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AN ALTERNATIVE MODEL OF THE
GENERAL RELATIVITY THEORY

V.G. BOLTYANSKI

Abstract. We establish in the offered paper that a ’displacement pos-
tulate’ for the light sphere allows to obtain a metric in four—-dimensional
space-time from which the well-known Schwarzschild’s metric may be
simply deduced (by passing to the locational time). Probably, displace-
ment postulate is a description of a profound mechanism of an interaction
between the particles and the gravitational field.

1. The main metric. Let a mass point mg move under action of
Newtonian gravitational potential of a rest mass m. We assume mg moves
from infinity, where it had zero velocity. It is easily shown at a point a the

mass mg has the velocity
L 2Gm
U= —4/ :
r

where ¥ is the radius vector of a, r» = |Z|, and G ~ 6.67-10" ' 'm3kg~ s
is the gravitational constant.

We now distract our attention from movement of mass points and consider
spreading of the light. If the gravitational field is infinitely small, a light

: (1)
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signal emited at a time ¢ from a is spreaded in all directions with the same
velocity c. Hence the points which receive this light signal in a time dt are
situated on the sphere of the radius cdt centered at a. It is described by
the equation |d#|? = c?dt?, where d is the vector going from a to a point
of the sphere. A mass point starting at the time ¢ from a has a velocity
less than ¢; hence in the time dt it is situated inside the sphere.

Let now an isolated mass m rest at the origin of a Cartesian coordinate
system K. We state its action on light spreading is described by the follow-
ing displacement postulate: the light velocity with respect to K is equal to
i = ¢+ 9, where proper light velocity ¢ has the constant value |¢] = ¢ and
U is the displacement vector defined by (1).

By displacement, the points which receive the light signal in the time dt
are situated on the sphere of the same radius cdt centered at o’ = a+vdt.
This sphere is defined by the equation |dZ — vdt|? = ¢?dt?, i.e.,

(2 —|0)?) dt* + 2(0, dZ)dt — |dz|* = 0. (2)

Unlike the light, a mass point starting at the time ¢ from a is situated
in the time dt inside the sphere (2).
Denote the quadratic form in the left hand side of (2) by ds?. By virtue

of (1),
ds® = ( 2 mm) dt* — 2,/2gm< dz) dt — |di)?. (3)
T T

This main quadratic form defines a pseudoeuclidean metric ds in the four—
dimensional space W of the variable (¢, Z) = (¢, z!, 22, 2%). We call it
the main metric [1, 2, 3]. Thus along light trajectorles ds =0, i.e., these
trajectories have isotropic directions. For the mass points ds® > 0.

Let us write |dZ|?> = —hy,d2Pdz?, where h,, = —1 for p = ¢ and
hpg = 0 for p # g (here and in the sequel the indices denoted by Latin
letters take values 1, 2, 3 and summation over recurring indices from 1 to 3
is made).

The coordinates z!, 22, 2% are contravariant. The covariant coordinates
xp = hpex? differ from them by the sign ‘minus’. In this notation, the scalar
product of vectors Z, ¢ is equal to (Z, §) = —hpeaPy? = —z4y?. Hence the
main metric takes the form

2G 12G
ds? = ( 2 _ m) dz® dz® + 2 mxp dz? dz° + hpq dx? dz?,
r 73
(4)

where 20 = ¢ is the time.
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Let now dt be the time for spreading of a light signal from a point £ to
Z+dZ and dt’ be the time for its spreading from &+ d¥ to Z. Theorem 1
below describes what occurs as we pass to the 'locational’ time, i.e., as we
postulate the time of light spreading between ¥ and # 4 dZ (in both the
directions) is equal to dt, = 3(dt + dt').

THEOREM 1. Under the passage to locational time, the metric (3) (or (4))

turns into Schwarzschild’s metric well-known in general relativity theory
(see (21) below).

A proof (less than one page!) is given in Section 4. Thus the displace-
ment postulate accompanied by the passage to locational time leads to the
formulas of classical general relativity theory! Undoubtedly, this is not an
accidental coincidence. Maybe, the postulate describes a profound mecha-
nism of interaction between particles and gravitational field ?

We recall experimental confirmation for conclusions of general relativity
theory (movement of Mercury’s perihelion, etc) was obtained with Schwarz-
schild’s metric. The initial Einstein’s idea (to explaine gravitation by a
curvature of the four—dimensional time-space) was developed under the in-
fluence of Hilbert, who had discussions with Einstein (in many letters). As a
result, the Finsteinian gravitation law was appeared with a very refined geo-
metrical apparata (tensor calculus, Riemannian geometry, curvature tensor,
Ricci tensor). It affirms in empty space (in particular, around an isolated
rest mass) the Ricci tensor is identically equal to zero.

Besides, Einstein’s idea contains only a geometrical description of the
gravitation. It does not explain what the rest mass acts on the enclosing
space with. The displacement postulate provides for a possibility to explain
the gravitational field by a fluz of superlight particles.

The reader can object the constancy of the light velocity is an experi-
mental fact and movement with superlight velocity is impossible. But any
physical experiment gives only the average velocity c(liTi = dfﬁjt' of the
light, dt,dt’ being the spreading times 'there’ and "back’. Indeed, for find-
ing dt it is necessary to synchronize the watches and for synchronization
of the watches it is necessary to know dt. Einstein goes from this vicious
circle out by a will act, postulating coincidence of the light velocity with its
average value.

The reader can also object the assumtion on superlight movement leads
to a contradiction with the causality low: if there are superlight particles, we
can look into tomorrow and know what will happend in future! The author
heard that objection on his reports and attempts to publish the article (the
last review was obtained recently from ” Journal of Geometry and Physics”).
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That objection is nonessential too, since causality is relized stastically, as
many other phisical lows. Moreover, we do not have ”superlight sight” and
therefore tackiones (superlight particles) do not carry signals from future.

Nevertheless, our spirit live depends on aura, including hypnotic events,
telepathy, foresight. The thinking is a common activity of the brain and
aura. Maybe aura consists of tackions and we are able to focus them? Then
it is possible to influence on the gravitation to some exit and the phenome-
non of levitation is possible as indian yogis affirmed? And telekinesis as well,
i.e., we can (at least in principle) move things by stress of thought? Finally,
maybe by loss of some comfort and possibilities to apply our knowledge, we
can see something from the future? Certainly, these are only fantasies, but
on the other hand, maybe the objections of physicists on causality low are
superfluously orthodox?

Let us now say something more serious. The alternative version for rela-
tivity theory sketched below shows employment of the main metric (4) leads
to the same results which are regarded as experimental justification of clas-
sical general relativity theory. This version is a mathematical model only.
It is kinematic, without dynamical interpretation for interaction of tackions
and particles. But let the reader forgives me an analogy. In the begin-
ning of May, 1905 great Poincaré had made a report on space—time interval
dz? 4 dy? + dz? — c*>dt® and his kinematical understanding of simultane-
ity. In a month Einstein publishes his version of special relativity theory
(without a reference to Poincaré’s paper), where he supplements Poincaré’s
ideas by dynamical concepts. Maybe in a month after my paper, a great
physicist takes its ideas and proposes a deeply developed 'tackionetics’? It
is not essential we consider here an isolated rest—mass only: integration (ac-
companied by ideas of special relativity theory) allows to pass to arbitrary
mass distribution.

By the way, a metric similar in a sense to (4) was considered by Lamaitre
[7, 8]. But in contrast to (4), his metric uses a dependence of the radius r
on time and is invariantly connected with Schwarzschild’s one.

2. Geodesics of the main quadratic form. Write the right hand
side of (4) in the form g,pdz*dz” :

B 2G'm

ga,@d.fad:vﬁ = <02 "

) dz? dz® +

2
+ 24/ fgmxp daP dx® + hp, daP dz? (5)
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(here and in the sequel the summation from 0 to 3 over recurring Greek
indices is made). Thus the components of the symmetric matrix (gog) are:

o 2Gm 2Gm

goo = ¢” — . gop = gpo = Tﬂﬁp; Ipq = hpg- (6)

We now refuse to consider the metric ds = / gagd:vadazﬂ. Instead of that,
we directly work with the quadratic form (5).

Let X (o) = (2°(0),2'(0),2%(0),2%(0)), 09 < o < 01 be a twice differ-
entiable arc. We say this arc is geodesic for the quadratic form (5) if the

integral
o1 dz®(o) dzP (o)
= o d 7
Q= [ gus =g PG do ™)

is stationary with respect to all arcs connecting the same endpoints X (o)
and X(o1). In other words, if X (o) + dX(0), 09 < o < 07 is a varied arc
with 6z%(op) =0, dx*(01) =0 for a =0,1,2,3, then §Q = 0.

For conveniency, denote the derivative of a scalar function f with respect
to the coordinate x“ by f,. The first Christoffel symbol T',p5 for the
quadratic form gaﬁda:adxﬁ is defined by the formula

1
Pyap = b) (_gaﬁ,v + Gya,p T 96%0&) . (8)

Furthermore, let (¢"”) be the inverse matrix for (g.g), i.e., gaﬁgﬁ” = o
(the Kronecker delta). The second Christoffel symbol Lo is defined by

I'es = 9" Tsap. 9)

THEOREM 2. An arc X (o) = (2°(0),2'(0),2%(0),23(0)), 00 <o < 01
is geodesic for the quadratic form gagdxadxﬁ if and only if it satisfies the
system of differential equations

d*x¥ dz® dzP
e Ty, ~0,1,2,3. 10
do? lap do do v (10)
Every geodesic arc X (o) satisfies the relation
dz® dzP ¢
—— —— = const,
Jop do do '

i.e., the left—hand side does not depend on o.

The proof is contained in Section 4. We say a geodesic is positropic,
isotropic or negatropic if the aforesaid constant is positive, equal to zero or
negative correspondingly.
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REMARK 1. Let X(0), 09 < 0 < 01 be a geodesic. Introduce a pa-
rameter ¢ = ko along it, k # 0 being a positive constant. The obtained
arc X (5) = X(%), koo <& < koy is again a geodesic, since it satisfies the
system (10). Consequently choosing a suitable k, we may suppose

dz® dz?

gaﬁd—ad—o

for every geodesic, where V is equal to 1,0, and —1 for positropic,

isotropis, and negatropic geodesics respectively. For our aims we consider

only the paramertizations with Ufiioo > (. In the case of positropic or negat-

ropic geodesics, the relation (11) defines the parameter o uniquely up to a
translation: ¢ — o+ const.

—V (11)

We remark positropic geodesics can be described by an another definition:

the length
[ ot
5 oo Yo do do g

is stationary. This way leads to the same equations (10) for geodesics. But
the definition with stationarity of the integral (7) is more convenient, since
it is applicable for any geodesics (positropic, isotropic or negatropic).

THEOREM 3. For the main quadratic form (5), the differential equations
of geodesics have the form
d?z"  GmV 3Gm ( da? dz? 1 < d:vp>2) _0

n_ —_—— —_— —_—
do? + c2r3 o c2r3 v P do do + 72 p do
n=1,273, (12)

( 2 2Gm> da® dz® o 2Gm  daP dx® L datdat
¢ — —_— —T,— —— —_—— =

T do do r3 "Pdo do P do do '
where the constant V is equal to 1, 0, and —1 for positropic, isotropic, and
negatropic geodesics correspondingly.

(13)

The proof is contained in Section 4.

We now remark by spherical symmetry of the main quadratic form (5)
(i.e., by spherical symmetry of the gravitational field for the rest-mass m)
every geodesic is a planar curve. Supposing it is situated in the plane
z3 =0, we obtain
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THEOREM 4. The equations of the geodesics in the plane x> = 0 have

the form
d*r GmV 3Gm\ [dp\?
e T 1— . 14

do? c2r? +T( c2r ) (da) ’ (14)

vy __Z22 7 15
do? rdo do’ (15)

do do r do do

- ((3—;>Q+r2 (Z—f)j =V, (16)

where 1, are polar coordinates in the plane 3 = 0.

5 2Gm)\ da® dx® 2Gm dr dx°
c — 2 —

r

Proof. This is obtained from Theorem 3 by passing to the polar coordinates:
1 2

x! =7 cos o, % =7rsin ¢, x3=0. ]

REMARK 2. In Theorems 3 and 4, the parameter ¢ has the dimension-
ality of length. But it is possible to pass to another parameter such that
the constant V' takes the value ¢ for positropic geodesics and the value
—c? for negatropic ones. In this case, o has the dimensionality of the
time. Sometimes (in particular, in Examples 4 and 7 below) it may be more
preferable.

3. Particles trajectories.

EXAMPLE 1. Assume a mass point moves in a region of weak gravitation

2G'm
r

and its velocity is not large, i.e., and \Cé—";"\ are small with respect to

c. Then by (4),

(Y2 (1 120m) 2 Pl an)y (1
cdt) 2 r c? r \r dt cdt) ~ 7
i.e., ds ~ cdt = cdaz”. Moreover since V = 1, it follows from (4), (13)

do = ds =~ cdt. Consequently the equations (14), (15) of geodesics take the
form

d*r . Gm de\? d?* _ 2drdy

az = 2 T(dt) @ T rdtd
i.e., coincide with the Newtonian equations of planet movings. In this con-
nection, it is naturally to postulate in general (not only for weak gravita-
tional field and small velocities), the world trajectories of mass points in the
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gravitational field of the rest—mass coincide with the positropic geodesics of
the main quadratic form (5). This postulate is connected with the classical
stationary action principle, since from mechanical point of view, [ds is the
action, i.e., stationary action principle  [ds =0 means geometrically the
trajectory is a geodesic with respect to the main metric (or, what is the
same, with respect to the main quadratic form, cf. the Remark 1).

EXAMPLE 2. Let us consider circular movement of a planet with a con-
stant radius 7 of its orbit and constant angular velocity w = id‘tﬁ = do

dz9
under the action of the central rest-mass (the Sun). From (14) we find
3Gm\ [(dp\? Gm
1— =) =22 17
7‘( Ar > (da) 2r? (7)

Furthermore, according to (16) and taking into account r is constant, we

have
2
(62_2Gm> da® 2 (d_‘ﬂ)2202
r do do '

Two last relations imply

<d90>2<d<p>2 "\ °  Gm (8)
dzV)  \do do o3
In other words, w* = GT—Q"‘, in complete conformity with the Newtonian

gravitational law, i.e., in this case the geodesics exactly coincide with the
Newtonian trajectories.

2

ExAMPLE 3. Denote g—”: by £. For Mercury (with the average radius

of the trajectory r =~ 5.7 -10%m), we have ¢ ~ 1.6 - 107* and for other
planets £ is essentially lesser. If a Newtonian trajectory is distinct from a
circle, it does not coincidence exactly with the geodesic. Nevertheless, for
small ¢ and almost circular trajectory the deviation is not large. Writing
(14), (15) as a system of equations with a small parameter ¢ and solving it
approximately, we can find the rotation angle of the perihelion during each
period. Such a calculation explains (cf. for details [6], [7]) the presence
of additional displacement of the Mercury’s perihelion (after taking into
account the disturbing influence of other planets) at the angle of 42” during
a century, in complete conformity with experimental data.

We remark the above-mentioned formulas for circular movement hold as
1—3Gm ~ 0 only (cf. (17)), ie., 7 > 38m | Moreover according to (18),

c2r 2
the angular velocity ;T‘% remains bounded above as r — 352
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EXAMPLE 4. Let us consider the relations

dr 2G'm d_(p _0 dzV B dt 1

do cAr’ do do do ¢’

It is easily shown the equations (19) satisfy the relations (14)-(16), i.e., they

describe a movement of a mass point along a ray ¢ =const. From (19),

we find % = Jj—g”, i.e., (19) is a Newtonian movement of the mass point
along the considered ray in the gravitational field of the rest—mass m.

For Schwarzschild’s metric (i.e., after the passage to the average time

dz?, cf. (21) below), we find
dx? 5 2Gm\ 1
=c .

= Cc —
do r

(19)

0
The derivative ‘?0_* tends to infinity and 2 — oo as r approaches to the

critical radius 7., = 262 2§2m

or 2. This means the region r < (named a black
hole) may be reached only in infinite time. The description of this movement
in Schwarzschild’s metric has a ’singularity’ at the critical radius (cf. [5]).
For the geodesics of the main quadratic form (5) (or for positropic geodesics
of the main metric (4)) there is no singularity and this shows the main met-
ric is more convenient than Schwarzschild’s one. Indeed, as r — r.. we

have ¢—4/ 2GTm — 0, i.e., the velocity of spreading for the light signal going

away from the black hole tends to zero. Therefore the average (locational)

time z¥ increases indefinitely as r — Top- Nevertheless, the time 20 = z
remains bounded in the main metric as a mass point reaches the black hole

and continues the fall. Moreover, ¢ — QGTm is negative in the interior of
the black hole, i.e., both the light velocities directed along the considered
ray (and defined in the main metric by the relation ds* = 0) are directed
inward the black hole. This means the light signals do not go from the black
hole to the exterior region.

We nou call our attention to spreading of the light and postulate the
light trajectories coincide with the isotropic geodesics of the main quadratic
form (5). This postulate is connected with the classical Fermat principle.
Indeed, acording to this principle, the light spreads from a point p to an
another point ¢ along a trajectory (in the space of variables z!, 2, 23)
such that the spreading time [ da is stationary with respect to trajectories
connecting the same points p and ¢. In other words, for a varied trajectory,
if the relations dz! = 0, 62> = 0, d2 = 0 hold at the endpoints p. g, then
by Fermat principle, 62° = 0 at the endpoints too. Moreover, if the varied
trajectory is isotropic, the relation 6QQ = 0 occurs as well. Thus if an

isotropic world trajectory is stationary (with respect to the main quadratic
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form), then it satisfies the Fermat principle. We remark the stationarity
with respect to the main quadratic form is a more strict requrement than the
Fermat principle, since we compare the trajectory with all varied trajectories
(not only isotropic).

ExamPLE 5. The equations (14)-(15) allow to show (cf. [6], [7]) the light
trajectories going from stars and passing close the surface of the Sun are
rotated in the angle ¢ ~ 45:%@ where mq ~ 1.99 - 10 kg is the mass of
the Sun and 74 =~ 6.95-10% m is its radius. Thus, 9 ~ 8.49-107% (radian),
ie., ¥ ~1,75", in good conformity with experiments.

The gravitational bend of the light trajectories passing close to the rest
mass allows to explane the nature of quasars [4]. Indeed, assume m is a
black hole resting at a very far point. For every star S (situated behind m
with respect to us) there exists a light trajectory that starts at S, passes
close to m, and comes up to us. In other words, the black hole m focuses
the light of all stars. This focusing is greater as the mass m is larger. Thus
immense black holes have vast brightnesses. And we have to see a dark
spot in the center of this quasar since the light trajectories bend m. This
corresponds to the observations.

Let us now consider superlight particles. They are usually named ta-
chiones, although the physicists do not take them seriously, since Vds?2
is imaginary in this case. Our passing to geodesics of the main quadratic
form (instead of geodesics of a metric) allows to avoid this 'imaginary’. The
trajectories of tachions are negatropic.

ExaMpPLE 6. Consider the movement of a tachion along a circumference

with a constant angular velocity w = ‘fi—f under the action of a central
rest—-mass m (black hole). In this case by V = —1, we have from (14)
1-— 3CG2;” <0, ie, r< 3?{”. As in Example 2 for the angular velocity
w = Cg—f = %, we find the 'Newtonian’ value w? = %—g‘ Thus the region
r < 3§2m is completed by possible circular trajectories for tachions.

EXAMPLE 7. Let us now consider the relations

dr 1 [, 2Gm dy da? 2C;Ym
= 1 /2 — - _0’ _

do c T do do e - 2(im (20)
It is easily shown the equations (20) satisfy (14)-(16) with V = —1, i.e.,
they describe a movement of a tackion along a ray ¢ = const. This
movement starts at the distance of 2?{” from the center of the black hole

and is directed outside, i.e., it describes the birth of a tackion. A similar
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reasoning shows the birth of tackions is possible at lesser (not greater!)
distances from the center of the black hole as well.

The aforesaid gives an explanation for nature of the gravitation. The
world space is pierced by a flux of tackions. The central rest—mass creates a
‘shadow’ in the flux. And a mass point receives weaker flux of tackions from
the side of the rest mass than from the opposite direction. As a result, the
mass point is pushed by the tackions to the rest—mass a little more strong
than in the opposite direction. And statistically, the shadow effect generates
the picture described by the main quadratic form.

There is an another explanation. In the depth of infrastructure for the
atomic nucleus (by quite another geometric properties of the space for very
small distances), a flux of tackions arises. The take—off running tackions
puch each other but in a distance, the tackions feel more freely and their
superlight velocities become smaller (as in Example 7). This is an ’aura’ of
the atom. Each mass point, each star has its aura consisting of tackions.
Assume the masses (and impulses) of tackions are negative. Then we under-
stand the tackions do not push a mass point in the direction of their moving
but pull it in the opposite direction. This generates the picture described
by the main quadratic form.

4. Proofs.

Proof of Theorem 1. Since the light trajectories are isotropic, dt is the pos-
itive root of the equation ds? =0 (cf. (3)). Furthermore, dt’ is the positive
root of the equation obtained as we replace di by —dZ. In other words,
—dt’ is the negative root of the equation ds?> = 0. According to the Vieta
formula, we have

dt+di’  dt + (—dt) 2n (2, di)

dt —dt, = dt — 5 5 = cQ—QGTm ,
and consequently,
2G3m
dt = dt, + m (%, dT).

-
Substituing this value of d¢ into (3), we obtain the metric
2G 2G'm
ds? = (8 _ —m> a2 — <|dm|2 b (7 dn)? ) ,
T

2 — 2Gm
T
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i.e., in the coordinate form

2Gm 2Gm .
ds? = (02 _ T) d:cgda:g + (hpq - %) dxPdx?. (21)
'
But this is just Schwarzschild’s metric (cf., for example, [5, 6, 7]). O

We remark that a similar reasoning proves the following assertion: Let
us consider the metric

ds* = (¢ — |0]?) dt* + 2(¢, dz)dt — |dz|?, (22)

where ¥(x) is a vector field defined outside of the origin of the coordinate
system K. The metric obtained from (22) by passing to the locational time
coincides with Schwarzschild’s metric, if and only if U(x) is defined (up to
a sign) by the formula (1).

Proof of Theorem 2. Take the variation of the quadratic form gagdxadxﬁ :

8(gapdr®dr?) = (3gap)dz®dz® + gup(d dz®)dz® + gopdz® (8 dzP).

Two last summands coincide (since gog = gga). Besides, d(dz?) = d(527).
Hence, we find

5(gapdr®da’) = gopda®dzP a7 + 2g4., dz®d(527).

Consequently, by stationarity, we obtain the following integral equation of
geodesics:

a1 dz® dzP
0Q = 0\ gap——— | do =
@ oo (g 5 do do ) 7

1 dz® dz” dzx® d(0x”)
————0x" + 2goy —— dr = 0.
/U (gaﬁﬂ do do L7 2ay do ) T=0

o do

Integrating the second summand in the right—hand side by parts and taking
into account that dz¥ = 0 at the endpoints, we rewrite the equation in the

form
a1 dz® dx” d dz®
0Q = —— —2— | gy —— 0z do = 0.
@ /C,O <gaﬁ’7da do da(gvda>> zido =0

Since this relation holds for arbitrary dx” we obtain the following differential
equations of geodesics

-5 ga'y% = 0,

a5 (8
gaﬁ’vda do do
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i.e., after removing the parenthesis and multiplying by % ,

d*z® 1 1 1 dz® dz”
Joy g0z T\ 7908y T 59708 T 598y | o

By virtue of (8), these equations take the form

d*z® dz® dz”
90 407 T ay

Multiplying this relation by ¢?” and summing over ~y, we obtain, by (9),
the equations (10). Finally, from (10) we obtain, by direct calculation,

% (gag%%) = 0. Hence, the relation (11) holds. O

Proof of Theorem 3. Using the obvious formulas

P _ P _ Pod p_ _ __ -
xyq—(Sq, Tp.q = hpgy, hpgt?a? = x2p2? = =%, 1, = Tp,

we obtain from (6)

Jap,0 = 07 Ipg,n = 0, Jgoo,p = — 3 Tp,

3 [2Gm 2Gm
9op,qg = 9p0,q = o\ 7 TpTq + 3 hipqg-

Now, according to (8), we find the formulas for the first Christoffel symbols:
Gm

Fooo =0, T'pgo=Tpog =0, Lpgn =20, LIpoo=—Lopo=—Loop = —5p,

3 [2Gm 2Gm
FOpq:§ Tmp$q+ T—3hpq-

Furthermore, the inverse matrix (g"”) has the following elements:

1 1 /2Gm 2Gm
goo ==, gOp == 2 P, Pl = e Pz + hP1,
c c r cor

where (hP?) is the inverse matrix for (hp,,), i.e., h?? = —1 for p = ¢ and
hP4 =0 for p # q. So, by (9) we find the formulas for the second Christoffel
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symbols of the main quadratic form (5):

oo = i—;” 2§~;—5m; bo = % <02 - 2Cim> " (23)
Ko, _ g:; — 1, g:’; Qf_?)mx%p; (24)

pq 202 \/7 \/7 pQ’ (25)
F" = Bf?x"xpxq T3 hpg-

We now can complete the proof. The relation (13) follows immediately
from (5), (11) by our agreement for parametrization. Furthermore, sub-
stituting (23)—(25) into (10) and taking into account the relation (13), we

obtain the equations (12). We do not wrire the equatlon for ; 20, i.e., the

. _ d
equation (10) for a = 0, since the relation (13) gives %. O
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