JOURNAL OF APPLIED ANALYSIS
Vol. 1, No. 2 (1995), pp. 205-211

FIXED POINT AND APPROXIMATE FIXED
POINT THEOREMS FOR NON-AFFINE MAPS

L. GAIJEK, J. JACHYMSKI, AND D. ZAGRODNY

Abstract. Let C be a non—empty subset of a linear topological space X,
and T be a selfmap of C such that the range of I — T is convex, where
I denotes the identity map on X. We give conditions under which a map
T has a fixed point or a V-fixed point (i.e. a point g € C such that
Tzo € o + V, where V is a neighborhood of the origin). Our theorems
generalize the recent results of M. Edelstein and K.-K. Tan ([3], [4]). As
an application we provide a simple proof of the Markov—Kakutani theorem.
We also establish a common V—fixed point theorem for commuting affine
maps (possibly discontinuous).

1. Introduction. In the paper [3] M. Edelstein and K.-K. Tan have
obtained some fixed point theorems for affine maps on a normed space. In
their recent work [4] the authors have extended these results by considering
affine maps on linear topological spaces and linear spaces. Our purpose here
is to show that similar results hold for a larger class of maps. These maps
need to be neither affine nor defined on the whole space as was required in
[3] and [4]. Instead, given a selfmap 7" on a subset C of a linear topological
space X (not necessarily locally convex), we assume that the set (I —T)(C)
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is convex, where I denotes the identity map on X. Clearly, this assumption
is automatically satisfied, if C' = X (more generally, if C' is convex) and T
is affine; this is exactly the case considered by Edelstein and Tan. Further,
as an application of our main results we provide a very simple proof of the
well-known Markov—Kakutani fixed point theorem. We emphasize that A.
Markov’s original proof uses the Schauder Tychonoff principle (this proof
can be found in [2], p. 75) and it is valid only for locally convex spaces.
Though an easier proof inspired by F. Riesz’s proof of the ergodic theorem
was given by S. Kakutani (see, e.g., [1], p. 109), it seems that our proof is
yet simpler. As another application we obtain results on approximate fixed
points. Recall that a point a of a linear topological space X is said to be a
V—fized point of a map T if Ta € a + V', where V is a given neighborhood
of the origin (see [2], p. 104). If X is a normed space, then given ¢ > 0,
a point a is said to be an e-fized point of T' if ||a — Tal| < e (see [2], p.
56). Our motivation for investigating e—fixed points derives from the fact
that a continuous affine selfmap T" on a closed bounded convex subset C
of a Banach space X need not have fixed points unless X is reflexive (see
Example 1). Nevertheless, our Theorem 4 shows that for any £ > 0, T" has
then an e—fixed point even if 1" is discontinuous and the set C' is not closed.

Finally, we prove a common V —fized point theorem for affine maps (see
Section 5). Throughout the paper any linear topological spaces are assumed
to be Hausdorff.

2. Extensions of theorems by Edelstein and Tan. We begin with
the following generalization of Theorem 1 [3].

Theorem 1. Let C be a non empty subset of a linear topological space X,
and T be a selfmap on C' such that the range of I — T is convex. Then the
following alternative holds: either
(i) for any neighborhood V' of the origin, there exists a V —fized point for
T, or
(ii) for all x € C,

0¢ CI{T”@),T”“@),...}

neN n n+1

(in particular, if X is a normed space, then liminf, . [|[T"z|/n
>0 so ||T"z|| — oo for allz € C).

Proof. If condition (ii) holds, we are done. So assume that (ii) is not sat-

isfied. Then there is an z € X such that 0 € cl {TT% > m}, for every

m € N. For any neighborhood V of the origin there is a neighborhood
U of the origin such that U + U C V. So we are able to find £ € N
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such that k~'z € U and T*z/k € —U. Since T(C) C C, we get that
Ttz —Tng € (I — T)(C) for all n € N, where T° = I. Since (I —T)(C)
is convex and

(T 'z — T'x),

x| =
Mw

1
E(m —Trz) = _
i=1
we may conclude that (z — T*z)/k € (I — T)(C). Hence, we infer that
V(I -T)(C) # 0, which implies (i).
Finally, the first part of (ii) obviously implies the second. O

As an immediate consequence we obtain the following extension of The-
orem 2 [3].

Corollary 1. Under the assumptions of Theorem 1, if X is a normed space,
the range of I — T is closed and the map T is fized—point free, then for all
zel, [T z|| — oo as n — 0.

Proof. Observe that condition (i) of Theorem 1 cannot hold; for otherwise,
by hypothesis 0 € (I — T)(C), which means that 7" has a fixed point, a
contradiction. O

The next result generalizes Theorem 3 [3] and Theorem 3.3 [4] in that

the assumptions on a map T are weakened and a new equivalent condition
is added.

Theorem 2. Let C be a non—empty subset of a linear topological space X,
and T be a selfmap on C' such that the range of I —T is convex and closed.
Then the following conditions are equivalent:
(i) T has a fized point;
(ii) there is an x € C such that the sequence {T"x} > | has a convergent
subsequence;
(iii) there is an x € C such that the sequence {T"x},2_ | contains a bounded
subsequence;
(iv) there is an x € C such that the sequence {TT%} contains a subsequence

convergent to 0;
(v) there is an x € C' such that

0e N cl{Tn(x),TZj(f),...}.

n
neN

Proof. The implications (i)==(ii)==(iii)==(iv)==(v) are obvious. That
(v) implies (i), follows from Theorem 1 and the fact that (I — T)(C) is
closed. O
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As an application of Theorem 2 we establish a fixed point theorem. We
want to emphasize here that its assumptions deal with the sets only (the
domain of T" and the range of I — T') and not with the map itself.

Theorem 3. Let C' be a non empty bounded subset of a linear topological
space X, and T be a selfmap of C such that the range of I — T is convex
and closed. Then T has a fixed point.

Proof. Clearly, condition (iii) of Theorem 2 is fulfilled so it suffices to apply
Theorem 2. ]

Theorem 3 and the Schauder—Tychonoff principle yield the following re-
sult.

Corollary 2. Let C be a compact subset of a locally convex space X, and T
be a continuous selfmap on C. If one of the sets C or (I —T)(C) is conver,
then T has a fized point.

We close this section with an approximate fixed point theorem, which
immediately follows from Theorem 1 and its proof. The set of all V—fixed
points of T" is denoted by Fixy T

Corollary 3. Let C be a non—empty bounded subset of a linear topological
space X, and T be a selfmap on C such that the range of I — T is convex.
Then, given a neighborhood V' of the origin, there is an ny € N such that

(I—-1)"1 (%(] — T”)(C’)> CFixy T, forn>ny.

In particular, if X is a normed space, then for any € > 0, T has an e—fized
point; equivalently, inf,cc ||z — Tz|| = 0.

Remark 1. Following the proof of Theorem 1, we obtain
1 n
L —1m)(0) € (1-T)(©0).
Therefore the set (I — 7)1 (%(I - T")(C’)) (and hence Fixy T) is non—

empty.
3. A short proof of the Markov—Kakutani theorem.

THEOREM (MARKOV-KAKUTANI). Let C' be a compact convex subset of a
linear topological space X, and let F be a commuting family of continuous
affine selfmaps on C. Then F has a common fixed point.

Proof. We divide the proof into two parts.
1. We show that each 7' € F has a fixed point. Since 7" is affine and
C' is convex, the set (I — T)(C) is convex. Since T is continuous and C
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is compact, the set (I — T')(C) is compact, hence closed because X is a
Hausdorff space. So it suffices to apply Theorem 3.

20, Now we take pattern by a part of the proof presented in [2], p.
75. By hypothesis, given T' € F, Fix T, the set of all fixed points of T,
is convex and compact. Moreover, given S,T € F, the set Fix T is S—
invariant, i.e., S(Fix T') C Fix T since S and 7' commute. Therefore, by
part 10 with C' := Fix T, the map S}Fix o has a fixed point, which means
that Fix SN Fix T' # (). An easy induction shows that the family {Fix 7" :
T € F} has the finite intersection property. By compactness argument, we
infer that N, x Fix T' # 0. O

Remark 2. A unified approach to several common fixed point theorems in-
cluding the Markov—Kakutani result has been presented in [5].

4. Another applications to affine maps. Theorems 3 and Corollary
3 yield the following result for affine maps.

Theorem 4. Let C' be a non—empty bounded and convex (not necessarily
closed) subset of a linear topological space X, and T be an affine (not nec-
essarily continuous) selfmap on C. Then, given a neighborhood V of the
origin, T has a V—fized point. Moreover, if the range of I — T is closed,
then T has a fized point.

The following example (see [2], p. 35) shows that the assumption of
Theorem 4 that (I —T)(C) be closed cannot be omitted even if C'is closed
and T is continuous.

FEzxample 1. Let X := ¢y, the Banach space of all sequences convergent to
0, equipped with the sup—norm. Let C be the closed unit ball in X. For
z€C, x=(x1,x9,...), define

Tz := (1,21,22,...).
Clearly, T(C) C C, T is affine and continuous, but 7' has no fixed point.
Nevertheless, according to the first part of Theorem 4, T has an e-fixed
point z. for any € > 0. We can ensure about it directly: given ¢ € (0,1), it
suffices to put
e =(1—¢e,1—2¢,...,1 —n.,0,...),
where ng := max{n € N: 1 —ne > 0}.
5. A common V—fixed point theorem.

Theorem 5. Let C be a non—empty bounded and convex subset of a linear
topological space X, and F be a finite family of commuting affine selfmaps
on C. Then, given a neighborhood V' of the origin, F has a common V —fixed
point.
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Proof. We employ the idea of Kakutani’s proof (see [1], p. 106). Let F =
{Ty,: 1<k<p}. For1<k<p, neNandzx e C, define
1<,
Tint i = — Z T,z_lx.
s
Then Ty, (C) C C so if y := Typx, v € C, then y € C and y — Ty =
(x — TJ'z)/n since T}, is affine. Therefore, we have the inclusion:

T (C) € (I — )L (%(1 - T,?)(C)) . forneNand1<k<p.

Hence and by Corollary 3, given a neighborhood V' of the origin, there is an
ny € N such that

Tin(C) C Fixy Tk, forn>nyand 1 <k <p. (1)

It is easy to verify that for each n € N the family {7y, : 1 < k < p} is
commuting. Hence, if

Ay = (Tino...0T,)(C),

then given k, 1 < k < p, A, = (Tkn © Skn)(C), where Si,, denotes the
superposition of all T}, with i # k. Since Sk, (C) C C, we get using (1) that

An - Tkn(C) - FiXV Tk for n > ny.

Hence, we conclude that A, C }_; Fixy T} for n > ny. Since A, is
non-empty, so is the set N}_; Fixy 7. O

Remark 3. It can be easily shown that for any convex neighborhood V' of
the origin and affine map T, the set Fixy T is convex. This fact could
suggest to prove Theorem 5 by a slight modification of the proof presented
in Section 3; that is, by considering the restriction S |FiXV o Where S is
another affine map, which commutes with I". However, while the set Fix T’
is S—invariant, that is not the case with Fixy T unless S is nonexpansive.
Moreover, the local convexity of X is necessary for the validity of such a
modified proof. Consequently, we would obtain then a weaker result than
Theorem 5.
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