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Abstract

In this note we investigate the Frobenius number of Fibonacci numerical semigroups, that
is, numerical semigroups generated by a set of Fibonacci numbers.

1. Introduction

Let s1,59,...,s, be positive integers such that their greatest common divisor is one. Let
S =< s1,...,58, > be the numerical semigroup! generated by s1,...,s,. A Fibonacci numer-
ical semigroup is a numerical semigroup generated by a set of Fibonacci numbers Fj,, ..., F;
for some integers 3 < iy < --- < i, where gcd(Fy,, ..., F;) = 1.

)

The so-called Frobenius number, denoted by g(s, ..., s,), is defined as the largest integer
not belonging to S, that is, the largest integer that is not representable as a nonnegative
integer combination of sy,..., s,. It is well known that g(si, s3) = s159 — 51 — s9. In general,
finding ¢(5) is a difficult problem and so formulas and upper bounds for particular sequences
are of interest. For instance, it is known [3] g(S) when S is an arithmetical sequence

a_2D+d(a—1) (1)

'Recall that a semigroup (S, *) consists of a nonempty set S and an associative binary operation * on S.
If, in addition, there exists an element, which is usually denoted by 0, in S such that a +0 =0+ a = a for
all a € S, we say that (5, *) is a monoid. A numerical semigroup is a submonoid of IN such that the greatest
common divisor of its elements is equal to one.

g(a,a—l—d,...,a—l—kd):aq
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We refer the reader to [2] where a complete account on the Frobenius problem can be found.

In this note, we investigate the value of g(F;, F};, F}) for some triples 3 < i < j < (we
always assume that ged(F;, Fj, F;) = 1; recall that ged(F;, Fiyy) = 1if i J1).

We first notice that g(F;, Fii1, F;) = g(F;, Fiy1) for any integer | > i + 2. Indeed, since
by =F,,, = F,Fii1+ F,_1F; is a nonnegative integer combination of F; and F;,; then the
semigroups < F;, F;1q, F; > and < Fj, F;;1 > generate the same set of elements and thus
they have the same Frobenius number.

Let us consider then g(F;, Fy o, F}) with [ > i+ 3. We notice that the case when [ =i+ 3
is a consequence of equation (1) since the triple {F}, Fj o, Fi13} = {F;, F; + Fii1, F; +2F; 1}
form an arithmetical sequence. However, it can be checked that {F;, Fj. o, F;1x} do not
form an arithmetical sequence when k£ > 3 and the calculation of g(Fj, Fi 2, Fi1y) is more
complicated.

We state our main result.

Theorem 1. Let i,k > 3 be integers and let r = LF;J—;IJ Then,

(F; — 1)Fiyg — Fi(rFypo+1) ifr=0o0rr>1and

Fy_ E < Fz —rE E 5
9(F, Fio, Fiy) = k2 ( k) Figa

(rf, — 1)Fyo — Fi((r — 1)Fy_o + 1) otherwise.

Let N(ay,...,a,) be the number of positive integers with no representation by a non-
negative integer combination of aq, ..., a,. Theorem 1 yields to the following result.

Corollary 2. Let i,k > 3 be integers and let r = LFElJ .Then,

Fy — 1)(Fip — 1) — 1Fp2(2F — Fi(l
N(Fy Frvny Fiyg) = Em D2 =D =1 Fhoal@F = Bl 1)

2. Fibonacci semigroups

In order to prove Theorem 1 we need the following result due to Brauer and Shockley [1].

Lemma 3. Let 1 < ay < -+ < a, be integers with ged(aq, ..., a,) = 1. Then,
ay) = T
glay,....an) = max  {h}—a

where t; is the smallest positive integer congruent to | modulo a1, that is representable as a
nonnegative integer combination of as, . .., ay,.
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Proof. Let L be a positive integer. If L = 0(mod a;) then L is a nonnegative integer combi-
nation of a;. If L = [(mod ay) then L is a nonnegative integer combination of ay, ..., a, if
and only if L > t,. O

Let T* = {t3,...,t},_,} where t is the smallest positive integer congruent to [ modulo
F;, that is representable as a nonnegative integer combination of Fj o and F; ;. By Lemma
3, it suffices to find ¢} for each [ =0,1,..., F; — 1. To this end, we consider all nonnegative
integer combinations of F;,o and Fj,;. We construct the following table, denoted by 77,
having as entry t,, the combination of the form xFj o + yFi, with integers z,y > 0, see
below.

z\y 0 1 2
0 0 Fi 2Fi g
1 Fito Fiyk + Figo 2Fiik + Fipo
2 2Fiy 2 Figrp +2F 2Fik +2Fi
3

3Fiio Fiyr +3Fi o 2Fi 1, + 3Fi4

Fp—=1|(Fr—1)Fio Fip+ (Fr—1)Fipo 2F 0+ (Fr — 1)Fipe

We notice that
Fiipy=FyoF1 + Fy 1 Fiio = Fy o(Fiyo — F;) + Fy1 Fiyo = FioFy, — Fj o F;
so, we obtain that
cFio v yFigr = oFig + y(FipoFy — FroF;) = (v + yFy) Fiyo — yFr_oFi.

Thus, T} can also be given by the following table, denoted by 715,

z\y 0 1 2 r
0 0 FypFipo — Fip_oF; 2FgFiyo — 2F,_oF; rFpFipo —rFg_oF;
1 Fiqo (1+ Fp)Fiqo — F_oF; (1 +2F,)Fi10 —2F,_oF; -+ (1471F,)Fiio —rF_oF;
2 2F;12 Q2+ Fp)Fiqo — F_oF;  (2+2F,)Fi10 —2F,_oF; -+ (247F,)Fii2 —rFr_oF;
l IFiy2 (I + Fy)Fiyo — FpoF;  (14+2Fy)Fij2 —2F, oF; -+ (I+7rFy)Fiyo —rF, oF;

F—1| (Fx = 1)Fiy2 (2F, — 1)Fip2 — FyoF; (3Fy — 1)Fiqo — 2F, o F;

Let S be the set formed by the first Fj, — 1 entries of columns zero, one, two, and so on,
that is, S = {to,0,%1,0,- -+ tE—1,0:t0,1, 1,15 - - EF—1,15 - - - s Loy By oo o s B 1y - - - )
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Remark 4.

(a) Letr = LF;—?J and set F; — 1 =rFy, + 1 for some integer 0 < [ < Fy, — 1. Let

!
S"={t00: 110y s tr—1.0: 0.1, E11s - s TF—115 - - - s t2rs b1y - oyt b

Then, for each t,, = (v +yFy)Fiyo — yFr_oF; € 5" we have that 0 < z+yF, < F; — 1.
Moreover, since ged(Fiio, F;) =1 then S’ forms a complete system of rests modulo Fj;.

(b) The elements of S can be represented as sy = xFiys — [ |Fioli for x = 0,1,.. ..
Indeed, it can be checked that S = U,>, S, where

Sq = {84k Sqpir15 - - -5 Sgrnm—1} = {togs - - - th—14}
for each integer g =0,1,2,....

(¢) By using table Ty we have that t; ; < ty; for alli <k and all j <.

Lemma 5. Let t,, be an entry of Ty such that t,, ¢ S'. Then, there exists t,, € S" such
that t,, = t,,(mod F;) and t,, > t,,.

Proof. We first notice that the set S can be written as follows

{50, cen y SFi,—1, SFy, - y S2F),—1, <. sy SrFy» y SrF+l = SF;—1,
SFy -+ 3SE+F,—1, SF+Fy, y SE+2F,—1y -+ 3 SFi4rFys -+ - y S2F;—1,
SoF;, -+ S S2F+F,—1, S2F+F,, -+ 5S2F+2F,—1, y S2F;4rF)y - - y S3F;—15 - - }

where S = {S0, ..., SF—1,SF, -+ S2F,—1s -+ SrFys - - -5 SF—1}. We have two cases.
Case A. Suppose that ¢,, € S\ 5. Then t,, is of the form s, 1, for some integers p > 1
and 0 < g < F; — 1. It is clear that,

Fi+
Sg=9gFito — LF%J FiFy_5 = (pF; + g9)Fiq2 — V) 7 gJ FiF,_5 = gpp,4+¢(mod F;.)

We will show that s,p4+, > s,. To this end, it suffices to prove that sp, > s, (since

SpFi+g = SF+g). Recall that r = LFFZIJ and that F; — 1 = rFj, + [ for some integer 0 <[ <

F, — 1. We have two subcases.

ty1 and, by Remark 4(c),

Subcase a. If r = 0 then Fj, > F;. If F}, = F; then s, = t,
> F; and, by Remark 4(c),

tgo < tga. If Fi > Fj then sp 4 = t40 for some integer ¢

tg70 < tq70 .
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Subcase b. If r > 1, then sp,1, > s, holds if and only if

Fityg

k

(Fi+g)Fip — { J FiFy_9 > gFiio— {iJ FiFy_o

F,

or equivalently if and only if

o (537 8

Let g =mF,+n with 0 <n < F, — 1. Since F; — 1 =7rF, + 1 with 0 <[ < F}, — 1, then

VQ—l+g+1J_{HQ+l+nwz+n+1

< 1
7 7 J_r—l—m+

and thus

F;
{ ;};gJ—L%CJ <r+m+1l1—-m=r-+1.

So, it is enough to show that Fj,o > (r + 1)Fy_o or equivalently to show that F; +
Fii1 > (r+1)Fy_s. Since F; = 7Fj, + [ + 1 then the latter inequality holds if and only if
rFp+1+ 14+ Fy1 >rFy o+ Fp_o, that is, if and only if

T(Fk — Fk_z) +1l4+1+ Fi—i—l = T(Fk_l) +14+1+ Fz’—i—l > Fj_o
which is true since r > 1.

Case B. Suppose that t,, ¢ S. Then we have that 0 < 2z < Fj, — 1 < u. If v > y then,
by Remark 4(c), t,, < typ < tuw. S0, we suppose that v < y. Since, t,, = t,,(mod F;)
then u 4+ vFy, = x + yFi(mod F;) but, by Remark 4(a), 0 <z 4+ yF, < F; — 1 so u+ vFy =
d(x + yFy) for some integer d > 1 and thus u + vFy > = + yF;. Also, since v < y, then
—vFy_oF; > —yFy_oF;. So, combining the last two inequalities we have that

tupw = (U4 VEFy) Fipo — 0Fy_oF; > (v + yFy) Fipo — yFi_oF; =ty .

We may now prove Theorem 1.

Proof of Theorem 1. Let T* = {t§,...,t};,_,} where t; is the smallest positive integer
congruent to [ modulo Fj, that is representable as a nonnegative integer combination of Fj

and Fj . Let s, = vF; 9 — LF%JkazFi for x = 0,1,.... By Lemma 5, we have that for
each x =0,..., F; — 1, s, is the smallest positive integer congruent to [ modulo F;, for some
integer 0 <[ < F;—1, that is representable as a nonnegative integer combination of Fj,, and
Fiik, that is, " = T* where S" = {S0,..., Sk —1,5F s+ S2F—1,- -+ SrF---,SF—1}. NOW,

by Remark 4(c), if r > 1 then

tr 1 = 03%%?%—1{tx’i|t””’i € S’} foreach i =0,...,r — 1,
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lp—1p—1 = O<m<ax {tp, —1iltr—1: € 5},
and
try = max {t,[t,, € 5}
Thus, o

tl,r if r= 0,
max{tp, 1,1, otherwise.

max{s|s € S’} = {
The result follows since t;, > tp, _1,-1 if and only if
(rFe + D) Fipo —rFpoF; = (F; — 1) Fiyg — 1FyoF; > (rFy — 1) Fipo — (r — 1) Fp o F
or equivalently, if and only if F; o(F; — rFy) > Fi_oF;. a
We will use the following result due to Selmer [4] to show Corollary 2.

Lemma 6. Let1 < a; < - < ayp, be integers with ged(ay, ..., a,) =1. If L={1,...,a;—1}

a

then N(ay,...,a,) = Z t — L , where t; is the smallest positive integer congruent to
a1 jer,

[ modulo ay, that is representa,ble as a nonnegative integer combination of as, ..., a,.

Proof. The number of M =1 # 0(mod a;) with 0 < M < t; is given by Lt—lj By assuming
that 0 <! < ay, we have L%J = tﬁl L. The result follows by summing over [ € L. 0

Proof of Corollary 2. Let r = LF};?J and set F; —1 = rF} +1 for some integer 0 <[ < Fj, — 1.
By Lemma 6 and Remark 4(b), we have

F;—1
N(E7E+27 H—k) = Z s — 2
ses’!
F;—1

E z (jFire — Fra| £ F) — B

]—

Jf=

F;i—1

- (R2) oo L]
By using the table T}, it is easy to verify that
Fi—1
i Fy(r—1)r
ZuJ_onLFkJrQquL +(r=10)F+r(l+1)= ’“(2 ) (1+1)
k

and, since [ + 1 = F; — rF}, that

N(F;, Fiyo, Fiy) = Fi+2(2Fi_1) S (Fk(?“2—1)1" r(F = rFy)) — Fio1
— B NFe—l) o (Eer? = Fird2Fr—2r2F

2 2
— (Fi—1)(Fi+2—1)—TFk_2(2Fi—Fk(1+7’))'
2
We end with the following problem.

Problem. Find upper (and lower) bounds (or formulas) for g(F;, F}, F)) for further triples
3<i< <k



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A14 7

References
[1] A. Brauer and J.E. Shockley, On a problem of Frobenius, Journal fir Reine und Angewandte Mathematik
211 (1962), 215-220.

[2] J.L. Ramirez Alfonsin, The Diophantine Frobenius Problem, Ozford Lectures Series in Mathematics and
its Applications 30, Oxford University Press, (2005).

[3] J.B. Roberts, Note on linear forms, Proc. Amer. Math. Soc. 7 (1956), 465-469.

[4] E.S. Selmer, On the linear diophantine Problem of Frobenius, Journal fiir Reine und Angewandte Math-
ematik 293/294(1) (1977), 1-17.



