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Abstract
The first author introduced a sequence of polynomials defined recursively. One of
the main results of this study is proof of the integrality of its coefficients.

1. Introduction

In point of fact, there are only a few examples of sequences known where the question
of the integrality of the terms is a difficult problem. In 1989, Somos [9] posed a
problem on the integrality of sequences depending on parameter k ≥ 4 which are
defined by the recursion

an =
�� k

2 �
j=1 an−jan−(k−j)

an−k
, n ≥ k ≥ 4,

with the initial conditions ai = 1, i = 1, . . . , k − 1.
Gale [3] proved the integrality of Somos sequences when k = 4 and 5, attributing
a proof to Malouf [4]. Hickerson and Stanley (see [6]) independently proved the
integrality of the k = 6 case in unpublished work and Fomin and Zelevinsky (2002)
gave the first published proof. Finally, Lotto (1990) gave an unpublished proof for
the k = 7 case. These are sequences A006720-A006723 in [8]. It is interesting that,
for k ≥ 8, the property of integrality disappears (see sequence A030127 in [8]). In
connection with this, note that in the so-called Göbel’s sequence ([11]) defined by
the recursion

xn =
1
n

(1 +
n−1�

i=0

x2
i ), n ≥ 1, x0 = 1,
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the first non-integer term is x43 = 5.4093× 10178485291567.
In this paper we study the Shevelev sequence of polynomials {Pn(x)}n≥1 that

are defined by the following recursion: P1 = 1, P2 = 1, and, for n ≥ 2,

4(2x + n)Pn+1(x) = 2(x + n)Pn(x)+

(2x + n)Pn(x + 1) + (4x + n)ln(x), if n is odd, (1)

4Pn+1(x) = 4(x + n)Pn(x)+

2(2x + n + 1)Pn(x + 1) + (4x + n)ln−1(x), if n is even, (2)

where
ln(x) = (x +

n− 1
2

)(x +
n− 3

2
) · · · (x + 1).

The first few polynomials are ([8], sequence A174531):

P1 = 1,

P2 = 1,

P3 = 3x + 4,

P4 = 2x + 4,

P5 = 5x2 + 25x + 32,

P6 = 3x2 + 19x + 32,

P7 = 7x3 + 77x2 + 294x + 384,

P8 = 4x3 + 52x2 + 240x + 384,

P9 = 9x4 + 174x3 + 1323x2 + 4614x + 6144,

P10 = 5x4 + 110x3 + 967x2 + 3934x + 6144,

P11 = 11x5 + 330x4 + 4169x3 + 27258x2 + 90992x + 122880,

P12 = 6x5 + 200x4 + 2842x3 + 21040x2 + 79832x + 122880.

According to our observations, the following conjectures are natural.
1) The coefficients of all the polynomials are integers. Moreover, the greatest com-
mon divisor of all coefficients is n/rad(n), where rad(n) =

�
p|n p;

2) Pn(0) = 4�
n−1

2 ��n−1
2 �!;

3) For even n, Pn(1) = (2n−1)(n
2 )!/(n+1), and for odd n, Pn(1) = (2n−1)(n−1

2 )!;
4) Pn(x) has a real rational root if and only if either n = 3 or n ≡ 0 (mod 4). In
the latter case, such a unique root is −n

2 ;
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5) Coefficients of xk increase when k decreases;
6) If n is even, then the coefficients of Pn do not exceed the corresponding coeffi-
cients of Pn−1 and the equality holds only for the last ones; moreover, the ratios of
coefficients of xk of polynomials Pn−1 and Pn monotonically decrease to 1 when k
decreases;
7) All coefficients of Pn, except of the last one, are multiples of n if and only if n is
prime.
The main results of our paper consist of the following two theorems.

Theorem 1. (Explicit formula for Pn(k)) For an integer k we have

Pn(k) =






(
�(n−1)/2+k−1

k−1

�
/
�n+2k−2

k−1

�
)(n−1

2 )! Tn(k), if n ≥ 1 is odd

(
�n/2+k−1

k

�
/
�n+2k−1

k

�
)(n

2 − 1)! Tn(k), if n ≥ 2 is even,

(3)

= 2−(�n
2 �+k−1) (n + k − 1)!

(2�n
2 �+ 2k − 1)!!

Tn(k), (4)

where

Tn(k) =
n�

i=1

2i−1

�
n + 2k − i− 1

k − 1

�
. (5)

Using Theorem 1, we prove Conjectures (2), (3) and the following main result.

Theorem 2. For n ≥ 1, Pn(x) is a polynomial of degree �n−1
2 � with integer coeffi-

cients.

Nevertheless, the subtle second part of Conjecture (1) remains open.

2. Representation of Pn(k) Via a Polynomial in n of Degree k − 1 with
Integer Coefficients

Theorem 3. For integers k ≥ 1, n ≥ 1, the following recursion holds

Pn(k) = cn(k)
�
2n+k−1 − Rk(n)

(2k − 2)!!

�
, (6)

where Rk(n) is a polynomial in n of degree k − 1 with integer coefficients and

cn(k) =






(n−1
2 )!

�k−1
i=1

n+i
n+2i , if n is odd,

1
2 (n

2 − 1)!
�k−1

i=0
n+i

n+2i+1 , if n is even .

(7)
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Proof. Write (3) and (4) in the form

Pn(k + 1) = −2f
g

Pn(k) + 4Pn+1(k)− h

g

�n− 1
2

�
!
�g−1

2

k

�
, if n ≡ 1 (mod 2); (8)

Pn(k + 1) = − 2f
g + 1

Pn(k) +
2

g + 1
Pn+1(k)− h

2(g + 1)
�n

2
− 1

�
!
�g

2 − 1
k

�
(9)

if n ≡ 0 (mod 2),
where f = n + k, g = n + 2k, h = n + 4k.

Let n be odd. We use induction over k. For k = 1, (6) gives

R1(n) = 2n − Pn(1)
cn(1)

= Const(k). (10)

Thus the base of induction is valid. Suppose the theorem is true for some value
of k. Then, using this supposition and (6) to (9), we have

Pn(k + 1) =

−2f
g

�n− 1
2

�
!
�
2n+k−1 − Rk(n)

(2k − 2)!!

� k−1�

i=1

n + i

n + 2i
+

2
�n− 1

2
�
!
�
2n+k − Rk(n + 1)

(2k − 2)!!

� k−1�

i=0

n + i + 1
n + 2i + 2

−

h

g

�n− 1
2

�
!

g−1
2

g−3
2 · · · n+1

2

k!
.

Note that

f

g

k−1�

i=0

n + i

n + 2i
=

k�

j=1

n + j

n + 2j
=

k−1�

i=0

n + i + 1
n + 2i + 2

.

Therefore,

Pn(k + 1) =
�n− 1

2
�
!
�
− 2n+k +

2Rk(n)
(2k − 2)!!

+ 2n+k+1−

2Rk(n + 1)
(2k − 2)!!

− h

g

g−1
2

g−3
2 · · · n+1

2

k!

k�

j=1

n + 2j
n + j

� k�

j=1

n + j

n + 2j
.

Here we note that

(g − 1)(g − 3) · · · (n + 1)
k�

j=1

n + 2j
n + j

= (n + 2k)k,
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where (x)k is a falling factorial. Hence

Pn(k + 1) = cn(k + 1)
�
2n+k − 2

Rk(n + 1)−Rk(n)
(2k − 2)!!

−

4k + n

(2k)!!
(n + 2k − 1)k−1

�
= cn(k + 1)

�
2n+k − Rk+1(n)

(2k)!!

�
,

where

Rk+1(n) = 4k(Rk(n + 1)−Rk(n)) + (4k + n)(n + 2k − 1)k−1. (11)

Since, by the inductive supposition, Rk(n) is a polynomial of degree k − 1 with
integer coefficients, then, by (11), Rk+1(n) is a polynomial of degree k with integer
coefficients. Note that the case of even n is considered quite analogously, obtaining
the same formula (11).

In (6) and (7), put n = 1. Then, for k ≥ 1 we have

�
2k − Rk(1)

(2k − 2)!!

� k!
(2k − 1)!!

= 1,

from which

Rk(1) = (k − 1)!
�
22k−1 −

�
2k − 1

k

��
. (12)

In particular, R1(1) = 1 and, since R1(n) is of degree 0, R1(n) = 1. Further, we
find polynomials Rk(n) using the recursion (11). The first polynomials Rk(n) are

R1(n) = 1,

R2(n) = n + 4,

R3(n) = n2 + 11n + 32,

R4(n) = n3 + 21n2 + 152n + 384,

R5(n) = n4 + 34n3 + 443n2 + 2642n + 6144,

R6(n) = n5 + 50n4 + 1015n3 + 10510n2 + 55864n + 122880.

3. Proof of Conjectures (2) and (3)

We start with the proof of Conjecture (3) for Pn(1).
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Proof. Note that, since R1(n) = 1, from (10) we find

Pn(1) = cn(1)(2n − 1). (13)

Besides, by (7), we have

cn(1) =






(n−1
2 )!, if n is odd,

1
2 (n

2 − 1)! n
n+1 = (n

2 )!/(n + 1), if n is even,

(14)

and Conjecture (3) follows.

Let us now prove Conjecture (2).

Proof. Note that (8) and (9), as in (1) and (2), are valid for every nonnegative k.
For k = 0 and odd n ≥ 1, (8) gives

Pn(1) = −2Pn(0) + 4Pn+1(0)−
�n− 1

2
�
!,

or, using (13) and (14), we have

4Pn+1(0)− 2Pn(0) = 2n
�n− 1

2
�
!

Analogously, for k = 0 and even n ≥ 1, from (9), (13) and (14) we find

Pn+1(0)− nPn(0) = 2n−1
�n

2
�
!

Thus

Pn+1(0) =






1
2Pn(0) + 2n−2(n−1

2 )!, if n is odd,

nPn(0) + 2n−1(n
2 )!, if n is even

with P1(0) = 1, P2(0) = 1. Since the difference equation

y(n + 1) =






1
2y(n) + 2n−2(n−1

2 )!, if n is odd,

ny(n) + 2n−1(n
2 )!, if n is even

with the initial values y(1) = 1, y(2) = 1 has an unique solution, it is sufficient to
verify that y(n) = Pn(0) = 4�

n−1
2 ��n−1

2 �! is a solution.
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4. Explicit Formula for Rk(n)

Since from (11)
4kRk(n + 1) = 4kRk(n)+

Rk+1(n)− (4k + n)(n + 2k − 1)k−1, (15)

we have a recursion in n for Rk(n) given by (12) and (15).
Our aim in this section is to find a generalization of (12) for an arbitrary integer
n ≥ 1. Note that we can write (12) in the form

Rk(1) = 2(k − 1)!4k−1 − (2k − 1)!
k!

.

Using (15) and (12), after some transformations, we find

Rk(2) = 22(k − 1)!4k−1 − 2
(2k − 1)!

k!
− (2k)!

(k + 1)!
.

The regularity is fixed in the following theorem.

Theorem 4. For integer k ≥ 1, n ≥ 1, we have

Rk(n) = 2n(k − 1)!4k−1 −
n�

i=1

2n−i (2k + i− 2)!
(k + i− 1)!

. (16)

Proof. Taking into account that (2k+i−2)!
(k+i−1)! =

�2k+i−2
k−1

�
(k − 1)!, we prove (16) in the

following equivalent form:

Rk(n) = 2n(k − 1)!
�
4k−1 −

n�

i=1

2−i

�
2k + i− 2

k − 1

��
. (17)

We use induction over n. Suppose that (17) is valid for some value of n and an
arbitrary integer k ≥ 1. By (15), we have

Rk(n + 1) = 2n(k − 1)!
�
4k−1 −

n�

i=1

2−i

�
2k + i− 2

k − 1

��
+

2n−2(k − 1)!
�
4k −

n�

i=1

2−i

�
2k + i

k

��
− 4k + n

4k
(n + 2k − 1)k−1 =

2n(k− 1)!
�
4k−1−

n�

i=1

2−i

�
2k + i− 2

k − 1

��
+2n(k− 1)!

�
4k−1−

n�

i=1

2−i−2

�
2k + i

k

��
−

(n + 2k − 1)!
(n + k)!

− n

4k
(n + 2k − 1)!

(n + k)!
.
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Thus we should prove the identity

2n+1(k − 1)!4k−1 − 2n(k − 1)!
n�

i=1

2−i

�
2k + i− 2

k − 1

�
−

2n−2(k − 1)!
n�

i=1

2−i

�
2k + i

k

�
− n + 4k

4k
(n + 2k − 1)!

(n + k)!
=

2n+1(k − 1)!
�
4k−1 −

n+1�

i=1

2−i

�
2k + i− 2

k − 1

��
,

which is easily reduced to the identity

4
n�

i=1

2−i

�
2k + i− 2

k − 1

�
−

n�

i=1

2−i

�
2k + i

k

�
=

2−n n + 4k
4k

(n + 2k − 1)!
(n + k)!

− 4 · 2−n

�
2k + n− 1

k − 1

�
.

Note that, the right hand part is n
k2n

�2k+n−1
k−1

�
. Therefore, it is left to prove the

identity

4
n�

i=1

2−i

�
2k + i− 2

k − 1

�
−

n�

i=1

2−i

�
2k + i

k

�
=

n

2nk

�
2k + n− 1

k − 1

�
.

Since this is trivially satisfied for n = 0, it is sufficient to verify the equality of the
first differences of the left and the right hand parts, which is reduced to the identity

2(n + 2k − 1)
�

2k + n− 2
k − 1

�
= n

�
2k + n− 1

k − 1

�
+ k

�
2k + n

k

�
,

which is verified directly.

5. Proof of Theorem 1

Now we are able to prove Theorem 1.

Proof. According to (5), we have

Tn(k) =
n�

i=1

2i−1

�
n + 2k − i− 1

k − 1

�
=

n�

j=1

2n−j

�
2k + j − 2

k − 1

�
. (18)

Hence, by (17), we find

Rk(n) = 2n(k − 1)!(4k−1 − 2−nTn(k)) =
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(k − 1)!(2n+2k−2 − Tn(k)). (19)

Now from (6) and (19) we have

Pn(k) = 2−(k−1)cn(k)Tn(k). (20)

Let n be odd. Note that, by (7),

2−(k−1)cn(k) =

2−(k−1)
�n− 1

2
�
!

(n + k − 1)(n + k − 2) · · · (n + 1)
(n + 2k − 2)(n + 2k − 4) · · · (n + 2)

=

2−(k−1)
�n− 1

2
�
!
(n + k − 1)!n!!
n!(n + 2k − 2)!!

. (21)

Taking into account that

n!! =
n!

(n− 1)!!
=

n!
2

n−1
2 (n−1

2 )!
, (22)

we find from (21)

2−(k−1)cn(k) =
(n + k − 1)!(n−1

2 + k − 1)!
(n + 2k − 2)!

=

(n−1
2 + k − 1)!

(k − 1)!
�n+2k−2

k−1

� =

�n−1
2 +k−1

k−1

�
�n+2k−2

k−1

�
�n− 1

2
�
!

and (3) follows from (20). Furthermore, since by (22) n!!( n−1
2 )!

n! = 2−
n−1

2 , from (20)
and (21) we find

Pn(k) = 2−( n−1
2 +k−1) (n + k − 1)!

(n + 2k − 2)!!
Tn(k)

corresponds to (4) in the case of odd n. The case of even n is considered quite
analogously.

6. Bisection of Sequence {Pn(x)}

Note that Tn(k), (5), has rather a simple structure, which allows us to find different
relations for it. Using (3) and (4), we are able to find recursion relations for Pn(x)
which are simpler than the basis recursion (1) and (2). We start with the following
simple recursions for Tn(k).



INTEGERS: 13 (2013) 10

Lemma 5.
Tn(k)− 2Tn−1(k) =

�
n + 2k − 2

k − 1

�
, k ≥ 1; (23)

Tn(k)− 4Tn−2(k) =
�

n + 2k − 2
k − 1

�
+ 2

�
n + 2k − 3

k − 1

�
, k ≥ 2. (24)

Proof. By (5), we have
Tn(k)− 2Tn−1(k) =

n�

i=1

2i−1

�
n + 2k − i− 1

k − 1

�
−

n−1�

j=1

2j

�
n + 2k − j − 2

k − 1

�
=

n�

i=1

2i−1

�
n + 2k − i− 1

k − 1

�
−

n�

i=2

2i−1

�
n + 2k − i− 1

k − 1

�

and (23) follows; (24) is a simple corollary of (23).

Theorem 6. (Bisection) If n ≥ 3 is odd, then

(2x + n− 2)Pn(x) = 2(x + n− 1)(x + n− 2)Pn−2(x)+

(4x + 3n− 4)(x +
n− 1

2
− 1)(x +

n− 1
2

− 2) · · ·x; (25)

if n ≥ 4 is even, then

(2x + n− 1)Pn(x) = 2(x + n− 1)(x + n− 2)Pn−2(x)+

1
2
(4x + 3n− 4)(x +

n− 2
2

− 1)(x +
n− 2

2
− 2) · · ·x. (26)

Proof. According to (3), we have

Tn(k) =






�n+2k−2
k−1

�
/(

�(n−1)/2+k−1
k−1

�
(n−1

2 )!) Pn(k), if n is odd,

�n+2k−1
k

�
/(

�n/2+k−1
k

�
(n

2 − 1)!) Pn(k), if n is even.

(27)

Substituting this to (24), after simple transformations, we obtain (25) and (26),
where k is replaced by arbitrary x.

Note that from (25) and (26), using a simple induction, we conclude that, for
even n ≥ 4, Pn(x) is a polynomial of degree n−2

2 , while, for odd n ≥ 3, Pn(x) is a
polynomial of degree n−1

2 . However, the structure of formulas (25) and (26) does
not allow us to prove that all coefficients of Pn(x) are integer. This will be done in
the following section by the discovery of the special relationships with the required
structure.
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7. Proof of Theorem 2

Lemma 7. For n ≥ 1, we have

Tn(k)− Tn−2(k + 1) =
�

n + 2k − 1
k

�
. (28)

Proof. By (18), we should prove that
�

2k + n− 1
k

�
= Tn(k)− Tn−2(k + 1) =

n�

j=1

2n−j

�
2k + j − 2

k − 1

�
−

n−2�

j=1

2n−j−2

�
2k + j

k

�
=

n�

j=1

2n−j

�
2k + j − 2

k − 1

�
−

n�

i=1

2n−i

�
2k + i− 2

k

�
+

2n−1

�
2k − 1

k

�
+ 2n−2

�
2k
k

�
,

or
n�

j=1

2−j
��

2k + j − 2
k − 1

�
−

�
2k + j − 2

k

��
=

2−n

�
2k + n− 1

k

�
− 1

2

�
2k − 1

k

�
− 1

4

�
2k
k

�
. (29)

It is verified directly that (29) is valid for n = 1. Therefore, it is sufficient to verify
that the first differences over n of the left hand side and the right hand side coincide.
The corresponding identity

2−n
��

2k + n− 2
k − 1

�
−

�
2k + n− 2

k

��
=

2−n

�
2k + n− 1

k

�
− 2−n+1

�
2k + n− 2

k

�

reduces to the equality
�2k+n−2

k−1

�
+

�2k+n−2
k

�
=

�2k+n−1
k

�
.

Now we are able to complete proof of Theorem 2. Considering even n ≥ 4, by
(27), we obtain the following relation for Pn(k) corresponding to (28):

Pn(x) = (n + x− 1)Pn−2(x + 1)+

(x +
n

2
− 1)(x +

n

2
− 2) · · · (x + 1). (30)
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On the other hand, using (23), for odd n ≥ 3, we obtain the following relation

Pn(x) = 2(x + n− 1)Pn−1(x)+

(x +
n− 1

2
− 1)(x +

n− 1
2

− 2) · · ·x. (31)

From (30), by simple induction, we see that, for even n ≥ 4, Pn(x) is a polynomial
with integer coefficients. Then from (31) we find that Pn(x), for odd n, is also a
polynomial with integer coefficients.

8. Other Relations

Together with (25), (26), (30) and (31) there exist many other relations for Pn(x).
All of them are corollaries of the corresponding relations for Tn(k). Below we give
a few pairs of some such relations.

As we saw, for odd n ≥ 3, (31) follows from (23). Let us consider even n ≥ 4.
Then we obtain the second component of the following recursion

Pn(x) =






2(x + n− 1)Pn−1(x)+

((x + n− 1)Pn−1(x)+





(x + n−1
2 − 1)(x + n−1

2 − 2) · · ·x, if n ≥ 3 is odd,

(x + n
2 − 1)(x + n

2 − 2) · · ·x)/(2x + n− 1), if n ≥ 4 is even.

Lemma 8. For n ≥ 1, k ≥ 1, we have

Tn(k + 1) = 4Tn(k)− n

k

�
n + 2k − 1

k − 1

�
. (32)

Proof. By (24) and (28), we have

Tn(k + 1) = Tn+2(k)−
�

n + 2k + 1
k

�
=

4Tn(k) +
�

n + 2k
k − 1

�
+ 2

�
n + 2k − 1

k − 1

�
−

�
n + 2k + 1

k

�
.

It is left to note that
�

n + 2k
k − 1

�
+ 2

�
n + 2k − 1

k − 1

�
−

�
n + 2k + 1

k

�
= −n

k

�
n + 2k − 1

k − 1

�
.
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From Lemma 8 and (27) we find the following recursion





(2x + n)Pn(x + 1) = 2(x + n)Pn(x)−

(2x + n + 1)Pn(x + 1) = 2(x + n)Pn(x)−






n(x + n−1
2 )(x + n−1

2 − 1) · · · (x + 1), if n ≥ 3 is odd,

n
2 (x + n

2 − 1)(x + n
2 − 2) · · · (x + 1), if n ≥ 4 is even.

Lemma 9. For n ≥ 2, k ≥ 1, we have

(n + k − 1)(Tn(k)− 4Tn(k − 1)) = n(Tn−1(k)− 2Tn(k − 1)). (33)

Proof. By (32),

Tn(k)− 4Tn(k − 1) = − n

k − 1

�
n + 2k − 3

k − 2

�
. (34)

By (23),

Tn(k − 1) = 2Tn−1(k − 1) +
�

n + 2k − 4
k − 2

�
.

Therefore,

Tn−1(k)− 2Tn(k − 1) = Tn−1(k)− 4Tn−1(k − 1)− 2
�

n + 2k − 4
k − 2

�
.

Using again (32), we find

Tn−1(k)− 2Tn(k − 1) = −(
n− 1
k − 1

+ 2)
�

n + 2k − 4
k − 2

�
. (35)

Now the lemma follows from (34) and (35) since (n + k − 1)
�n+2k−3

k−2

�
= (n + 2k −

3)
�n+2k−4

k−2

�
.

Going from (33) to the corresponding formula for Pn(x) in the case of odd n ≥ 3
unexpectedly leads to a very simple homogeneous relation

Pn(x) = Pn(x− 1) + nPn−1(x) (36)

which we use in Sections 9 and 12. The corresponding relation for even n ≥ 4 is

(2x + n− 1)Pn(x) = (2x + n− 2)Pn(x− 1) +
n

2
Pn−1(x). (37)
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Lemma 10. For n ≥ 1, k ≥ 2, we have

2Tn(k)− Tn−1(k + 1) =
�

n + 2k − 1
k

�
.

Proof. By (23), we have

2Tn(k)− Tn−1(k + 1) = 4Tn−1(k) + 2
�

n + 2k − 2
k − 1

�
− Tn−1(k + 1).

Furthermore, by (28),

Tn−1(k + 1) = Tn+1(k)−
�

n + 2k
k

�
.

Hence,
2Tn(k)− Tn−1(k + 1) =

4Tn−1(k)− Tn+1(k) + 2
�

n + 2k − 2
k − 1

�
+

�
n + 2k

k

�
. (38)

Finally, by (24),

Tn+1(k)− 4Tn−1(k) =
�

n + 2k − 1
k − 1

�
+ 2

�
n + 2k − 2

k − 1

�

and the lemma follows from (38).

Using Lemma 10 and (27), for even n ≥ 4, we find

2Pn(x) = Pn−1(x + 1) + (x +
n

2
− 1)(x +

n

2
− 2) · · · (x + 1), (39)

while, for odd n ≥ 3,

Pn(x) = (2x + n)Pn−1(x + 1) + (x +
n− 1

2
)(x +

n− 1
2

− 1) · · · (x + 1).

Proposition 11. For odd n ≥ 3, we have Pn(k) ≡ Pn(0) (mod n).

Proof. From (36) we find that
�k

i=1 Pn−1(i) = (Pn(k)− Pn(0))/n, and the propo-
sition follows.

9. On the Coefficients of Pn(x)

Using formulas (25) and (26), we give a recursion for the calculation of the coeffi-
cients of Pn(x) with a fixed parity of n. Let

Pn(x) = a0(n)xm + a1(n)xm−1 + · · · + am−1(n)x + am(n),

where m = �n−1
2 �. We prove the following.
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Theorem 12. For n ≥ 1, we have

a0(n) =






n, if n is odd

n
2 , if n is even;

(40)

a1(n) =






1
24 (7n3 − 12n2 + 5n)

1
48 (7n3 − 18n2 + 8n)

=






1
24n(n− 1)(7n− 5), if n is odd,

1
48n(n− 2)(7n− 4), if n is even.

(41)

In general, for a fixed i, ai(n) = Ui(n), if n is odd, and ai(n) = Vi(n), if n is even,
where Ui and Vi are polynomials in n of degree 2i + 1.

Proof. Case 1). Let n be even. Then, using (26), for integer x and m = n−2
2 , we

have
(2x + n− 1)(a0(n)xm + a1(n)xm−1 + · · · ) =

2(x + n− 1)(x + n− 2)(a0(n− 2)xm−1 + a1(n− 2)xm−2 + · · · )+

1
2
�n− 2

2
�
!(4x + 3n− 4)

�
x− 1 + n−2

2
n−2

2

�
. (42)

Comparing the coefficient of xm+1 on both sides, we find

a0(n) = a0(n− 2) + 1, n ≥ 4, a0(4) = 2.

Thus a0(6) = 3, a0(8) = 4, . . . , a0(n) = n/2.
Furthermore, comparing the coefficient of xm on both sides of (42), we have

2a1(n) + (n− 1)a0(n) = 2a1(n− 2) + 2(2n− 3)a0(n− 2)+

Coef [xm](
1
2
(4x + 3n− 4)(x +

n− 4
2

)(x +
n− 6

2
) · · · (x + 1)x). (43)

Note that

Coef [xm](
1
2
(4x + 3n− 4)(x +

n− 4
2

)(x +
n− 6

2
) · · · (x + 1)x) =

3n− 4
2

+ 2(
n− 4

2
+

n− 6
2

+ · · · + 1) =

3n− 4
2

+
m�

i=2

(n− 2i) =
n2

4
.

Therefore, by (43),

a1(n)− a1(n− 2) =
(2n− 3)(n− 2)

2
− (n− 1)n

4
+

n2

8
=

7n2 − 26n + 24
8

.
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Hence

a1(n) =
�

i=4,6,··· ,n

(a1(i)− a1(i− 2)) =
1
8

�

i=4,6,...,n

(7i2 − 26i + 24) =

1
2

n/2�

j=2

(7j2 − 13j + 6) =
1
48

(7n3 − 18n2 + 8n).

Finally, comparing the coefficient of xm−i on both sides of (42), we find

2ai+1(n) + (n− 1)ai(n) = 2ai+1(n− 2)+

2(2n− 3)ai(n− 2) + 2(n− 1)(n− 2)ai−1(n− 2)+
1
2
Coef [xm−i]((4x + 3n− 4)(x +

n− 4
2

)(x +
n− 6

2
) · · · (x + 1)(x)). (44)

Note that, polynomial (4x + 3n − 4)(x + n−4
2 )(x + n−6

2 ) · · · (x + 1)x has degree
m + 1. Therefore, in order to calculate Coef [xm−i] in (44), we should choose, in
all possible ways, in m− i brackets (from m + 1 ones) x�s, and for the other i + 1
brackets we choose linear forms of n. Thus 1

2Coef [xm−i] in (44) is a polynomial
ri(n) of degree i + 1. Further we use induction over i with the formulas (40) and
(41) as the inductive base. Write (44) in the form

2(ai+1(n)− ai+1(n− 2)) =

2(2n− 3)ai(n− 2)− (n− 1)ai(n) + 2(n− 1)(n− 2)ai−1(n− 2) + ri(n). (45)

By the inductive supposition, ai−1(n) and ai(n) are polynomials of degree 2i − 1
and 2i+1 respectively. Thus ai+1(n)−ai+1(n−2) is a polynomial of degree 2i+2.
This means that ai+1(n) is a polynomial of degree 2i + 3.

Case 2). Let n be odd. By (25), for integer x and m = n−1
2 , we have

(2x + n− 2)(a0(n)xm + a1(n)xm−1 + · · · ) =

2(x + n− 1)(x + n− 2)(a0(n− 2)xm−1 + a1(n− 2)xm−2 + · · · )+
�n− 1

2
�
!(4x + 3n− 4)

�
x + n−3

2
n−1

2

�
. (46)

Hence, comparing the coefficient of xm+1 on both sides, we find

a0(n) = a0(n− 2) + 2, n ≥ 3, a0(1) = 1.
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Thus a0(3) = 3, a0(5) = 5, . . . , a0(n) = n.
Furthermore, comparing the coefficient of xm on both sides of (46), using the same
arguments as in 1), we have

a1(n) = a1(n− 2) +
7n2 − 22n + 19

4
, n ≥ 3, a1(1) = 0.

Since a1(n) =
�

i=3,5,...,n(a1(i)− a1(i− 2)), we find

a1(n) =
1
4

�

i=3,5,...,n

(7i2 − 22i + 19) =
1
24

(7n3 − 12n2 + 5n).

Finally, comparing the coefficient of xm−i on both sides of (46), we find

2(ai+1(n)− ai+1(n− 2)) =

2(2n− 3)ai(n− 2)− (n− 2)ai(n)+

2(n− 1)(n− 2)ai−1(n− 2) + si(n), (47)

where

si(n) = Coef [xm−i]((4x + 3n− 4)(x +
n− 3

2
)(x +

n− 5
2

) · · · (x + 1)x)

and, as in 1), the statement is proved by induction over i.

A few such polynomials are the following:
For odd n :

U0(n) = n,

U1(n) =
1
24

(n− 1)n(7n− 5),

U2(n) =
1

640
(n− 3)(n− 1)n(29n2 − 44n + 7),

U3(n) =
1

322560
(n− 5)(n− 3)(n− 1)n(1581n3 − 3775n2 + 1587n + 223);

For even n :
V0(n) =

1
2
n,

V1(n) =
1
48

(n− 2)n(7n− 4),

V2(n) =
1

3840
(n− 4)(n− 2)n(87n2 − 98n + 16),

V3(n) =
1

645120
(n− 6)(n− 4)(n− 2)n(1581n3 − 2686n2 + 936n + 64).
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Proposition 13.

ai(n) ≡






ri(n), if n is even,

si(n), if n is odd.

(mod 2)

Proof. The proposition follows from (45), (47) and Theorem 2.

Finally, note that, from (36) and (37) the following homogeneous recursions for
the coefficients of Pn(x) follow.

Theorem 14. For odd n ≥ 3 and i ≥ 0,

(m− i)ai(n) = nai(n− 1) +
i−1�

j=0

(−1)i−j+1

�
m− j

m− i− 1

�
aj(n).

For even n ≥ 4 and i ≥ 0,

(n− 2i− 1)ai(n) =
n

2
ai(n− 1)+

2
i−1�

j=0

(−1)i−j+1
�
m

�
m− j

m− i

�
−

�
m− j

m− i− 1

��
aj(n).

10. Arithmetic Proof of the Integrality Pn(x) in Integer Points

From Theorem 2 we conclude that the polynomial, Pn(x), takes integer values for
integer x = k. Here we give an independent arithmetic proof of this fact using the
explicit expression (3). It is well known (cf. [5], Section 8, Problem 87) that, if
a polynomial P (x) of degree m takes integer values for x = 0, 1, . . . ,m, then it
takes integer values for every integer x. Since, as we proved at the end of Section 6,
deg Pn(k) = �n−1

2 �, we suppose that 0 ≤ k ≤ �n−1
2 �. Moreover, from the results of

Section 3, Pn(0) and Pn(1) are integers. (In the case when n + 1 is an odd prime,
Pn(1) = (2n − 1)(n

2 )!/(n + 1) is integer, since 2n − 1 ≡ 0 (mod n + 1), while in the
case when n + 1 is an odd composite number, no divisor exceeds n+1

3 , therefore,
(n

2 )! ≡ 0 (mod n + 1).) Thus we can suppose that

2 ≤ k ≤ �n− 1
2

�. (48)

Suppose that n is even (the case of odd n is considered quite analogously). Let p
be a prime. Denote the maximal power of p dividing n by [n]p. We say that, for
integer l, h, the fraction l

h is p-integer, if [l]p − [h]p ≥ 0.
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A) Firstly, we show that, for n ≥ 4, Pn(k) is 2-integer. Indeed, 2k + n − 1 is odd,
while 4k + 3n− 4 is even. Therefore, by (26), using a trivial induction, we see that
Pn(k) is 2-integer.

Further we use the explicit formula (3) of Theorem 1.
B) Let p be an odd prime divisor of

�n+2k−2
k−1

�
which does not coincide with any

factor of the product (n+2k−1)(n+2k−2) · · · (n+k). Thus p could divide one or
several composite factors of this product. Therefore, the following condition holds

3 ≤ p ≤ n + 2k − 1
3

. (49)

Let us show that

a(n; k) =
�n

2 +k−1
k

�
�n+2k−1

k

�
�n− 2

2
�
! =

2−k (n + 2k − 2)(n + 2k − 4) · · ·n
(n + 2k − 1)(n + 2k − 2) · · · (n + k)

�n− 2
2

�
!

is p-integer and, consequently, Pn(k) is p-integer.
Let k ≥ 3 be even. Then, after a simplification, we have

2ka(n; k) =
(n + k − 2)(n + k − 4) · · ·n

(n + 2k − 1)(n + 2k − 3) · · · (n + k + 1)
�n− 2

2
�
!,

or

2
k
2 a(n; k) =

(n+k−2
2 )!

(n + 2k − 1)(n + 2k − 3) · · · (n + k + 1)
(50)

We distinguish several cases.

Case a). For t ≥ 2, let pt divide at least one factor of the denominator. Then p ≤
(n+2k−1) 1

t Let us show that p ≤ n+k−2
2t . We should show that n+2k−1 ≤ (n+k−2

2t )t,
or, since, by (48), k ≤ n−2

2 , it is sufficient to show that 3
2 (n + k − 2) ≤ (n+k−2

2t )t,

or (2t)
t

t−1 ≤ (2
3 )

1
t−1 (n + k − 2). Since (2

3 )
1

t−1 ≥ 2
3 , it is sufficient to prove that

(2t)
t

t−1 ≤ 2
3 (n + k − 2). Note that et < pt ≤ n + 2k − 2, t ≤ ln(n + 2k − 2).

Therefore we find (2t)
t

t−1 ≤ (2 ln(n + 2k− 2))2. Furthermore, note that, if n ≥ 152,
then ln2 n < n

6 . Thus (2t)
t

t−1 ≤ 2
3 (n + k − 2). It is left to add that up to n = 161

we verified that the polynomials Pn(k) have integer coefficients and, consequently,
is integer-valued.

Case b). Let p divide only one factor of the denominator. Then, in view of (48)
and (49), p ≤ n+2k−1

3 ≤ n+k−2
2 and, by (50), a(n; k) is p-integer.

Case c). Let p divide exactly l factors of the denominator. Then

p ≤ (n + 2k − 1)− (n + k + 1)
l

=
k − 2

l
,
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and, since, by (48), n ≥ 2k + 2, we conclude that n+k−2
2 ≥ 3k

2 ≥ k− 2 ≥ lp. Hence,
by (50), a(n; k) is p-integer.
It is left to notice that the case of odd k is considered quite analogously.
C) Suppose that, as in B), k ≥ 2 is even. Let p be an odd prime divisor of

�n+2k−1
k

�

which coincides with some factor of the product (n+2k−1)(n+2k−3) · · · (n+k+1).
In this case the fraction (50) is not integer. Thus in order to prove that Pn(k) is
p-integer, we should prove that Tn(k) (18) is p-integer. By the condition, p has form

p = n + 2k − 1− 2r, 0 ≤ r ≤ k − 2
2

. (51)

According to (18) and (51), we should prove that

n−1�

j=0

2j

�
n + 2k − j − 2

k − 1

�
=

n−1�

j=0

2j

�
p + 2r − 1− j

k − 1

�
≡ 0 (mod p), (52)

or
A(n, r, k) :=

n−1�

j=0

2j(j − (2r − 1))(j + 1− (2r − 1)) · · · (j + k − 2− (2r − 1)) ≡ 0 (mod p).

Note that, since n− 2r = p− 2k + 1, we have

n−1�

j=0

xj+k−2−(2r−1) =

(xn+k−2r−1 − xk−2r−1)(x− 1)−1 = (xp−k − xk−2r−1)(x− 1)−1.

Therefore,

A(n, r, k) = 22r
n−1�

j=0

(xj+k−2−(2r−1))(k−1) |x=2=

22r((xp−k − xk−2r−1)(x− 1)−1)(k−1) |x=2 .

Thus we should prove that

((xp−k − xk−2r−1)(x− 1)−1)(k−1) |x=2≡ 0 (mod p),

or, using the Leibnitz formula,

k−1�

j=0

(−1)k−j−1

�
k − 1

j

�
(k − j − 1)!(p− k)(p− k − 1) · · · (p− k − j + 1)2p−k−j ≡
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k−1�

j=0

(−1)k−j−1

�
k − 1

j

�
(k−j−1)!(k−2r−1)(k−2r−2)· · ·(k−2r−j)2k−2r−j−1 (mod p).

Since 2p−1 ≡ 1 (mod p), we should prove the identity
k−1�

j=0

(−1)k−j−1

�
k − 1

k − j − 1

�
(k−j−1)!(p−k)(p−k−1) · · · (p−k−j+1) |p=0 2−k−j+1 =

k−1�

j=0

(−1)k−j−1

�
k − 1

k − j − 1

�
(k−j−1)!(k−2r−1)(k−2r−2) · · · (k−2r−j)2k−2r−j−1,

or, after simple transformations, the identity
k−1�

j=0

�
k + j − 1

j

�
2−j = 22k−2r−2

k−1�

j=0

(−1)j

�
k − 2r − 1

j

�
2−j . (53)

It is known (([7], Ch.1, problem 7), that
n�

i=0

�
2n− i

n

�
2i−n = 2n.

Putting n− i = j, we have
n�

j=0

�
n + j

n

�
2−j =

n�

j=0

�
n + j

j

�
2−j = 2n.

Therefore, the left hand side of (53) is 2k−1 and it is left to prove that
k−1�

j=0

(−1)j

�
k − 2r − 1

j

�
2k−j = 22r+1.

We have
k−1�

j=0

(−1)j

�
k − 2r − 1

j

�
2k−j =

k−2r−1�

j=0

(−1)j

�
k − 2r − 1

j

�
2k−j =

22r+1
k−2r−1�

j=0

(−1)j

�
k − 2r − 1

j

�
2k−2r−1−j = 22r+1(2− 1)k−2r−1 = 22r+1

and we are done. The case of odd k ≥ 3 is considered quite analogously. So,
formulas (50) and (51) take the form

2
k−1
2 a(n; k) =

(n+k−1
2 )!

(n + 2k − 1)(n + 2k − 3) · · · (n + k)
,

p = n + 2k − 2r − 1, 0 ≤ r ≤ k − 1
2

,

and, for odd k, the proof reduces to the same congruence (52).
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11. Representation of Pn(x) in Basis {
�x

i

�
}

The structure of the explicit formula (3) allows us to conjecture that the coeffi-
cients of Pn(x) in basis {

�x
i

�
} have simpler properties. A process of expansion of a

polynomial P (x) in the binomial basis is indicated in [5] in a solution of Problem
85: “Functions 1, x, x2, . . . , xn one can consecutively express in the form of linear
combinations with the constant coefficients of 1, x

1 , x(x−1)
2 , . . . , x(x−1)···(x−n+1)

n! .”
Therefore,

P (x) = b0

�
x

m

�
+ b1

�
x

m− 1

�
+ · · · + bm−1

�
x

1

�
+ bm,

where b0, b1, . . . , bm are defined from the equations

P (0) = bm,

P (1) = bm +
�

1
1

�
bm−1,

P (2) = bm +
�

2
1

�
bm−1 +

�
2
2

�
bm−2,

...

P (m) = bm +
�

m

1

�
bm−1 + · · · +

�
m

m

�
b0.

This process can be simplified in the following way. In the identity

nx = (1 + (n− 1))x =

1 + (n− 1)
�

x

1

�
+ (n− 1)2

�
x

2

�
+ · · · + (n− 1)x

�
x

x

�
=

n0 + (n− n0)
�

x

1

�
+ (n− n0)2

�
x

2

�
+ · · · + (n− n0)x

�
x

x

�

we can evidently replace powers nj , j = 0, . . . , x, by the arbitrary numbers aj , j =
0, . . . , x. Thus we have a general identity

ax = a0 + (a1 − a0)
�

x

1

�
+ (a2 − 2a1 + a0)

�
x

2

�
+ (a3 − 3a2 + 3a1 − a0)

�
x

3

�
+ · · ·+

(ax −
�

x

1

�
ax−1 +

�
x

2

�
ax−2 − · · · + (−1)x

�
x

x

�
a0)

�
x

x

�
.

Essentially, we quickly obtained a special case of the so-called “Newton’s forward
difference formula” (cf. [10]). Here, put aj = P (j), j = 0, . . . ,m, and, firstly,
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consider values 0 ≤ x ≤ m. Since
�x

l

�
= 0 for l > m, we obtain the required

representation under the condition 0 ≤ x ≤ m :

P (x) = P (0) + (P (1)− P (0))
�

x

1

�
+

(P (2)− 2P (1) + P (0))
�

x

2

�
+ · · · + (P (m)−

�
m

1

�
P (m− 1)+

�
m

2

�
P (m− 2)− · · · + (−1)m

�
m

m

�
P (0))

�
x

m

�
. (54)

It is left to note that, since a polynomial of degree m is fully defined by its values
in m + 1 points 0, 1, . . . ,m, then (54) is the required representation for all x.

So, for the polynomials {Pn(x)}, we have

P1 = 1,

P2 = 1,

P3 = 3
�

x

1

�
+ 4,

P4 = 2
�

x

1

�
+ 4,

P5 = 10
�

x

2

�
+ 30

�
x

1

�
+ 32,

P6 = 6
�

x

2

�
+ 22

�
x

1

�
+ 32,

P7 = 42
�

x

3

�
+ 196

�
x

2

�
+ 378

�
x

1

�
+ 384,

P8 = 24
�

x

3

�
+ 128

�
x

2

�
+ 296

�
x

1

�
+ 384,

P9 = 216
�

x

4

�
+ 1368

�
x

3

�
+ 3816

�
x

2

�
+ 6120

�
x

1

�
+ 6144,

P10 = 120
�

x

4

�
+ 840

�
x

3

�
+ 2664

�
x

2

�
+ 5016

�
x

1

�
+ 6144,

P11 = 1320
�

x

5

�
+ 10560

�
x

4

�
+ 38544

�
x

3

�
+ 84480

�
x

2

�
+ 122760

�
x

1

�
+ 122880,

P12 = 760
�

x

5

�
+ 6240

�
x

4

�
+ 25152

�
x

3

�
+ 62112

�
x

2

�
+ 103920

�
x

1

�
+ 122880.
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12. On Coefficients of Pn(x) in Basis {
�x

i

�
}

Let

Pn(x) = b0(n)
�

x

m

�
+ b1(n)

�
x

m− 1

�
+ · · · + bm−1(n)

�
x

1

�
+ bm(n),

where m = �n−1
2 �.

Since, for integer k, we have the explicit formula for Pn(k), (3), then, according to
(54), we have the following explicit formula for bi(n), i = 0, . . . ,m :

bi(n) =
m−i�

k=0

(−1)m−i−k

�
m− i

k

�
Pn(k). (55)

Let

Pn(x) =
m�

j=0

aj(n)xm−j .

Then

bi(n) =
m�

j=0

aj(n)
m−i�

k=0

(−1)m−i−kkm−j

�
m− i

k

�
. (56)

Since the l-th difference of f(x) is (cf. [1], formula 25.1.1)

∆lf(x) =
l�

k=0

(−1)l−k

�
l

k

�
f(x + k),

one can write (56) in the form

bi(n) =
m�

j=0

aj(n)∆m−ixm−j |x=0 .

Here the summands corresponding to j > i, evidently, equal 0. Therefore, we have

bi(n) =
i�

j=0

aj(n)∆m−ixm−j |x=0 . (57)

Theorem 15. For n ≥ 1, we have

b0(n) =






n(n−1
2 )!, if n is odd,

(n
2 )!, if n is even;

(58)

b1(n) =






1
6n(5n− 7)(n−1

2 )!, if n is odd,

1
6 (5n− 8)(n

2 )!, if n is even.

(59)
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In general, for a fixed i, bi(n) = (m−i)!Yi(n), if n is odd, and bi(n) = (m−i)!Zi(n),
if n is even, where Yi and Zi are polynomials in n of degree 2i + 1.

Proof. Note that the Stirling number of the second kind S(n,m) is connected with
the m-th difference of ∆mxn |x=0 in the following way (see [1], formulas 24.1.4):

S(n,m)m! =
m�

k=0

(−1)m−k

�
m

k

�
kn = ∆mxn |x=0 . (60)

In particular, since S(m,m) = 1, S(m + 1,m) =
�m+1

2

�
, we have

∆mxm |x=0= m!

and
∆mxm+1 |x=0=

m

2
(m + 1)! .

Therefore, by (57),
b0(n) = m!a0(n),

b1(n) =
m− 1

2
m!a0(n) + (m− 1)!a1(n),

and, by (40) and (41) (where m = �n−1
2 �), we find formulas (58) and (59).

Further, we need the following lemma.

Lemma 16. S(n + k, n) is a polynomial in n of degree 2k.

Proof. For k ≥ 1, let
Qk(n) = S(n + k, n).

Note that, since S(n, n) = 1, we have Q0(n) = 1. Further, since S(n, 0) = δn,0,
for k ≥ 1, Qk(0) = 0. From the main recursion for S(n,m) which is S(n,m) =
mS(n− 1,m) + S(n− 1,m− 1), we have

Qk(n)−Qk(n− 1) = nQk−1(n).

Also, in view of Qk(0) = 0, we find the recursion

Q0(n) = 1, Qk(n) =
n�

i=1

iQk−1(i). (61)

Using a simple induction, from (61) we obtain the lemma.
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Remark 17. The first few polynomials {Qk(n)} are:

Q0 = 1,

Q1 =
1
2
n(n + 1),

Q2 =
1
24

n(n + 1)(n + 2)(3n + 1),

Q3 =
1
48

n2(n + 1)2(n + 2)(n + 3),

Q4 =
1

5760
n(n + 1)(n + 2)(n + 3)(n + 4)(15n3 + 30n2 + 5n− 2) .

It can be proven that the sequence of denominators coincides with A053657 [8],
such that the denominator of Qk(n) is

�
p

�
j≥0�

k
(p−1)pj �, where the product is over

all primes.

Note that from (57) and (60) we find

bi(n) = (m− i)!
i�

j=0

aj(n)S(m− j,m− i), m = �n− 1
2

�.

Since, by Lemma 10, S(m−j,m− i) is a polynomial in n of degree 2((m−j)−(m−
i)) = 2(i−j), while, by Theorem 12, aj(n) is a polynomial of degree 2j+1, it follows
that aj(n)S(m− j,m− i) is a polynomial of degree 2i + 1. Thus

�i
j=0 aj(n)S(m−

j,m− i) is a polynomial of degree 2i + 1. This completes the proof.

The first polynomials Yi(n), Zi(n) are

Y0 = n,

Y1 =
1
12

(n− 1)n(5n− 7),

Y2 =
1

480
(n− 3)(n− 1)n(43n2 − 168n + 149),

Y3 =
1

13440
(n− 5)(n− 3)(n− 1)n(177n3 − 1319n2 + 3063n− 2161);

Z0 =
n

2
,

Z1 =
1
24

(n− 2)n(5n− 8),

Z2 =
1

960
(n− 4)(n− 2)n(43n2 − 182n + 184),

Z3 =
1

26880
(n− 6)(n− 4)(n− 2)n(3n− 8)(59n2 − 306n + 352)).

Finally, we prove the following attractive result.
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Theorem 18. 1) For odd n, bj(n)/n, j = 0, . . . ,m− 1, are integer. Moreover, for
n ≥ 3,

bi(n) = n(bi(n− 1) + bi−1(n− 1)), i = 1, . . . ,m− 1.

2) For even n ≥ 4,

2bi(n) = bi(n− 1) + bi−1(n− 1) + m!
�

m

i

�
, i = 1, . . . ,m− 1. (62)

Proof. 1) According to (55), we should prove that for odd n ≥ 3,

m−i�

k=0

(−1)m−i−k

�
m− i

k

�
Pn(k) =

n
� m−i�

k=0

(−1)m−i−k

�
m− i

k

�
Pn−1(k)+

m−i−1�

k=0

(−1)m−i−k−1

�
m− i− 1

k

�
Pn−1(k)

�
, i = 1, 2, . . . ,m− 1,

or, putting m− i = t,

t�

k=0

(−1)k

�
t

k

�
Pn(k) = n

� t�

k=0

(−1)k

�
t

k

�
Pn−1(k)−

t�

k=0

(−1)k

�
t− 1

k

�
Pn−1(k)

�
, t = 1, 2, . . . ,m− 1,

or, finally, for t = 1, . . . , n−3
2 ,

t�

k=1

(−1)k−1
��

t

k

�
Pn(k)−

�
t− 1
k − 1

�
nPn−1(k)

�
= Pn(0). (63)

To prove (63), note that, by (36), nPn−1(k) = Pn(k)− Pn(k − 1). Hence,
�

t

k

�
Pn(k)−

�
t− 1
k − 1

�
nPn−1(k) =

Pn(k)
��

t

k

�
−

�
t− 1
k − 1

��
+

�
t− 1
k − 1

�
Pn(k − 1) =

�
t− 1

k

�
Pn(k) +

�
t− 1
k − 1

�
Pn(k − 1).

Thus the summands of (63) are

(−1)k−1
��

t

k

�
Pn(k)−

�
t− 1
k − 1

�
nPn−1(k)

�
=
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(−1)k−1

�
t− 1

k

�
Pn(k)− (−1)k−2

�
t− 1
k − 1

�
Pn(k − 1),

and the summing gives

t�

k=1

(−1)k−1
��

t

k

�
Pn(k)−

�
t− 1
k − 1

�
nPn−1(k)

�
=

(−1)k−1

�
t− 1

k

�
Pn(k) |k=t −(−1)k−2

�
t− 1
k − 1

�
Pn(k − 1) |k=1= Pn(0).

2) Analogously, the proof of (62) reduces to the proof of the following equality for
t = 1, 2, . . . ,m− 1:

t+1�

k=0

(−1)k
�
2
�

t

k

�
Pn(k) +

�
t

k − 1

�
Pn−1(k)

�
= (−1)tm!

�
m

t

�
. (64)

Note that, by (39),

(−1)k
�
2
�

t

k

�
Pn(k) +

�
t

k − 1

�
Pn−1(k)

�
=

(−1)k

�
t

k

�
Pn−1(k + 1)−

(−1)k−1

�
t

k − 1

�
Pn−1(k) + (−1)k

�
t

k

��
k + m

m

�
m! (65)

Since
t+1�

k=0

�
(−1)k

�
t

k

�
Pn−1(k + 1)− (−1)k−1

�
t

k − 1

�
Pn−1(k)

�
=

(−1)k

�
t

k

�
Pn−1(k) |k=t+1 −(−1)k−1

�
t

k − 1

�
Pn−1(k) |k=0 = 0,

by (64) and (65), the proof reduces to the known combinatorial identity

t�

k=0

(−1)k

�
t

k

��
k + m

m

�
= (−1)t

�
m

t

�
, t = 1, . . . ,m− 1

(see [7], Ch.1, formula (8) with p = 0 up to the notations).
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