGi, 1 ≤ i ≤ 2N labels for “color generators codes”

(the CGi ∈ D are pairwise distinct, see (3))
Ci, 1 ≤ i ≤ 2N “color codes”

(the CGi ∈ D are not necessarily distinct, see (4))
⊕ logical exclusive or

(addition mod 2, where 0 is “false” and 1 is “true”)
) logical inclusive or

B : D × D → D “Boolean function” defined by
B((x1, x2, ..., xn), (y1, y2, ..., yn)) =

(x1) y1, x2 ⊕ y2, ..., xn ⊕ yn)
Zm {1, 2, ..., m}
Sm the set of all 1-1, onto functions from Zm to itself

MN(F2) set of all N × N matrices of 0’s and 1’s

The elements of the set Sm are called permutations of Zm.

The table of values of the binary operations ⊕ and) are given below (0 for “false”, 1
for “true”).

x y x) y x ⊕ y
1 1 1 0
1 0 1 1
0 1 1 1
0 0 0 0

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 7

For the definition of B,) and ⊕, see also Fig. 20 (flow chart), Fig. 23 (color assignments
for 4×4), Fig. 24 (color assignments for 8×8), and column 6 (not all of which are consistent)
of [Gh]. (Figures 23 and 24 of [Gh] contain, it turns out, calculations inconsistent with the
description in column 6 of [Gh]. We shall assume here that Figure 20 and column 6, lines
35-45 are correct, where “inclusive or” refers to the function) above.)

Here is the table of values of Ghaly’s “Boolean function” B:

B [0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1]
[0,0,0] [0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1]
[0,0,1] [0,0,1] [0,0,0] [0,1,1] [0,1,0] [1,0,1] [1,0,0] [1,1,1] [1,1,0]
[0,1,0] [0,1,0] [0,1,1] [0,0,0] [0,0,1] [1,1,0] [1,1,1] [1,0,0] [1,0,1]
[0,1,1] [0,1,1] [0,1,0] [0,0,1] [0,0,0] [1,1,1] [1,1,0] [1,0,1] [1,0,0]
[1,0,0] [1,0,0] [1,0,1] [1,1,0] [1,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1]
[1,0,1] [1,0,1] [1,0,0] [1,1,1] [1,1,0] [1,0,1] [1,0,0] [1,1,1] [1,1,0]
[1,1,0] [1,1,0] [1,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1] [1,0,0] [1,0,1]
[1,1,1] [1,1,1] [1,1,0] [1,0,1] [1,0,0] [1,1,1] [1,1,0] [1,0,1] [1,0,0]

In general,

B((x1, x2, ..., xn), (y1, y2, ..., yn)) = (x1) y1, x2 ⊕ y2, ..., xn ⊕ yn),

for (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ D. (This is according to Ghaly’s patent, column 6 line
36 and column 7 line 48, where both indicate that the) is to be applied to the “left” bit.
Column 6 calls it the “third” bit and column 7 calls it the “first” bit. It will be assumed that
“left” is correct and one of the others is a typographical error.)

We make the following color code assignments:

[1, 0, 0] color 1
[1, 0, 1] color 2
[1, 1, 0] color 3
[1, 1, 1] color 4
[0, ∗, ∗] off ,

where color 1, ..., color 4 are four distinct colors. For example, one might take color 1 to be
red, color 2 to be yellow, color 3 to be green, and color 4 to be blue.

3.2. The graph

Let N ≥ 2 be an integer. (Later we shall see how Ghaly’s patent forces N to be a power of
2.) Subdivide a square in the plane into N2 equal subsquares whose edges are parallel to the

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 8

edges of the larger square. Each of these smaller subsquares represents a button in Ghaly’s
machine which may display one of N colors or off. We shall label the N2 buttons on this
N ×N array of squares (Qi,j) of as though they were entries of a matrix. Thus, for example,
Q11 is in the upper left-hand corner, Q1N is in the upper right-hand corner, Q1N is in the
lower left-hand corner, and QNN is in the lower right-hand corner.

Remark 6. There are (N +1)N2
possible configurations of this array of colored buttons. For

example, if N = 4 there are

516 = 152587890625 = (1.5...) × 1011,

or over 150 billion, possible configurations 3.

Let Γ denote the graph whose vertices are the (N + 1)2 vertices of these squares and
whose 2N(N + 1) edges are the edges of these subsquares.

3.3. The wiring/color matrix, codes and diagrams

The wiring matrix: When the button associated to the square Qi,j has been pressed, we
shall indicate this by putting Wi,j = 1. By the rules of the game [Gh], if a button is pressed
twice in a row that is the same as not pressing it at all. A button which has not been
pressed shall be indicated by putting Wi,j = 0. The array W = (Wi,j)1≤i,j≤N will be called
the wiring matrix. We shall see how the wiring matrix affects the colors of the buttons
below.

3.3.1. Transmitter codes and diagrams

The transmitter codes: The left edges of the left-most squares (top-to-bottom) Q1,1, Q2,1,
..., QN,1 will be labeled with the “weights” X1, X2, ..., XN , resp.. The bottom edges of the
bottom-most squares (left-to-right) QN,1, QN,2, ..., QN,N will be labeled with the “weights”
XN+1, XN+2, ..., X2N , resp.. These labels/weights will be called the transmitter codes.
According to Ghaly’s patent [Gh], the weights assigned to these Xi are to be all the distinct
elements of Fn

2 . This forces N to be a power of 2. We shall assume this from this point on.

There is a constraint on the order to the assignment of the

Fn
2 = {d1, ..., d2N}

to the {X1, ..., X2N} assumed in [Gh], which we now describe. For convenience of notation,
let

I = {1, 2, ..., N}, J = {N + 1, N + 2, ..., 2N}. (1)

3We will see in a later section that according to the patent description of the game only 40320 of these
possibilities can actually arise from the wiring constraints of the game.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 9

Let σ1 ∈ SI be a permutation of I and σ2 ∈ SI be a permutation of J . This gives rise to an
assignment as follows:

di = Xσ1(i), 1 ≤ i ≤ N, di = Xσ2(i), N + 1 ≤ i ≤ 2N. (2)

(Here σ(i) denotes the effect which the permutation σ has on i.) Conversely, any such
assignment of the elements of Fn

2 to the X1, ..., X2N will yield such a permutation

σ = (σ1, σ2) ∈ SI × SJ ⊂ S2N .

In the remainder of this section, we shall see how the state of the machine affects the
“wiring diagram” (defined below) which routes transmitter codes from the left and bottom
edges to the top and right edges.

!
!

!
!!"

!
!

!
!

!
!

!
!!" #

$

Transmission wiring diagram Transmission wiring diagram

on Qij when Wij = 0. on Qij when Wij = 1.

Example 7. Examples of transmitter wiring diagrams for Ghaly’s machine are given in
Figures 1, 2, and 3 using E1,1, E1,2, and E3,1.

Figure 1: Transmitter wiring Figure 2: Transmitter wiring

diagram for W = E1,1. diagram for W = E1,2.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 10

Figure 3: Transmitter wiring diagram for W = E3,1.

3.3.2. Color generator codes and diagrams

The color generator codes: The top edges of the upper-most squares (left-to-right) Q1,1,
Q1,2, ..., Q1,N will be labeled with the “weights” CG1, CG2, ..., CGN , resp.. The right edges
of the right-most squares (top-to-bottom) Q1,N , Q2,N , ..., QN,N will be labeled with the
“weights” CGN+1, CGN+2, ..., CG2N , resp.. These labels/weights will be called the color
generator codes. According to Ghaly’s patent [Gh], the weights assigned to these CGi are
to be all the distinct elements of Fn

2 . Let τ = (τ1, τ2) ∈ SI × SJ be a permutation, where
I, J are as in (1). This gives rise to an assignment as follows:

di = Xτ1(i), 1 ≤ i ≤ N, di = Xτ2(i), N + 1 ≤ i ≤ 2N. (3)

Conversely, any such assignment of the elements of Fn
2 to the CG1, ..., CG2N will yield such

a permutation τ = (τ1, τ2) ∈ SI × SJ ⊂ S2N .

In the remainder of this section, we shall see how the state of the machine affects the
“coloring diagram” (defined below) which routes color generator codes from the top and
right edges to the individual squares.

!
!

!
!!% !

!
!

!
!

!
!

!!% &

'

Color generator wiring diagram Color generator wiring diagram

on Qij when Wij = 1. on Qij when Wij = 0.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 11

Example 8. Examples of color generator wiring diagrams for Ghaly’s machine are given in
Figures 4, 5, and 6 using E1,1, E1,2, and E3,1.

Figure 4: Color generator wiring Figure 5: Color generator wiring

diagram for W = E1,1. diagram for W = E1,2.

Figure 6: Color generator wiring diagram for W = E3,1.

3.4. An example

Below, we present the transmitter/color generator diagrams for

W = E12 + E22 + E23 + E32 + E34 + E41 + E42 + E44.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 12

'

&

!!%
!

!
!

!!%

'

&

'

&

'

&

!!%
!

!
!

!!%

!!%
!

!
!

!!%

'

&

'

&

!!%
!

!
!

!!%

'

&

!!%
!

!
!

!!%
!!%

!
!

!
!!%

!!%
!

!
!

!!%

'

&

!!%
!

!
!

!!%

#

#

!
!

!
!!"

$

#

!
!

!
!!"

!
!

!
!!"

!!" !!" !!"

!
!

!
!!"

!!"
$

#

!
!

!
!!"

!!"

!
!

!
!!"

!!"
$!

!
!

!!"

!!"
$

$

#

!
!

!
!!"

!!"
$

For simplicity, we shall split this diagram into the transmitter diagram and color generator
diagrams.

#

#

!
!

!
!!"

$

#

!
!

!
!!"

!
!

!
!!"

!!" !!" !!"

!
!

!
!!"

!!"
$

#

!
!

!
!!"

!!"

!
!

!
!!"

!!"
$!

!
!

!!"

!!"
$

$

#

!
!

!
!!"

!!"
$

Transmitter diagram for W = E12 + E22 + E23 + E32 + E34 + E41 + E42 + E44.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 13

'

&

!!%
!

!
!

!!%

'

&

'

&

'

&

!!%
!

!
!

!!%

!!%
!

!
!

!!%

'

&

'

&

!!%
!

!
!

!!%

'

&

!!%
!

!
!

!!%
!!%

!
!

!
!!%

!!%
!

!
!

!!%

'

&

!!%
!

!
!

!!%

Color generator diagram for W = E12 + E22 + E23 + E32 + E34 + E41 + E42 + E44.

For color assignments, see the example in Section 3.6.

3.5. The wiring permutation

The wiring matrix W gives rise to an element of S2N as follows.

The transmitter diagrams associated to W give rise to a mapping

{X1, ..., X2N} → {CG1, ..., CG2N}.

Since the transmitter wiring paths never merge, the construction of the transmitter wiring
diagrams implies that this map is one-to-one. The fact that this map is 1-1 forces it to also
be onto. Therefore, it represents an element of S2N . We denote this element by πW ∈ S2N

and call it the wiring permutation.

Example 9. • If W is the 4 × 4 matrix of all 1′s then
πW = (1, 5)(2, 6)(3, 7)(4, 8), in disjoint cycle notation.

• If W is the 4 × 4 matrix of all 0′s then πW = 1 (the identity).

• If W =





1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



 then πW =

[
1 2 3 4 5 6 7 8
2 1 3 4 5 6 7 8

]
= (1, 2).

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 14

• If W =





0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0



 then πW =

[
1 2 3 4 5 6 7 8
1 3 2 4 5 6 7 8

]
= (2, 3).

• If W =





0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0



 then πW =

[
1 2 3 4 5 6 7 8
1 3 2 4 5 6 7 8

]
= (2, 3).

• If W =





0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



 then πW =

[
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

]
= 1.

3.6. The color assignments

We must perform several computations.

1. For each i, 1 ≤ i ≤ 2N , the wiring matrix gives rise to a path from the edge labeled
Xi to an edge labeled CGj. In fact, j = πW (i), where πW is the wiring permutation.
Define the jth color code Cj by

Cj = B(Xi, CGj), 1 ≤ j ≤ 2N,

where j = πW (i). Here Xi = dσ−1(i) and CGi = dτ−1(i), for 1 ≤ i ≤ 2N . This implies

Cj = B(dσ−1(π−1
W (j)), dτ−1(j)), (4)

for 1 ≤ j ≤ 2N .

2. For each pair (i, j), 1 ≤ i, j ≤ N , the square Qi,j has a color generator wiring path
which passes into its bottom edge. That path can be traced back to a edge CGk, for
some 1 ≤ k ≤ 2N . Give Qi,j the color ci,j associated to the code Ck. We call the
matrix (ci,j)1≤i,j≤N the color codes matrix. (This description of the color decoding
algorithm relies on column 7, lines 30-36 of [Gh]. A different description is given for
the same algorithm in column 12, lines 29-31 of [Gh]. In this paper, we shall assume
that the description of the color decoding algorithm in column 7, lines 30-36, is the
correct one.)

Example 10. W = 0 and initial assignments {d1, ..., d8} → {X1, ..., X8}, {d1, ..., d8} →
{CG1, ..., CG8} given by σ = 1, τ = 1:

Xi = di, CGi = di, 1 ≤ i ≤ 8.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 15

Then πW = 1 and all buttons are off (dark). The matrix of color codes is then





C1 C2 C3 C4

C1 C2 C3 C4

C1 C2 C3 C4

C1 C2 C3 C4



 ,

where
C1 = B(X1, CG1) = B(d1, d1) = [0, 0, 0] = off,
C2 = B(X2, CG2) = B(d2, d2) = [0, 0, 0] = off,
C3 = B(X3, CG3) = B(d3, d3) = [0, 0, 0] = off,
C4 = B(X4, CG4) = B(d4, d4) = [0, 0, 0] = off,

using the table of B-values given in §3.1.

If each button is pressed (so Wi,j = 1 for all i, j) then πW = (1, 5)(2, 6)(3, 7)(4, 8) and all
buttons are colored red (color 1). Indeed, the matrix of color codes is then





C2 C3 C4 C5

C3 C4 C5 C6

C4 C5 C6 C7

C5 C6 C7 C8



 ,

where
C1 = B(X5, CG1) = B(d5, d1) = [1, 0, 0] = color 1,
C2 = B(X6, CG2) = B(d6, d2) = [1, 0, 0] = color 1,
C3 = B(X7, CG3) = B(d7, d3) = [1, 0, 0] = color 1,
C4 = B(X8, CG4) = B(d8, d4) = [1, 0, 0] = color 1,
C5 = B(X1, CG5) = B(d1, d5) = [1, 0, 0] = color 1,
C6 = B(X2, CG6) = B(d2, d6) = [1, 0, 0] = color 1,
C7 = B(X3, CG7) = B(d3, d7) = [1, 0, 0] = color 1,
C8 = B(X4, CG8) = B(d4, d8) = [1, 0, 0] = color 1.

Example 11. W = 0 and initial assignments {d1, ..., d8} → {X1, ..., X8}, {d1, ..., d8} →
{CG1, ..., CG8} given by σ = (6, 7), τ = (2, 3)(5, 8):

d1 = [0, 0, 0] X1 CG1

d2 = [0, 0, 1] X2 CG3

d3 = [0, 1, 0] X3 CG2

d4 = [0, 1, 1] X4 CG4

d5 = [1, 0, 0] X5 CG8

d6 = [1, 0, 1] X7 CG6

d7 = [1, 1, 0] X6 CG7

d8 = [1, 1, 1] X8 CG5

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 16

The matrix of color codes is then




C1 C2 C3 C4

C1 C2 C3 C4

C1 C2 C3 C4

C1 C2 C3 C4



 ,

where
C1 = B(X1, CG1) = B(d1, d1) = [0, 0, 0] = off,
C2 = B(X2, CG2) = B(d2, d3) = [0, 1, 1] = off,
C3 = B(X3, CG3) = B(d3, d2) = [0, 1, 1] = off,
C4 = B(X4, CG4) = B(d4, d4) = [0, 0, 0] = off,
C5 = B(X5, CG5) = B(d5, d8) = [1, 1, 1] = color 4,
C6 = B(X6, CG6) = B(d7, d6) = [1, 1, 1] = color 4,
C7 = B(X7, CG7) = B(d6, d7) = [1, 1, 1] = color 4,
C8 = B(X8, CG8) = B(d8, d5) = [1, 1, 1] = color 4.

Here every button in the 4 × 4 array is colored off (dark).

Example 12.

(a) Take initial assignments {d1, ..., d8} → {X1, ..., X8}, {d1, ..., d8} → {CG1, ..., CG8} given
by σ = τ = (5, 6)(7, 8). This can be solved for dark (press no buttons) or yellow (press all
buttons).

(b) Take initial assignments {d1, ..., d8} → {X1, ..., X8}, {d1, ..., d8} → {CG1, ..., CG8} given
by σ = τ = (1, 3)(2, 4). This can be solved for off (press no buttons) or green (press all
buttons).

(c) Take initial assignments {d1, ..., d8} → {X1, ..., X8}, {d1, ..., d8} → {CG1, ..., CG8} given
by σ = τ = (1, 4)(2, 3). This can be solved for off (press no buttons) or blue (press all
buttons).

Remark 13. Even identical looking initial color configurations (when W = 0) can represent
different Ghaly machines (which, when W += 0, look different in general). This is in sharp
contrast to Merlin’s machine, where identical looking initial color configurations correspond
to different machines.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 17

4. Mathematical properties

4.1. Some interesting questions

There are several questions which immediately arise.

1. Let φ : MN(F2) → S2N be defined by φ(W) = πW . Is φ onto? (No.)

2. Let φ : MN(F2) → S2N be defined by φ(W) = πW . Does the image of φ contain all of
SI × SJ , where I and J are as in (1)? (Yes.)

This is closely related to the question of whether or not the puzzle posed by a “random”
initial assignment of codes is actually solvable.

3. Is φ a homomorphism? (No.)

4. Given W , how do you compute πW ? (There is a formula - see Proposition 15 below.)

5. What is the probability that W ∈ MN(F2), is the solution of some puzzle (provided
the initial assignment of codes is as described in Ghaly’s patent)?

We shall give detailed answers to these questions later.

Other questions which arise are the following.

1. What is the image of φ?

This question has no nice, compact answer. Using the computer algebra program
MAPLE, running for about 1 day on a PC with a 750Mz processor and 1G of RAM, a
list of all possible permutations were computed. There are 6902 permutations in S8 of
the form πW , for some W ∈ M4(F2). However, only 576 of them belong to the subset
SI × SJ ⊂ S8, where I, J are as in (1). Since |SI × SJ | = 4!2 = 576, each element of
SI × SJ may be represented as a πW .

Proposition 15 permits us to give the following reinterpretation of this information:
these 6902 permutations are all the elements of S8 which can be written as a product
of certain simple transpositions taken in a certain order, corresponding to a matrix in
M4(F2).

2. What is the probability that a “random” initial assignment is solvable?

There are |SI×SJ |2 = 4!4 possible initial assignments. How many of these are solvable?
This is unknown.

3. What is the probability that a “random” color configuration of the array of buttons
arises from some σ, τ ∈ SI × SJ via an initial assignment of codes?

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 18

There are 516 possible color configurations which can arise. There are (4!2)2 possible
choices of ordered pairs (σ, τ), with σ, τ ∈ SI ×SJ . However, due to the construction of
the machine, only 4!2 of these are actually different looking 4 initial color configurations
(when W = 0) since such a configuration is determined by σ · τ−1 (see the proof of
Theorem 32 below). Therefore, the probability desired is

576/516 = (3.7...) × 10−9.

(In fact, if Ghaly’s machine was somehow reconfigured so that the only possible colors
were “off” and “on” then the the probability that a “random” color configuration of
the array of buttons arises from some σ, τ ∈ SI ×SJ

∼= S4×S4 via an initial assignment
of codes is less than a 1/100 chance 5.)

4.2. φ : MN(F2) → S2N

In the remainder of this section, we give some properties of the mapping φ : MN(F2) → S2N .
Here, N > 2 can be any integer.

For brevity, let πi,j = πEi,j , 1 ≤ i ≤ 2N , 1 ≤ i ≤ 2N . This is the permutation associated
to pressing the (i, j)th button.

A simple transposition is a permutation which swaps two consecutive numbers: (k, k+
1), for some k > 0.

Lemma 14. Each πi,j is order 2. In fact, πi,j = (i+j−1, i+j), 1 ≤ i, j ≤ N . In particular,
πi,j is a simple transposition.

Proof. This follows immediately from the transmitter wiring diagrams.

It is known that the simple transpositions generate the group S2N (see for example,
[JKT], chapter 4). Thus it is conceivable that φ is an onto map. However, this turns out
not to be the case. The following proposition computes φ(W) explicitly.

Proposition 15. For any W = (Wi,j) ∈ MN(F2), we have

πW =
′∏

(i,j)

π
Wi,j

i,j =
′∏

(i,j)

(i + j − 1, i + j)Wi,j ,

where
∏′

(i,j) =
∏1

i=N

∏1
j=N (note that the product runs top-to-bottom, right-to-left, in that

order).

4Recall even identical looking initial color configurations (when W = 0) can represent different Ghaly
machines.

5This too is in stark contrast to the case of Merlin’s machine, where the corresponding probability is 1/4
[J].

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 19

Proof. This follows immediately from the transmitter wiring diagrams and the fact (seen
by inspection) that to “undo” the transmitter wiring diagram corresponding to W you may
start from the upper right-hand corner and work right-to-left, top-to-bottom. This is the
opposite order than what was indicted by

∏′, as desired.

Remark 16. Note πE1,1+E1,2 = πE1,1 · πE1,2 += πE1,2 · πE1,1. This does not mean that, pressing
button (1, 1) then (1, 2) yields a different wiring permutation, hence a different output, than
if you pressed button (1, 2) then (1, 1). This is because the output of Ghaly’s machine only
depends on the wiring matrix W and the initial assignments σ, τ .

Call two elementary matrices Ei,j, Ei′,j′ independent if {i+j−1, i+j}∩{i′+j′−1, i′+j′}
is empty. Two sets S, S ′ of elementary matrices will be said to be independent if each
element of S is independent from each element of S ′. Call W, W ′ ∈ MN(F2) independent
if W =

∑
E∈S E, W ′ =

∑
E∈S′ E, where S, S ′′ are independent sets of elementary matrices.

The following result follows from the previous Proposition.

Corollary 17. If W, W ′ ∈ MN(F2) are independent then φ(W + W ′) = φ(W)φ(W ′).

Define the weight of the wiring matrix W to be equal to the number of non-zero entries
in the array.

Proposition 18. For any W = (Wi,j) ∈ MN(F2), πW is an even permutation if and only if
the weight of W is even. In other words, πW is of even order if and only if the total number
of buttons which have been pressed is even.

Proof. Arrange the labeled array

1 2 ... N
1 N + 1
2 N + 2
...

...
N 2N

N + 1 N + 2 ... 2N

as two columns:
1 1
2 2
...

...
N N

N + 1 N + 1
N + 2 N + 2

...
...

2N 2N

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 20

Any paths from the Xi’s to the CGj’s in the former array corresponding to the wiring
permutation πW may be represented by “crossing paths” from the first column to the second
column in the latter array. The parity of the number of crossings in either array is the same.
The parity of the number of crossings in the transmitter wiring diagram is equal to the
weight of W since, by construction, each 1 in W corrsponds to a change in course, resulting
in a crossing. The number of crossings in the second diagram has the same parity as the
crossing number in [NJ], page 410. Moreover, it is known (from [NJ] or [JKT], §4.2) that the
parity of the crossing number of the second diagram is equal to the parity of the permutation
πW .

Let tW denote the transpose of W .

Lemma 19. πtW = (πW)−1. In other words, φ(W)−1 = φ(tW), for all W ∈ MN(F2).

Proof. The wiring associated to W yields paths from the Xi’s to the CGj’s. These paths
are reversed by using the transpose matrix.

4.3. How do you compute W , given πW?

Is there a simple algorithm for constructing each πW as a product of simple transpositions?

Yes (or no, depending on how you define “simple”).

First, one can use the reduce command in the coxeter6 package of Stembridge [St] to
rewrite any permutation in S8 (hence any permutation of the form πW) as a product of
simple transpositions.

Second, we have the identities:

(a1, a2)(a1, a2, a3, ..., ak) = (a1, a3, ..., ak),

and
(a1, a2)(a1, a3)(a1, a2) = (a2, a3).

For examples of how these can be used to decompose a permutation into a product of simple
transpositions, see the example below.

Example 20. Let π = (3, 6, 4)(5, 8, 7). This was picked from a set of permutations in the
image of φ (determined using a computer program written by the author), so we know
π = πW for some W ∈ M4(F2).

6This coxeter package was written by Stembridge for MAPLE version 3 or version 4. It does not run on
MAPLE versions 5 or 6. The Ghaly machine simulations I wrote run on MAPLE versions 6. The may work
on version 5 but have not been tested on versions 3 or 4.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 21

We shall compute W . By Lemma 19, (3, 4, 6)(5, 7, 8) = π−1 = φ(tW). We shall solve for
tW first since (3, 4, 6)(5, 7, 8) is easier to decompose. We have

(7, 8)(3, 4)(3, 4, 6)(5, 7, 8) = (7, 8)(3, 6)(5, 7, 8) = (3, 6)(5, 7),

and
(3, 4)(3, 6)(5, 7)(3, 4) = (4, 6)(5, 7),

and
(5, 6)(4, 6)(5, 7)(5, 6) = (5, 6)(4, 6)(5, 6)(5, 6)(5, 7)(5, 6) = (4, 5)(6, 7).

Thus,
(5, 6)(3, 4)(7, 8)(3, 4)π−1(3, 4)(5, 6) = (4, 5)(6, 7),

so π−1 = (3, 4)(7, 8)(3, 4)(5, 6)(4, 5)(6, 7)(5, 6)(3, 4), or

π = (3, 4)(5, 6)(6, 7)(4, 5)(5, 6)(3, 4)(7, 8)(3, 4).

This forces
π = π1,3π2,4π3,4π1,4π2,4π1,3π4,4π1,3.

This is sufficient to solve the puzzle.

To solve for W , however, we want to use Proposition 15. For this purpose, we wish to
rewrite this product so that terms associated to upper buttons appear first. We can commute
some of the terms towards the front as follows:

π = π2,4π3,4π4,4π1,3π1,4π2,4π1,3π1,3 = π2,4π3,4π4,4π1,3π1,4π2,4.

Now since πi,j only depends on the value i + j (and not on i, j), we may rewrite this as:

π = π4,2π4,3π4,4π2,2π2,3π2,4,

so
tW = E2,2 + E2,3 + E2,4 + E4,2 + E4,3 + E4,4.

This has been verified by a direct calculation as well, using Lemma 14.

4.4. The support

Which color codes occur in a given state of the machine? We want to know the answer to
this because if all the color codes are equal then the puzzle is solved. This motivates the
following definition.

Definition 21. Let C = C(W,σ, τ) = (cij)1≤i,j≤N denote the color array associated to σ, τ ∈
SI × SJ (the permutations associated to the initial assignments {Xi}1≤i≤2N → {dj}1≤j≤2N ,
{CGi}1≤i≤2N → {dj}1≤j≤2N) and W ∈ MN(F2). Here each cij is a color code Ck as defined
in §3.6. We call the indices of the color codes which occur

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 22

{k | 1 ≤ k ≤ 2N, Ck = cij, some 1 ≤ i, j ≤ N},

the support of the state (W,σ, τ). Sometimes we abuse terminology and also call {Ck | 1 ≤
k ≤ 2N, Ck = cij, some 1 ≤ i, j ≤ N}, the support of the state.

If Ck = B(Xj, CGk) then we call j the origin of k. Note that the origin of any k ∈
{1, 2, ..., 2N} depends only on W and not on σ or τ .

The remainder of this section shall be devoted to the “explicit computation” of supp(W).

Theorem 22.

• For 5 ≤ j ≤ 8, i /∈ supp(W) if and only if Wi−4,j = 0, for all 1 ≤ j ≤ 4.

• For 2 ≤ j ≤ 4, j /∈ supp(W) if and only if W1,j = 1 and W1,j′ = 0, for all j′ < j.

• 1 /∈ supp(W) if and only if W1,1 = 1.

This completely determines the support of any W ∈ MN(F2).

Corollary 23.

• 5 /∈ supp(W) if and only if {1, 2, 3, 4} ⊂ supp(W).

• At most one of {1, 2, 3, 4} does not occur in supp(W).

Proof of Theorem. This follows from §3.6 and the color generator diagrams in §3.3.3. !

Can pressing a single button (only) ever be the solution to Ghaly’s game?

Let us first look at some examples.

Example 24. Let W = E4,4, which corresponds to pressing the lower right-hand button.

In this case, πW = (7, 8) by Lemma 14, and supp(W) = {1, 2, 3, 4, 8} by the previous
theorem. By (4), we know

Cj = B(dσ−1(j), dτ−1(j)),

for 1 ≤ j ≤ 4, where σ, τ ∈ SI × SJ are to be “solved for” (using Theorem 32, say). Since
1 ≤ σ−1(j), τ−1(j) ≤ 4, using the table of B-values in §3.1, we find that C1 is always off, no
matter what σ, τ ∈ SI × SJ are choosen. Thus W = E4,4 never yields a solved state.

Example 25. Let W = E1,1, which corresponds to pressing the upper left-hand button.

In this case, πW = (1, 2) by Lemma 14, and supp(W) = {2, 3, 4, 5} by the previous
theorem. By (4), we know

C3 = B(dσ−1(3), dτ−1(3)),

where σ, τ ∈ SI ×SJ . Since 1 ≤ σ−1(3), τ−1(3) ≤ 4, using §3.1, we find that C3 is always off,
no matter what σ, τ ∈ SI × SJ are choosen. Thus W = E1,1 never yields a solved state.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 23

Proposition 26. Suppose W ∈ M4(F2) satisfies: W1,1 = 0. Then W never yields a solved
state.

Proof. The previous theorem implies 1 ∈ supp(W). Since W1,1 = 0, we know πW (1) = 1, by
Proposition 15. By (4), we know

C1 = B(dσ−1(1), dτ−1(1)).

By the same reasoning as in Example 25, this color must be off, so W never yields a solved
state.

Of the 216 = 65536 matrices in M4(F2), 215 = 32768 of them satisfy the conditions of the
above proposition. This proves the following result.

Theorem 27. Pick a matrix in M4(F2) at random. The probability that it never yields a
solved state is at least 32768/65536 = .5.

The following example is due to Roger Heppermann. Notice that the matrix W below
fails to meet the conditions of the proposition above.

Example 28. Take

W =





1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0





and σ = 1, τ = (1, 2, 3, 4). Then supp(W) = {2, 3, 4, 5, 6, 7} and (W,σ, τ) is a solved state.
Every button is colored red.

5. Solution strategies

In this section, we collect some results related to solutions (if any) of the puzzle.

We shall discuss

• how to interprete a solution mathematically,

• when a solution is possible,

• how to find the permutation τ in the case σ = 1 (or how to find the permutation σ in
the case τ = 1).

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 24

5.1. What is a solution?

The object of the puzzle is: given σ and τ (i.e., an initial assignment of “Boolean values” to
the labels Xi’s and the CGj’s, find a sequence of button presses (if it exists) which result in
all the buttons having the same color.

Example 29. If σ = τ = 1 and all the Wi,j = 0 then all the squares have color 1 (the color
associated to [1, 0, 0]).

Are there other assignments σ, τ which yield a solution with all the Wi,j = 0? Yes, but
they must be very special permutations. To see the assignments associated to solving the
puzzle where all colors have color i, look at the 2N × 2N matrix coordinates of the table
for B in §1 associated to color i. Put a 1 in an N × N matrix in these coordinates and a 0
elsewhere. Denote this matrix by Bi, 1 ≤ i ≤ N . Notice that all these matrices Bi are order
2. Let bi ∈ S2N denote the permutation associated to Bi.

Example 30. When N = 4 there are 4 such 8 × 8 “solution matrices”:

B1 =





0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0





, B2 =





0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0





,

B3 =





0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0





, B4 =





0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0





.

Note that these four solution matrices are permutations matrices in S8 but not in SI × SJ .
Only B1 is of the form πW , for some W ∈ M4(F2). This was checked by computer using an
exhausive search 7. They are associated to the permutations b1 = (1, 5)(2, 6)(3, 7)(4, 8), b2 =
(1, 6)(2, 5)(3, 8)(4, 7), b3 = (1, 7)(2, 8)(3, 5)(4, 6), b4 = (1, 8)(2, 7)(3, 6)(4, 5), respectively.

7In fact, B1 = πJ , where J = J4 is the 4 × 4 matrix of all 1’s. However, each of B2, B3, B4 is conjugate
to B1 by some element of SI × SJ .

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 25

Lemma 31. Suppose W = 0. Permutations σ, τ ∈ SI × SJ ⊂ S2N associated to the assign-
ments of the elements of Fn

2 = {d1, ..., d2N} to {X1, ..., X2N} and to {CG1, ..., CG2N} yields
a solution where all the buttons have color k if τσ−1 = bk, for some k.

Proof. The support of W = 0 is

supp(W) = {N + 1, ..., 2N}.

The ith color code is given by Ci = B(Xi, CGi) = B(dσ−1(i), dτ−1(i)), 1 ≤ i ≤ 2N . Multiplying
σ and τ by σ−1 will only permute the color codes Ci but will not change there values.
Therefore, we may assume without loss of generality that σ = 1. We may also replace τ by
bk, by hypothesis. By construction, all the buttons in the array have color k.

Theorem 32. The puzzle is solved (with color i on each button) if τ−1πWσ = Bi, where
σ, τ ∈ SI × SJ are the permutations associated to the initial assignments {Xi} → {dj},
{CGi} → {dj}, and where W ∈ MN(F2).

Moreover, if the state (W,σ, τ) is solved then so is (W,σ′, τ ′), where

• τ ′τ−1 only permutes indices not in the support of the state, or

• σ′σ−1 only permutes indices of the Xi’s which are origins of indices of CGj’s which
are not in the support of the state, or

• σ′σ−1 only permutes indices of the Xi’s which do not change the values of the color
codes Ck’s (where k is in the support of the state (W,σ, τ)).

Proof. We show that if τ−1πWσ = Bi then the puzzle is solved.

There are several permutations floating around: the initial assignment permutations σ
and τ and the wiring permutation πW . The permutation σ essentially assigns to each Xi a
distinct element of Fn

2 : Xi = dσ(i), 1 ≤ i ≤ 2N . The permutation τ essentially assigns to
each CGi a distinct element of Fn

2 : CGi = dτ(i), 1 ≤ i ≤ 2N . The wiring permutation πW

essentially assigns each Xj to a distinct CGj′ : Xj = CGπW (j), 1 ≤ j ≤ 2N .

Putting all these together, we see that the code dj on the left or bottom of the machine
array is sent, via the transmitter wiring diagram, to the code dτ−1(πW (σ(j))), 1 ≤ j ≤ 2N .

Because the color pairing defined by B yields the color code associated to color i on each
button, the theorem follows.

This proves the “if” direction.

For the “only if” direction: Assume now that the puzzle is solved. The construction of
the color assignments for the buttons implies that the changes indicated by the itemized list
of actions will not affect the color configuration of the state (W,σ, τ).

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 26

6. Summary

The patent description [Gh] describes an electronic game played by pressing N2 buttons,
aranged in an N ×N array, where N is a priori an integer greater than 1. The buttons can
potentially be any one of N colors (or off - also called “dark” - which is not counted as a
color). The patent specifications force N to be a power of 2 which is at least 4.

The patent description is fairly technical and several typographical errors, ambiguities
and inconsistencies have crept in. In this paper, we assume column 6, lines 35-45 are correct
(to compute B) and we assume column 7, lines 30-36 are correct (to compute Ci).

We find several striking differences with the Lights Out family of games [J].

1. Ghaly’s game can only be played on an N ×N array of buttons where N = 4, 8, 16,
Lights Out can be played on any rectangular array M × N , where M > 1, N > 1 are
arbitrary.

2. Press any sequence of buttons at random, as many as you want. It is more likely than
not that that sequence is not the solution of any starting position of Ghaly’s game.
However, it is always the case that that sequence is the solution of some starting
position of Lights Out.

3. Given a random configuration of 4 × 4 colored buttons, the probability is quite small
(less than 3 in a million) that the configuration can be solved for Ghaly’s game. Given
a random configuration of 4× 4 buttons which are on or off, the probability is at least
1/24 that the configuration can be solved for the Lights Out game.

4. Identical looking initial color configurations (when W = 0) can (and often do) represent
different Ghaly machines. In other words, when no buttons are pressed, the colored
buttons have the same colorings but when buttons are pressed then will look different.
This is in sharp contrast to Merlin’s machine, where identical looking initial color
configurations correspond to identical machines.

Ackowledgements This paper describes some patent analysis done around 2000-2001 for
patent laywers Anthony Sitko and Roger Heppermann at the Chicago law firm Marshall,
O’Toole, Gerstein, Murray, & Borun. I am very grateful for them allowing me to work
on this interesting project and for permitting me to publish these results. I think Anthony
Sitko and Roger Heppermann for useful discussions and an anonymous referee for very helpful
comments and corrections.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #G01 27

References

[C] J. H. Conway, Regular algebra and finite machines, Chapman and Hall Ltd, Lon-
don, 1971.

[Gh] Nabil Ghaly, Electronic hand held logic game, patent date: 2-15-1994, date filed: 9-3-
1991, patent number: 5,286,037.

[Gr] R. Grimaldi, Discrete and combinatorial mathematics, 4th ed., Addison-Wesley-
Longman, 1999

[J] D. Joyner, Adventures with group theory: Rubik’s cube, Merlin’s machine,
and other mathematical toys, The Johns Hopkins Univer. Press, 2002.

[NJ] —— and G. Nakos , Linear algebra and its applications, Brooks-Cole, 1998

[JKT] ——, R. Kreminski, J. Turisco, Applied abstract algebra, The Johns Hopkins
Univ Press, 2004.

[St] J. Stembridge, MAPLE package coxeter, available for download at the URL
http://www.math.lsa.umich.edu/~jrs/coxtut.html

