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Abstract
Let α be a real number with convergents pm/qm from the continued fraction ex-
pansion of α. In this paper we investigate the functions E(α) :=

�
m≥0 |αqm − pm|

and E∗(α) :=
�

m≥0(αqm − pm) depending only on α and prove that they take
every value in [0, (1 +

√
5)/2] and [0, 1], respectively. For any sequence (αµ)µ≥1,

which is uniformly distributed modulo 1, we show that both sequences (E(αµ))µ≥1

and (E∗(αµ))µ≥1 are not uniformly distributed. Among other things the proofs rely
on an inequality for the function E(α), which improves a former result of the first
named author.

1. Introduction

For any real number α and its regular continued fraction expansion

α = �a0; a1, . . . , an�, (α ∈ Q \ Z),
α = �a0; a1, . . .�, (α ∈ R \ Q),

where a0 ∈ Z, aν ∈ N for ν ≥ 1, an > 1, we investigate the sums

E(α) := E(a1, a2, . . .) :=
�

m≥0

|αqm − pm| (1)

and
E∗(α) := E∗(a1, a2, . . .) :=

�

m≥0

(αqm − pm). (2)

Moreover, let E(α) = E∗(α) = 0 for α ∈ Z. Here, pm/qm denotes the m-th con-
vergent of α. In case of α ∈ Q these functions are finite sums, since α has a finite
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continued fraction expansion. Conversely, for a finite sequence a0, a1, . . . , an−1, 1
ending with 1 we define E(a1, . . . , an−1, 1) and E∗(a1, . . . , an−1, 1) by

E(a1, . . . , an−1, 1) := E(a1, . . . , an−1 + 1) + |αqn−1 − pn−1| , (3)
E∗(a1, . . . , an−1, 1) := E∗(a1, . . . , an−1 + 1) + (−1)n−1|αqn−1 − pn−1| (4)

with pn−1/qn−1 = �a0; a1, . . . , an−1� and α = �a0; a1, . . . , an−1 + 1�. The additional
term |αqn−1 − pn−1| in (3) and (4) plays an essential role for the inequalities of
error sums stated below in Lemma 8 and Lemma 12, respectively. For α ∈ R \ Q
the error sums become infinite series converging absolutely. Set

ρ :=
1 +

√
5

2
, ρ̃ :=

1−
√

5
2

,

and let
F0 = 0, F1 = 1, Fk+2 = Fk+1 + Fk (k ≥ 0)

denote the Fibonacci numbers.
The main focus in this paper relies on the function E(α). Generally speaking,

E(α) is a measure of quality for the approximation of a real number α by convergents
with small denominators. For more applications of E(α) see [1], where the first
named author has also proven that for any α ∈ R the inequalities

0 ≤ E(α) ≤ ρ, (5)
0 ≤ E∗(α) ≤ 1 (6)

hold. We are now interested in a more detailed investigation of the value distribution
of E(α) and E∗(α) in the intervals given by (5) and (6).

Proposition 1. Let n ∈ N and let a1, a2, . . . be positive integers. Then we have

E(a1, . . . , an, . . .) ≤ E(a1, . . . , an, 1, 1, . . .).

Since E(α) = ρ if and only if α ≡ ρ (mod 1) (see [1]), this proposition improves
the inequality (5) effectively in case a1 · · · an > 1. The main results in this paper
concerning the value distribution of the error sums E(α) and E∗(α) are given by the
subsequent Theorems 2 to 5. As usual we write

E(R) := {E(α) |α ∈ R} and E∗(R) := {E∗(α) |α ∈ R}.

Theorem 2. We have E(R) = [0, ρ].

Theorem 3. We have E∗
(R) = [0, 1].

The result of Theorem 3 is already known: By using the concept of mediants,
J.N.Ridley and G.Petruska [4] proved that for every 0 < y < 1 there exists an
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irrational number x such that E∗(x) = y. Our proof of Theorem 3 is based on
an algorithmic construction similar to the proof of Theorem 2. For this we use
auxiliary lemmas which describe the local behaviour of the error sum functions.

In contrast to the above density results we also considered an error sum related
to E(α), defined by

E2(α) :=
�

m≥0

(αqm − pm)2.

Both sums, E and E2, neglect the sign of the error terms in a simple way. But the
value distribution of E2 differs essentially from that one of E . In particular, there
are subintervals of [0, 1] where the values of E2 are not dense. We can show for
α ∈ R that

E2(α) �∈
�

1
4
,
1
2

�
.

Let αn := �0; 1, 1, n�, (n > 1). We have αn → 1/2 for n →∞, and

E2(αn) >
1
2

whereas E2

�
1
2

�
=

1
4
.

In general, error sums are discontinuous functions.
Next, one may ask whether the values of E(α) (of E∗(α), respectively) are uni-

formly distributed in [0, ρ] (in [0, 1], respectively). The negative answer is given by
the following theorems. For this purpose let J ⊆ [0, ρ], (αµ)µ≥1, be a sequence of
real numbers, and

A(J,M) := #{1 ≤ m ≤ M : E(αm) ∈ J} (M ∈ N),
A∗(J,M) := #{1 ≤ m ≤ M : E∗(αm) ∈ J} (M ∈ N).

Theorem 4. Let (αµ)µ≥1 be a sequence of real numbers, which is uniformly dis-

tributed modulo one. For N ∈ N let J1 = (1, 1 + ρ2/N) and J2 = (1 − ρ2/N, 1).
Then we have

lim inf
M→∞

A(J1,M)
M

≥ log N

30N
(N ∈ N) ,

and

lim sup
M→∞

A(J2,M)
M

≤ 16ρ4

N2
(N ∈ N, N ≥ 32) .

This shows that there are more points E(α) in J1 than we would expect in the
case of uniform distribution, and too little points in J2. This is because of

|J1|
ρ

=
ρ

N
<

log N

30N
for N > exp(30ρ) ,

and
|J2|
ρ

=
ρ

N
>

16ρ4

N2
for N ≥ 68 .
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Theorem 5. Let (αµ)µ≥1 be a sequence of real numbers, which is uniformly dis-

tributed modulo one. For N ≥ 3 let J3 = (1− 1/N, 1]. Then we have

lim sup
M→∞

A∗(J3,M)
M

<
5

6N
+

1
N2

.

In particular, this is less than 1/N for N ≥ 6.

For the proof of Theorem 4 we need the inequality from Proposition 1. Therefore,
we shall prove Proposition 1 in Section 4 separately. The proofs of Theorem 4 and
Theorem 5 are given in the final Section 5. The appendix contains four plots
illustrating the functions E and E∗. Figure 1 and Figure 2 show the graphs of E
and E∗, respectively. To illustrate the value distribution of E and E∗, we use 50 000
at random generated numbers x1, . . . , x50000 ∈ [0, 1] and plot the points (i, E(xi))
(Figure 3) and (i, E∗(xi)) (Figure 4) for i = 1, . . . , 50 000. The plots were computed
using a standard computer algebra system. The value distribution of the error sums
seems to be a little mystic due to some visible lines inside the plots. We could not
prove a general result explaining the existence of these lines.

2. Proof of Theorem 2

2.1. Auxiliary Lemmas

In the following let n and a0, a1, . . . , an denote positive integers.

Lemma 6. Let N ∈ N. In the case of n = 1, further let a1 > 1. Then, with

�a0; a1, . . . an� = pn/qn, we have

0 < E(a1, . . . , an, N)− E(a1, . . . , an) <
1

Nqn
.

In particular we get the limits

lim
n→∞

�
E(a1, . . . , an, N)− E(a1, . . . , an)

�
= 0 (N ∈ N),

lim
N→∞

�
E(a1, . . . , an, N)− E(a1, . . . , an)

�
= 0 (n ∈ N).

Proof. Let

β := �a0; a1, . . . an�,
γ := �a0; a1, . . . an, N�,

pν

qν
:= �a0; a1, . . . aν� (0 ≤ ν ≤ n).
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Then we have the identities

β =
anpn−1 + pn−2

anqn−1 + qn−2
=

pn

qn
, γ =

Npn + pn−1

Nqn + qn−1
,

and

E := E(a1, . . . , an, N)− E(a1, . . . , an) =
n�

ν=0

(−1)ν(γqν − pν)−
n−1�

ν=0

(−1)ν(βqν − pν)

= (−1)n(γqn − pn) +
n−1�

ν=0

(−1)ν(γ − β)qν .

With the above identities for β and γ we obtain

γ − β =
Npn + pn−1

Nqn + qn−1
− pn

qn
=

(−1)n

qn(Nqn + qn−1)
,

γqn − pn = qn(γ − β) =
(−1)n

Nqn + qn−1
,

and therefore

E =
1

Nqn + qn−1
+

1
qn(Nqn + qn−1)

n−1�

ν=0

(−1)n+νqν . (7)

To estimate the sum

S :=
n−1�

ν=0

(−1)n+νqν

we need to distinguish two cases according to the parity of n. For even n (with
n ≥ 2) we have

S = (q0 − q1) + (q2 − q3) + · · · + (qn−2 − qn−1) ≤ 0,

and

S = q0 + (q2 − q1) + (q4 − q3) + · · · + (qn−2 − qn−3)− qn−1 ≥ −qn−1.

For any odd n (with n ≥ 1 by the assumption of the lemma) we get

S = −q0 + (q1 − q2) + (q3 − q4) + · · · + (qn−2 − qn−1) ≤ 0,

and
S = (q1 − q0) + (q3 − q2) + · · · + (qn−2 − qn−3)− qn−1 ≥ −qn−1.
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The result of the distinction of cases is −qn−1 ≤ S ≤ 0. Hence we obtain from (7),
regarding n ≥ 1 and qn−1 ≥ q0 = 1,

E ≤ 1
Nqn + qn−1

<
1

Nqn

and

E ≥ 1
Nqn + qn−1

− qn−1

qn(Nqn + qn−1)
=

1
Nqn + qn−1

�
1− qn−1

qn

�
> 0.

This proves the lemma.

Lemma 7. Let b, c, n ∈ N, where n ≥ 2 and 1 ≤ b < c. Then, with �a0; a1, . . . an� =
pn/qn, we have

0 < E(a1, . . . , an, b)− E(a1, . . . , an, c) ≤ c− b

bcqn
.

Proof. Let

β := �a0; a1, . . . an, b�,
γ := �a0; a1, . . . an, c�,

pν

qν
:= �a0; a1, . . . aν� (0 ≤ ν ≤ n).

Then we have

E := E(a1, . . . , an, b)− E(a1, . . . , an, c) =
n�

ν=0

(−1)ν(βqν − pν)−
n�

ν=0

(−1)ν(γqν − pν)

= (β − γ)
n�

ν=0

(−1)νqν .

With
β =

bpn + pn−1

bqn + qn−1
and γ =

cpn + pn−1

cqn + qn−1

we conclude that
β − γ =

(b− c)(−1)n−1

(bqn + qn−1)(cqn + qn−1)
and

E =
c− b

(bqn + qn−1)(cqn + qn−1)

n�

ν=0

(−1)n+νqν . (8)

By similar arguments as used in the proof of Lemma 6, we obtain the bounds

1 ≤
n�

ν=0

(−1)n+νqν ≤ qn
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for the alternating sum of the qν . This leads to

0 < E ≤ (c− b)qn

(bqn + qn−1)(cqn + qn−1)
≤ (c− b)qn

bcq2
n

=
c− b

bcqn
.

Hence, the lemma is proven.

Lemma 8. Let an ≥ 3. Then we have

E(a1, . . . , an−1, an − 1) ≤ E(a1, . . . , an, 1).

Proof. Replacing n by n− 1 and setting b = an − 1, c = an + 1 in (8), we obtain

E(a1, . . . , an−1, an − 1)− E(a1, . . . , an−1, an + 1)

≤ 2�
(an − 1)qn−1 + qn−2

��
(an + 1)qn−1 + qn−2

�
n−1�

ν=0

(−1)n+ν−1qν , (9)

where pν/qν = �a0; a1, . . . , aν� for 0 ≤ ν ≤ n. Now let

γ := �a0; a1, . . . , an, 1� = �a0; a1, . . . , an + 1�.

Substituting (3) into (9) with n− 1 replaced by n, we get

E(a1, . . . , an−1, an − 1) ≤ E(a1, . . . , an−1, an, 1)+

+
2�

(an − 1)qn−1 + qn−2

��
(an + 1)qn−1 + qn−2

�
n−1�

ν=0

(−1)n+ν−1qν − |γqn − pn|.

By the expression

γ = �a0; a1, . . . , an + 1� =
(an + 1)pn−1 + pn−2

(an + 1)qn−1 + qn−2

we compute

|γqn − pn| =
1

(an + 1)qn−1 + qn−2

and obtain

E(a1, . . . , an−1, an − 1)

≤ E(a1, . . . , an−1, an, 1)−
�
(an − 1)qn−1 + qn−2

�
− 2

�n−1
ν=0(−1)n+ν−1qν�

(an − 1)qn−1 + qn−2

��
(an + 1)qn−1 + qn−2

� .

By similar arguments as in the proofs of the two preceding lemmas and by using
the conditions an ≥ 3 and n ≥ 2, we get

2
n−1�

ν=0

(−1)n+ν−1qν ≤ (an − 1)qn−1 + qn−2,
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which yields
E(a1, . . . , an−1, an − 1) ≤ E(a1, . . . , an−1, an, 1).

Therefore, Lemma 8 is proven.

Lemma 9. Let n ≥ 2. Then there is a positive integer k such that the inequality

E(a1, . . . , an−1, 2, 1, 1 . . . , 1� �� �
k

) > E(a1, . . . , an−1, 1)

holds.

Proof. Let

β := �a0; a1, . . . , an−1, 1� = �a0; a1, . . . , an−1 + 1�,
δ := �a0; a1, . . . , an−1, 2, 1, 1 . . . , 1� �� �

k

�,

and let pν/qν for 0 ≤ ν ≤ n + k be the convergents of δ. We express β, γ, and δ by

β =
(an−1 + 1)pn−2 + pn−3

(an−1 + 1)qn−2 + qn−3
=

pn−1 + pn−2

qn−1 + qn−2
,

δ =
pn+k

qn+k
.

By induction one proves the formulas

pn+ν = Fν+1pn + Fνpn−1 and qn+ν = Fν+1qn + Fνqn−1, (1 ≤ ν ≤ k).

Hence, we get the following error sums:

E(a1, . . . , an−1, 1) =
n−1�

m=0

(−1)m(βqm − pm) =
n−1�

m=0

(−1)m

�
pn−1 + pn−2

qn−1 + qn−2
qm − pm

�
,

E(a1, . . . , an−1, 2, 1, 1 . . . , 1� �� �
k

) =
n+k−1�

m=0

(−1)m(δqm − pm)

=
n+k−1�

m=0

(−1)m

�
pn+k

qn+k
qm − pm

�

= E1(k) + E2(k)

with

E1(k) =
n�

m=0

(−1)m

�
Fk+1pn + Fkpn−1

Fk+1qn + Fkqn−1
qm − pm

�
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and

E2(k) =
n+k−1�

m=n+1

(−1)m

×
�

Fk+1pn + Fkpn−1

Fk+1qn + Fkqn−1
(Fm−n+1qn + Fm−nqn−1)− (Fm−n+1pn + Fm−npn−1)

�
.

Thus, we intend to prove the existence of a positive integer k satisfying

E1(k) + E2(k)−
n−1�

m=0

(−1)m

�
pn−1 + pn−2

qn−1 + qn−2
qm − pm

�
≥ 0. (10)

Using the identities

n+k−1�

m=n+1

(−1)mFm−n+1 = (−1)n+1
k�

m=2

(−1)mFm = (−1)n+k−1Fk−1

and

n+k−1�

m=n+1

(−1)mFm−n = (−1)n+1
k�

m=2

(−1)mFm−1 = (−1)n+k−1Fk−2 + (−1)n+1,

we get the following expression for E2(k):

E2(k) = (−1)n+k−1

�
Fk+1pn + Fkpn−1

Fk+1qn + Fkqn−1

�
Fk−1qn + Fk−2qn−1 + (−1)kqn−1

�

−
�
Fk−1pn + Fk−2pn−1 + (−1)kpn−1

� �

= (−1)n+k−1

�
Fk−2Fk+1 + (−1)kFk+1 − Fk−1Fk

�
(pnqn−1 − pn−1qn)

Fk+1qn + Fkqn−1

= (−1)k Fk−2Fk+1 − Fk−1Fk + (−1)kFk+1

Fk+1qn + Fkqn−1

= (−1)k (−1)k−1 + (−1)kFk+1

Fk+1qn + Fkqn−1

=
Fk+1 − 1

Fk+1qn + Fkqn−1
.
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With pn = 2pn−1 + pn−2 and qn = 2qn−1 + qn−2 we obtain

E1(k) + E2(k)

=
n�

m=0

(−1)m

�
Fk+1(2pn−1 + pn−2) + Fkpn−1

Fk+1(2qn−1 + qn−2) + Fkqn−1
qm − pm

�

+
Fk+1 − 1

Fk+1(2qn−1 + qn−2) + Fkqn−1

=
n�

m=0

(−1)m

�
Fk+3pn−1 + Fk+1pn−2

Fk+3qn−1 + Fk+1qn−2
qm − pm

�
+

Fk+1 − 1
Fk+3qn−1 + Fk+1qn−2

= (−1)n

�
(Fk+3pn−1 + Fk+1pn−2)(2qn−1 + qn−2)

Fk+3qn−1 + Fk+1qn−2
− (2pn−1 + pn−2)

�

+
n−1�

m=0

(−1)m

�
Fk+3pn−1 + Fk+1pn−2

Fk+3qn−1 + Fk+1qn−2
qm − pm

�
+

Fk+1 − 1
Fk+3qn−1 + Fk+1qn−2

= (−1)n (Fk+3 − 2Fk+1)(pn−1qn−2 − pn−2qn−1)
Fk+3qn−1 + Fk+1qn−2

+
n−1�

m=0

(−1)m

�
Fk+3pn−1 + Fk+1pn−2

Fk+3qn−1 + Fk+1qn−2
qm − pm

�
+

Fk+1 − 1
Fk+3qn−1 + Fk+1qn−2

=
n−1�

m=0

(−1)m

�
Fk+3pn−1 + Fk+1pn−2

Fk+3qn−1 + Fk+1qn−2
qm − pm

�
+

Fk+2 − 1
Fk+3qn−1 + Fk+1qn−2

.

This can be used to express the left-hand side of (10):

E1(k) + E2(k)−
n−1�

m=0

(−1)m

�
pn−1 + pn−2

qn−1 + qn−2
qm − pm

�

=
n−1�

m=0

(−1)m

�
Fk+3pn−1 + Fk+1pn−2

Fk+3qn−1 + Fk+1qn−2
− pn−1 + pn−2

qn−1 + qn−2

�
qm +

Fk+2 − 1
Fk+3qn−1 + Fk+1qn−2

=
n−1�

m=0

(−1)m (Fk+3 − Fk+1)(pn−1qn−2 − pn−2qn−1)
(Fk+3qn−1 + Fk+1qn−2)(qn−1 + qn−2)

qm +
Fk+2 − 1

Fk+3qn−1 + Fk+1qn−2

=
Fk+2

(Fk+3qn−1 + Fk+1qn−2)(qn−1 + qn−2)

n−1�

m=0

(−1)n+mqm +
Fk+2 − 1

Fk+3qn−1 + Fk+1qn−2
.

To prove (10) for some k ≥ 1 it is sufficient to show that

Fk+2

�
1 +

1
qn−1 + qn−2

n−1�

m=0

(−1)n+mqm

�
≥ 1. (11)
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From the proof of Lemma 6 we know that

−qn−1 ≤
n−1�

m=0

(−1)n+mqm ≤ 0.

By the condition n ≥ 2 we have qn−2 ≥ q0 = 1, which gives

0 < 1 +
1

qn−1 + qn−2

n−1�

m=0

(−1)n+mqm ≤ 1.

Thus, for any large positive integer k, the inequality (11) holds. Moreover, the
smallest k satisfying (11) can be computed effectively. This completes the proof of
Lemma 9.

Lemma 10. Let M be a positive integer with M ≥ 3. Then there is a positive

integer k such that the inequality

E(M, 1, 1 . . . , 1� �� �
k

) ≥ 2
M

holds. For M = 2 we have

E(2, 1, 1 . . . , 1� �� �
k

) = 1− 1
Fk+3

.

Proof. Let β = �0;M, 1, 1 . . . , 1� �� �
k

�. By pν/qν we denote the convergents of β given by

p−1 = 1, p0 = a0, p1 = 1, pν = Fν (2 ≤ ν ≤ k + 1),
q−1 = 0, q0 = 1, q1 = M, qν = MFν + Fν−1 (2 ≤ ν ≤ k + 1).

One gets

E(M, 1, 1 . . . , 1� �� �
k

) =
k+1�

ν=0

(−1)ν

�
qν

pk+1

qk+1
− pν

�

= (q0 − q1)
pk+1

qk+1
− (p0 − p1) +

pk+1

qk+1

k+1�

ν=2

(−1)νqν −
k+1�

ν=2

(−1)νpν

= (1−M)
Fk+1

MFk+1 + Fk
+ 1 +

Fk+1

MFk+1 + Fk

�
M

k+1�

ν=2

(−1)νFν +
k+1�

ν=2

(−1)νFν−1

�

−
k+1�

ν=2

(−1)νFν .
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Taking into account some identities for alternating sums of Fibonacci numbers, we
find that

E(M, 1, 1 . . . , 1� �� �
k

) =
Fk+3 − 1

MFk+1 + Fk
.

Then, the inequality from the lemma is equivalent to

M >
2Fk

Fk+3 − 2Fk+1 − 1
= 2 +

2
Fk − 1

,

which is fulfilled for M ≥ 3 and a sufficient large integer k. (More precisely: Choose
k ≥ 4 for M ≥ 4 and k ≥ 5 for M = 3). For M = 2 we have

E(2, 1, 1 . . . , 1� �� �
k

) =
Fk+3 − 1

2Fk+1 + Fk
= 1− 1

Fk+3
.

This proves the lemma.

2.2. Algorithmic Proof of Theorem 2

In the following we describe an algorithm, which produces a number η with an error
sum E(η) = α for any given α ∈ [0, ρ]. Moreover, we can choose an arbitrary a0 ∈ Z,
since E(η) does not depend on a0 = [η]. Since E(β) = 0 for β = 0, E(ρ) = ρ and
E(1, 1) = 1, we may assume that 0 < α < ρ and α �= 1.

Step 1: We consider two cases:

Case 1.1: 1 < α < ρ. We know from Lemma 6 that there is a unique integer k ≥ 2
satisfying

E(1, 1, 1 . . . , 1� �� �
k−1

) ≤ α < E(1, 1, 1 . . . , 1� �� �
k

).

Case 1.2: 0 < α < 1. There is a unique integer M ≥ 2 with

E(M, 1) =
2

M + 1
≤ α <

2
M

= E(M − 1, 1).

By Lemma 10 there is a unique k ≥ 2 with

E(M, 1, 1 . . . , 1� �� �
k−1

) ≤ α < E(M, 1, 1 . . . , 1� �� �
k

).

In any case, step 1 of the algorithm provides a sequence a1, a2, . . . , an1 of positive
integers with n1 ≥ 2 and

E(a1, . . . , an1) ≤ α < E(a1, . . . , an1 , 1).
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E(a1, . . . , an1) = α holds. If this is true, the algorithm terminates with η =
�a1, . . . , an1�. If not, we go to step 2.

Step 2: We have
E(a1, . . . , an1) < α < E(a1, . . . , an1 , 1)

with n1 ≥ 2. By Lemma 7 there is a unique integer L ≥ 2 satisfying

E(a1, . . . , an1) < E(a1, . . . , an1 , L) ≤ α < E(a1, . . . , an1 , L− 1).

In case of α = E(a1, . . . , an1 , L) the algorithm terminates with the number η =
�a0; a1, . . . , an1 , L�. Otherwise, the inequalities

E(a1, . . . , an1) < E(a1, . . . , an1 , L) < α < E(a1, . . . , an1 , L− 1) (12)

hold. Then we have to distinguish two cases.

Case 2.1: L ≥ 3. Since n1 ≥ 2, we get from (12) and Lemma 8 with n = 1 + n1

and an = L ≥ 3:

E(a1, . . . , an1 , L) < α < E(a1, . . . , an1 , L, 1).

Step 2 ends with n2 = 1 + n1, an2 = L, and

E(a1, . . . , an2) < α < E(a1, . . . , an1 , an2 , 1). (13)

Case 2.2: L = 2. If E(a1, . . . , an1 , 1) ≤ E(a1, . . . , an1 , 2, 1), we finish step 2 with
error terms satisfying (13), where an2 = L = 2. Otherwise, i.e., for

E(a1, . . . , an1 , 2, 1) < E(a1, . . . , an1 , 1),

we have to distinguish the following two cases:

Case 2.2.1: α < E(a1, . . . , an1 , 2, 1);

Case 2.2.2: E(a1, . . . , an1 , 2, 1) ≤ α < E(a1, . . . , an1 , 1).

In Case 2.2.1 we finish step 2 with error terms satisfying (13) with an2 = L = 2.
In Case 2.2.2 the algorithm either terminates with η = �a0, a1, . . . , an1 , 2, 1�, or we
apply Lemma 9 with n = 1 + n1. For a unique k ≥ 2 we get

E(a1, . . . , an1 , 2, 1, 1 . . . , 1� �� �
k−1

) < α ≤ E(a1, . . . , an1 , 2, 1, 1 . . . , 1� �� �
k

).

If E(a1, . . . , an1 , 2, 1, 1 . . . , 1� �� �
k

) = α, the algorithm terminates with

η = �a0, a1, . . . , an1 , 2, 1, 1 . . . , 1� �� �
k

�.
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Otherwise, we finish step 2 with n2 = k +n1, an1+1 = 2, an1+2 = · · · = an2 = 1 and

E(a1, . . . , an2) < α < E(a1, . . . , an2 , 1).

Again, this is equivalent to (13) with 2 ≤ n1 < n2, since k ≥ 2.
Step 3: We repeat step 2 starting with n2, which satisfies (13). If the algorithm does
not terminate in this step, we construct positive integers n3 > n2 and a1, . . . , an3

with
E(a1, . . . , an3) < α < E(a1, . . . , an3 , 1).

The above method can be iterated. Either the algorithm will terminate, or Lemma 6
guarantees that

lim
n→∞

(E(a1, . . . , an, 1)− E(a1, . . . , an)) = 0 ,

such that by E(a1, . . . an) < α < E(a1, . . . , an, 1) the number η = �a0, a1, a2, . . . �
satisfies E(η) = α. ✷

Example. Let α = 202/157. Then the above algorithm produces the number

η = �1; 1, 1, 2, 1, 89� =
987
628

.

3. Proof of Theorem 3

3.1. Auxiliary Lemmas

As in Section 2.1, let n ∈ N and a0, a1, . . . , an denote positive integers.

Lemma 11. Put pn/qn = �a0; a1, . . . , an�.
(i) Let n be even. Then, the sequence of rationals (E∗(a1, . . . , an, N))N≥1 is strictly

decreasing and

0 < E∗(a1, . . . , an, N)− E∗(a1, . . . , an) <
1 + n

Nqn + qn+1

holds for N ≥ 1.
(ii) Let n be odd. Then, the sequence of rationals (E∗(a1, . . . , an, N))N≥1 is strictly

increasing and

0 < E∗(a1, . . . , an)− E∗(a1, . . . , an, N) <
1 + n

Nqn + qn+1

holds for N ≥ 1. In particular we have

lim
N→∞

E∗(a1, . . . , an, N) = E∗(a1, . . . , an) (n ∈ N).
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Proof. Let

β := �a0; a1, . . . an�,
γ := �a0; a1, . . . an, N�,

pν

qν
:= �a0; a1, . . . aν� (0 ≤ ν ≤ n).

Then we have the identities

β =
pn

qn
, γ =

Npn + pn−1

Nqn + qn−1
,

and

E := E(a1, . . . , an, N)− E(a1, . . . , an) =
n�

ν=0

(γqν − pν)−
n−1�

ν=0

(βqν − pν)

= γqn − pn +
n−1�

ν=0

(γ − β)qν .

With

γ − β =
Npn + pn−1

Nqn + qn−1
− pn

qn
=

(−1)n

qn(Nqn + qn−1)
,

γqn − pn = qn(γ − β) =
(−1)n

Nqn + qn−1

we get

E =
(−1)n

Nqn + qn−1
+

(−1)n

qn(Nqn + qn−1)

n−1�

ν=0

qν =
(−1)n

Nqn + qn−1

�
1 +

1
qn

n−1�

ν=0

qν

�
. (14)

Setting γ� := �a0; a1, . . . an, N + 1�, we obtain

E � := E(a1, . . . , an, N + 1)− E(a1, . . . , an, N) =
n�

ν=0

(γ�qν − pν)−
n�

ν=0

(γqν − pν)

=
n�

ν=0

(γ� − γ)qν .

Using

γ� − γ =
(N + 1)pn + pn−1

(N + 1)qn + qn−1
− Npn + pn−1

Nqn + qn−1
=

(−1)n+1

((N + 1)qn + qn−1)(Nqn + qn−1)
,

we express E � by

E � = (−1)n+1

((N + 1)qn + qn−1)(Nqn + qn−1)

n�

ν=0

qν . (15)
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It is clear that

n�

ν=0

qν > 0 and
1
qn

n−1�

ν=0

qν <
1
qn

· nqn = n. (16)

For even n we get from (14), (15), and (16) that

E � < 0 and 0 < E <
1 + n

Nqn + qn−1
.

For odd n we get from (14), (15), and (16) that

E � > 0 and 0 < −E <
1 + n

Nqn + qn−1
.

This completes the proof of the lemma.

Lemma 12. (i) Let n be even. Then we have

E∗(a1, . . . , an, 1) > E∗(a1, . . . , an + 1).

(ii) Let n be odd. Then we have

E∗(a1, . . . , an, 1) < E∗(a1, . . . , an + 1).

Proof. The lemma is an obvious consequence of the identity stated in (4).

3.2. Algorithmic Proof of Theorem 3

As in Section 2 we will prove Theorem 3 by the algorithmic construction of a
number η = �a0; a1, . . . , an� with E∗(η) = α ∈ [0, 1] for some arbitrary α ∈ [0, 1].
By E∗(β) = 0 for β = 0 and E∗(1, 1) = 1 it suffices to assume that α ∈ (0, 1). Let
again a0 be an arbitrary integer. We shall compute ak in step k of the following
algorithm. Depending on the parity of k the constructions differ.

Step 1: There is a unique positive integer M with

E∗(M + 1) =
1

M + 1
< α ≤ 1

M
= E∗(M).

Set a1 = M . We consider two cases:

Case 1: E∗(a1) = α → the algorithm terminates.

Case 2: E∗(a1) > α → go to step 2.
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Step 2: From Lemma 12 we know that

E∗(a1, 1) < E∗(a1 + 1) < α < E∗(a1) .

Therefore, Lemma 11 guarantees the existence of a unique positive integer M with

E∗(a1,M) < α ≤ E∗(a1,M + 1).

Again we consider two cases:

Case 1: E∗(a1,M + 1) = α → the algorithm terminates with a2 = M + 1.

Case 2: E∗(a1,M + 1) > α → set a2 = M and go to step 3.

Step 3: From Lemma 12 we know that

E∗(a1, a2, 1) > E∗(a1, a2 + 1) > α > E∗(a1, a2) .

Therefore, Lemma 11 guarantees the existence of a unique positive integer M with

E∗(a1, a2,M + 1) < α ≤ E∗(a1, a2,M).

Set a3 = M . We consider two cases:

Case 1: E∗(a1, a2, a3) = α → the algorithm terminates.

Case 2: E∗(a1, a2, a3) > α → go to step 4.
...

Step 2k: As a result of the above 2k − 1 cycles we have the numbers a1, . . . , a2k−1.
If the algorithm is still at work, α satisfies

E∗(a1, . . . , a2k−1 + 1) < α < E∗(a1, . . . , a2k−1).

From Lemma 12 we know that

E∗(a1, . . . , a2k−1, 1) < E∗(a1, . . . , a2k−1 + 1) < α < E∗(a1, . . . , a2k−1) .

Therefore, Lemma 11 guarantees the existence of a unique positive integer M with

E∗(a1, . . . , a2k−1,M) < α ≤ E∗(a1, . . . , a2k−1,M + 1).

We consider two cases:

Case 1: E∗(a1, . . . , a2k−1,M+1) = α → the algorithm terminates with a2k = M+1.

Case 2: E∗(a1, . . . , a2k−1,M + 1) > α → set a2k = M and go to step 2k + 1.

Step 2k + 1: Here we have

E∗(a1, . . . , a2k) < α < E∗(a1, . . . , a2k + 1) .
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From Lemma 12 we know that

E∗(a1, . . . , a2k, 1) ≥ E∗(a1, . . . , a2k + 1) > α > E∗(a1, . . . , a2k) .

Therefore, Lemma 11 guarantees the existence of a unique positive integer M with

E∗(a1, . . . , a2k,M + 1) < α ≤ E∗(a1, . . . , a2k,M).

Set a2k+1 = M . We consider two cases:

Case 1: E∗(a1, . . . , a2k+1) = α → the algorithm terminates.

Case 2: E∗(a1, . . . , a2k+1) > α → go to step 2k + 2.

Either the algorithm will terminate, or for every N ∈ N Lemma 11 gives the
limit

0 ≤ lim
n→∞

|E∗(a1, . . . , an, N)− E∗(a1, . . . , an, N + 1)|

≤ lim
n→∞

�
1 + n

Nqn + qn−1
+

1 + n

(N + 1)qn + qn−1

�
= 0 ,

such that by E∗(a1, . . . , a2n−1 + 1) < α < E∗(a1, . . . , a2n−1) and E∗(a1, . . . , a2n) <
α < E∗(a1, . . . , a2n + 1), the irrational number η = �0, a1, a2, . . . � satisfies E∗(η) =
α. ✷

Example. Let

α =
3846888972029
31159800925831

.

Then the above algorithm computes

η = �1; 8, 90, 82, 17120, 30781� with α = E(η) .

4. Proof of Proposition 1

We need two auxiliary lemmas.

Lemma 13. Let β := �0; a1, . . . , an, 1, 1, . . .�. Moreover, let pν/qν (ν ≥ 0) be the

convergents of β. Then we have

β =
ρpn + pn−1

ρqn + qn−1
, (17)

and

E(β) =
n�

ν=0

(−1)ν

�
ρpn + pn−1

ρqn + qn−1
qν − pν

�
+

ρ

ρqn + qn−1
. (18)
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Proof. From the definition of β we obtain the identities

pn+ν = Fν+1pn + Fνpn−1, qn+ν = Fν+1qn + Fνqn−1 (ν ≥ 1). (19)

Hence we have, for ν tending to infinity,

pn+ν

qn+ν
=

Fν+1/Fνpn + pn−1

Fν+1/Fνqn + qn−1
−→ ρpn + pn−1

ρqn + qn−1
,

which proves (17). It remains to show the formula

∞�

ν=n+1

(−1)ν (βqν − pν) =
ρ

ρqn + qn−1
. (20)

Using (17) and (19), we express the left-hand side of (20) by

∞�

ν=1

(−1)ν+n

�
ρpn + pn−1

ρqn + qn−1
(Fν+1qn + Fνqn−1)− (Fν+1pn + Fνpn−1)

�

=
(−1)n

ρqn + qn−1

∞�

ν=1

(−1)ν
�
(ρpn + pn−1)(Fν+1qn + Fνqn−1)

− (ρqn + qn−1)(Fν+1pn + Fνpn−1)
�

=
1

ρqn + qn−1

∞�

ν=1

(−1)ν(Fν+1 − ρFν)

=
1√

5(ρqn + qn−1)

∞�

ν=1

(−1)ν
�
(ρν+1 − ρ̃ν+1)− ρ(ρν − ρ̃ν)

�

=
1√

5(ρqn + qn−1)

∞�

ν=1

(−1)ν(ρρ̃ν − ρ̃ν+1) =
ρ− ρ̃√

5(ρqn + qn−1)

∞�

ν=1

(−ρ̃)ν

=
ρ

ρqn + qn−1
,

which equals the right-hand side of (20). Therefore, (18) is proven.

Lemma 14. Let α := �0; a1, . . . , an, an+1, 1, 1, . . .� and β := �0; a1, . . . , an, 1, 1, . . .�.
Then we have

E(β)− E(α) ≥ 0 .

Proof. Let pν/qν be the convergents of α. Then, applying (18), we split E(β)−E(α)
into three parts:

E(β)− E(α) = S1 + S2 + S3, (21)
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where

S1 :=
�

ρpn + pn−1

ρqn + qn−1
− (ρan+1 + 1)pn + ρpn−1

(ρan+1 + 1)qn + ρqn−1

� n�

ν=0

(−1)νqν ,

S2 :=
ρ

ρqn + qn−1
− ρ

(ρan+1 + 1)qn + ρqn−1
,

S3 := (−1)n

�
(ρan+1 + 1)pn + ρpn−1

(ρan+1 + 1)qn + ρqn−1
(an+1qn + qn−1)− (an+1pn + pn−1)

�
.

We observe for S1 on the one hand the identity

ρpn + pn−1

ρqn + qn−1
− (ρan+1 + 1)pn + ρpn−1

(ρan+1 + 1)qn + ρqn−1

= (−1)n ρ(an+1 − 1)
(ρqn + qn−1)((ρan+1 + 1)qn + ρqn−1)

,

and the other hand the inequality

(−1)n
n�

ν=0

(−1)νqν ≥ 0,

such that we obtain S1 ≥ 0. Moreover, we find the expressions

S2 =
ρ
�
(ρan+1 − ρ + 1)qn + (ρ− 1)qn−1

�

(ρqn + qn−1)
�
(ρan+1 + 1)qn + ρqn−1

�

and
S3 =

−1
(ρan+1 + 1)qn + ρqn−1

.

This yields

S2 + S3 =
ρ2(an+1 − 1)

(ρqn + qn−1)
�
(ρan+1 + 1)qn + ρqn−1

� ≥ 0.

We have shown that S1 + S2 + S3 ≥ 0. Hence, the lemma follows by (21).

Proof of Proposition 1. Let α := �0; a1, . . . , an, . . .�, β := �0; a1, . . . , an, 1, 1, . . .�,

Eν := E(a1, . . . , aν , 1, 1, . . .) (ν ≥ 1), and E∞ := E(α) = E(a1, a2, . . .).

From Lemma 14 we know that Eν − Eν+1 ≥ 0 for ν ≥ 1. Summing up these
inequalities, we obtain

En − EN =
N−1�

ν=n

(Eν − Eν+1) ≥ 0 (N > n) .

For N tending to infinity it turns out that

E(α) = E∞ = lim
N→∞

EN ≤ En = E(β),

which proves the statement in Proposition 1.



INTEGERS: 12 (2012) 21

5. Proofs of Theorem 4 and Theorem 5

Proof of Theorem 4. Let α := �0; 1, a2, a3, . . .� and β := �0; 1, a2, a3, 1, 1 . . .�. Then,
by Proposition 1 and Lemma 13, we have

1 < E(α) ≤ E(β) = 1 +
1 + 2ρ

ρa2a3 + ρa3 + a2 + ρ + 1
< 1 +

ρ2

a2a3
.

For fixed a2, a3 ∈ N the real number α lies in the interval M(a2, a3) given by

M(a2, a3) := [�0; 1, a2, a3 + 1�, �0; 1, a2, a3�] (22)

(see [2]). Then, the numbers α with a2a3 ≥ N for some N ∈ N form the set

I :=
�

i,j≥1
ij≥N

M(i, j).

Now, E(α) satisfies the inequalities

1 < E(α) < 1 +
ρ2

N
.

It is well-known that M(a2, a3) and M(a�2, a�3) do not intersect for any (a2, a3) �=
(a�2, a�3). Using (22), we compute the length of I:

|I| =
�

i,j≥1
ij≥N

|M(i, j)| =
�

i,j≥1
ij≥N

1
(ij + j + 1)(ij + i + j + 2)

.

Since
ij + j + 1 ≤ 3ij and ij + i + j + 2 ≤ 5ij

hold for i, j ≥ 1, we find a lower bound for |I| by

|I| ≥ 1
15

∞�

i=1

�

j=max(1,N/i)

1
i2j2

=
1
15




N�

i=1

1
i2

�

j≥N/i

1
j2

+
∞�

i=N+1

1
i2

∞�

j=1

1
j2



 .

Moreover, we have

�

j≥N/i

1
j2
≥

� ∞

1+[N/i]

dt

t2
=

1
1 + [N/i]

≥ i

2N
,

which leads to

N�

i=1

1
i2

�

j≥N/i

1
j2
≥ 1

2N

N�

i=1

1
i
≥ log(N + 1)

2N
>

log N

2N
.
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Finally, this yields

|I| >
1
15

N�

i=1

1
i2

�

j≥N/i

1
j2

>
log N

30N
.

Now, let (αµ)µ≥1 be a sequence of uniformly distibuted real numbers modulo 1.
Let us assume that the sequence (E(αµ))µ≥1 is also uniformly distributed in [0, ρ].
With the notation for A(J1,M) introduced in Section 1, we then have

lim
M→∞

A(J1,M)
M

=
|J1|
ρ

=
ρ2

Nρ
=

ρ

N
.

But this does not hold for large N , since the above inequality for |I| shows that

lim inf
M→∞

A(J1,M)
M

≥ log N

30N
.

To prove the second statement in Theorem 4, we first note that E(α) ≥ 1 holds
for 1/2 < α < 1, so that E(1, a2, a3, . . . ) ≥ 1. Next, let a1 ≥ 3 and N ≥ 32. By
Proposition 1, Lemma 6, and Lemma 13 we have

E(a1, a2, a3, . . . ) ≤ E(a1, 1, 1, . . . ) =
1 + ρ

a1 − 1 + ρ
≤ 1 + ρ

2 + ρ
= 1− 1

2 + ρ
< 1− ρ2

N
.

(Lemma 6 is needed if a rational α corresponds to a finite sequence a1, a2, a3 . . . .)
It follows, with N ≥ 32, that

E(α) ∈ J2 ∧ α = �0; a1, a2, . . . � =⇒ a1 = 2 .

Therefore, we may write α = �0; 2, 1, 1, . . . , 1� �� �
k

, ak+2, ak+3, . . . � (k ≥ 0) for a number

α satisfying E(α) ∈ J2. If α is a rational number, 0, 2, 1, 1, . . . , 1� �� �
k

, ak+2, ak+3, . . .

becomes a finite sequence. By Lemma 13 it follows that E(2, 1, 1, . . . ) = 1 �∈ J2. We
assume that

Fk+3 <
N

4ρ2
. (23)

By Lemma 10 and (23),

E(2, 1, 1, . . . , 1� �� �
k

) = 1− 1
Fk+3

< 1− 4ρ2

N
< 1− ρ2

N
,

and hence E(2, 1, 1, . . . , 1� �� �
k

) �∈ J2, a contradiction. Thus it remains to consider the

case E(α) ∈ J2 with

α = �0; 2, 1, 1, . . . , 1� �� �
k

, ak+2, ak+3, . . . �



INTEGERS: 12 (2012) 23

and ak+2 ≥ 2, where α ∈ Q is possible. Again Lemma 6 and Proposition 1 give

E(α) ≤ E(2, 1, 1, . . . , 1� �� �
k

, ak+2, 1, 1 . . . ) . (24)

In order to compute E(β) for β := �0; 2, 1, 1, . . . , 1� �� �
k

, ak+2, 1, 1 . . . �, we apply Lemma 13

with n = k + 2. Let pν/qν (ν ≥ 0) be the convergents of β. We find that

pν = Fν (0 ≤ ν ≤ k + 1) , pk+2 = ak+2Fk+1 + Fk ,
qν = Fν+2 (0 ≤ ν ≤ k + 1) , qk+2 = ak+2Fk+3 + Fk+2 .

By straightforward computations including the application of the identities F−1 = 1,

FkFν+2 − Fk+2Fν = (−1)νFk−ν (0 ≤ ν ≤ k + 1) ,
F0 + F1 + F2 + · · · + Fm = Fm+2 − 1 (m ≥ 0) ,

we obtain

E(β) =
k+1�

ν=0

(−1)ν
� ρ(ak+2Fk+1 + Fk) + Fk+1

ρ(ak+2Fk+3 + Fk+2) + Fk+3
Fν+2 − Fν

�

+(−1)k+2
� ρ(ak+2Fk+1 + Fk) + Fk+1

ρ(ak+2Fk+3 + Fk+2) + Fk+3

�
ak+2Fk+3 + Fk+2

�

−
�
ak+2Fk+1 + Fk

� �
+

ρ

ρ(ak+2Fk+3 + Fk+2) + Fk+3

= 1− (ak+2 − 1)ρ
ρ(ak+2Fk+3 + Fk+2) + Fk+3

≤ 1− (ak+2 − 1)ρ
ρak+2 + ρ + 1

· 1
Fk+3

.

The function (ρx− ρ)/(ρx + ρ + 1) increases strictly for x ≥ 2. Thus we obtain

E(β) ≤ 1− ρ

3ρ + 1
· 1
Fk+3

< 1− 1
4Fk+3

,

and consequently, by (23) and (24),

E(α) < 1− 1
4Fk+3

< 1− ρ2

N
.

This contradicts our hypothesis E(α) ∈ J2. We have disproved (23), so that we may
assume

Fk+3 ≥
N

4ρ2
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for α = �0; 2, 1, 1, . . . , 1� �� �
k

, ak+2, ak+3, . . . � with E(α) ∈ J2. We have already shown for

N ≥ 32 that

I :=
�
γ ∈ [0, 1] : E(γ) ∈ J2

�
⊆

�
�0; 2, 1, 1, . . . , 1� �� �

k

, ak+2, ak+3, . . . � : Fk+3 ≥
N

4ρ2

�
.

Let k0 denote the smallest positive integer satisfying Fk0+3 ≥ N/(4ρ2). Note that
k0 ≥ 1 by N ≥ 32. Then we have

|I| ≤
���
�
�0; 2, 1, 1, . . . , 1� �� �

k

, ak+2, ak+3, . . . � : Fk+3 ≥
N

4ρ2

����

=
���0; 2, 1, 1, . . . , 1� �� �

k0

� − �0; 2, 1, 1, . . . , 1� �� �
k0−1

, 2�
��

=
���
Fk0+1

Fk0+3
− Fk0+2

Fk0+4

��� =
|Fk0+1Fk0+4 − Fk0+2Fk0+3|

Fk0+3Fk0+4

=
1

Fk0+3Fk0+4
≤ 1

F 2
k0+3

<
16ρ4

N2
. (25)

Let (αµ)µ≥1 be a sequence of uniformly distributed real numbers modulo 1. Then,
in case of uniform distribution of (E(αµ))µ≥1 in [0, ρ], we have

lim
M→∞

A(J2,M)
M

=
|J2|
ρ

=
ρ

N
.

But (25) shows that

lim sup
M→∞

A(J2,M)
M

≤ 16ρ4

N2
<

ρ

N
,

where the right-hand inequality holds for N ≥ 68.

Proof of Theorem 5. Let α := �0; a1, a2, . . .�. Then, for a1 ≥ 2, we find that

E∗(α) ≤ E∗(a1) =
1
a1
≤ 1

2
< 1− 1

N
(N ≥ 3).

Therefore, a1 = 1 is a necessary condition for E∗(α) ∈ J3. Next, by Lemma 11 we
have the following upper bound for E∗(α) ∈ J3:

1− 1
N

< E∗(α) ≤ E∗(1, a2, a3) =
a2a3 − a3 + 2
a2a3 + a3 + 1

.
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From this inequality we conclude that a2 > (2N − 1)− (N + 1)/a3. Therefore, for
any positive integers N and a3,

E∗(α) ∈ J3 =⇒ a2 ≥ A :=
�
(2N − 1)− N + 1

a3

�
+ 1 ∈ N.

Combining this with (22), it turns out that

E∗(α) ∈ J3 =⇒ α ∈ I :=
∞�

a3=1

∞�

a2=A

M(a2, a3).

Since
|M(a2, a3)| =

1
(a2a3 + a3 + 1)(a2a3 + a2 + a3 + 2)

,

we get

|I| =
∞�

ν=N+1

1
ν(2ν − 1)

+
∞�

a3=2

∞�

ν=A+2

1
((ν − 1)a3 + 1)((ν − 1)a3 + ν)

.

Since c > 0 and a3 ≥ 2, we find a lower bound for A + 2:

A + 2 > (2N − 1)− N + 1
a3

+ 2 ≥ (2N − 1)− N + 1
2

+ 2 >
3N
2

.

This yields

|I| ≤
∞�

ν=N+1

1
ν(2ν − 1)

+
∞�

a3=2

�

ν≥3N/2

1
((ν − 1)a3 + 1)((ν − 1)a3 + ν)

=
∞�

ν=N+1

1
ν(2ν − 1)

+
�

ν≥3N/2

∞�

a3=2

1
((ν − 1)a3 + 1)((ν − 1)a3 + ν)

=
∞�

ν=N+1

1
ν(2ν − 1)

+
�

ν≥3N/2

1
(ν − 1)(2ν − 1)

<
1
2

∞�

ν=N+1

1
ν(ν − 1)

+
1
2

�

ν≥3N/2

1
(ν − 1)2

.

Using the identity
∞�

ν=N+1

1
ν(ν − 1)

=
1
N

and the estimate
�

ν≥3N/2

1
(ν − 1)2

≤
� ∞

(3N−2)/2

dx

(x− 1)2
=

2
3N − 4

(N ≥ 2) ,
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we finish the proof of Theorem 5 for N ≥ 3 by

|I| <
1

2N
+

1
3N − 4

<
1

2N
+

1
3N

+
1

N2
=

5
6N

+
1

N2
.
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Appendix: Plots

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.2 0.4 0.6 0.8 1

Figure 1: The graph of E
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Figure 2: The graph of E∗
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Figure 3: The values of E(α) for 50 000 at random generated points
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Figure 4: The values of E∗(α) for 50 000 at random generated points

Figure 1 implies that the inequalities 1 ≤ E(α)/α ≤ ρ2 hold for every α ∈ (0, 1).
Indeed we have E(α) = α for α = 1/k and E(α) = ρ2α for α = �0; k, 1, 1, 1, . . .� =
1/(k − 1 + ρ) with k ∈ N, where the latter equation follows from Lemma 13.
Moreover, E(α) ≥ 1 for α > 1/2, and E(1, 1) = E(1, k − 1) = E((k − 1)/k) = 1 for
every integer k ≥ 3.

Concerning Figure 2 one may guess that 0 ≤ E(α) ≤ α holds for every α ∈ (0, 1).
More precisely we have E∗(α) = α for α = 1/k with k ∈ N, E∗(1, k− 1, 1) = k/(k +
1) = �0; 1, k − 1, 1� for every integer k ≥ 2, and E∗(k, 1) = 0 for k ∈ N. Moreover,
E∗(α) ≥ 2α−1 for α ≥ 1/2, and we have E∗((k−1)/k) = (k−2)/k = 2(k−1)/k−1
for every integer k ≥ 3.
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