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Abstract. We consider the uniqueness property for various invariant me-
asures. Primarily, we discuss this property for the standard Lebesgue me-
asure on the n—dimensional Euclidean space R™ (sphere S™) and for the
standard Borel measure on the same space (sphere), which is the restriction
of the Lebesgue measure to the Borel o—algebra of R™ (S™). The main goal
of the paper is to show an application of the well known theorems of Ulam
and Ershov to the uniqueness property of Lebesgue and Borel measures.

In the present paper, we are concerned with the uniqueness property of
classical Lebesgue and Borel measures on a finite dimensional Euclidean
space (sphere). Dealing with this property, we essentially exploit the follo-
wing two results:

1) the classical theorem of S. Ulam [10] stating that the first uncountable
cardinal number w; does not admit a nonzero o—finite diffused measure
defined on the family of all subsets of wy (in other words, w; is not a real
valued measurable cardinal);
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2) the measure extension theorem due to M. Ershov [1], stating that a
probability measure defined on a countably generated o—subalgebra of the
Borel o algebra of a Polish topological space E can always be extended to
a Borel measure on E.

We apply the first result in order to obtain some necessary and sufficient
conditions for the uniqueness property of the standard Lebesgue measure.

Also, we apply the second result (with several simple facts from the the-
ory of Haar measure on a locally compact topological group), in order to
present some natural sufficient conditions for the uniqueness of the standard
Borel measure. We want to mention that, at the present time, no necessary
and sufficient conditions for the uniqueness property of the standard Borel
measure are known. Hence, the problem of finding such conditions remains
open and seems to be interesting from the point of view of general theory
of invariant measures.

First of all we wish to recall some notions concerning the uniqueness pro-
perty of an invariant measure which is given in an abstract space equipped
with a transformation group.

Let E be a nonempty basic set, G be a group of transformations of
and let S be a G-invariant o—algebra of subsets of E. Suppose also that p
is a o—finite measure defined on S. We recall that

(1) p is a G invariant measure if p(g(X)) = u(X), for each set X € S
and for each transformation g € G;

(2) pis a G quasiinvariant measure if

p(X) =0 p(g(X)) =0,

for each set X € S and for each transformation g € G.

We also recall that a G—invariant measure p has the uniqueness property
if, for every o—finite G—invariant measure v defined on dom(u), there exists
a real coefficient ¢ = t(v) satisfying the equality v = tpu.

The uniqueness property of an invariant measure plays an essential role
in various questions of abstract harmonic analysis (see, for instance, [3]).
Namely, the uniqueness of a Haar measure on a locally compact topological
group implies important consequences and has a number of applications in
modern analysis.

The uniqueness property for the classical Lebesgue measure was investi-
gated in many works. In particular, let us mention paper [6] in which some
necessary and sufficient conditions for this property were announced. We
begin our consideration with the proof of the corresponding result obtained
in [6]. But first we need to establish several auxiliary facts.
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Lemma 1. Let E be a finite—dimensional Fuclidean space and let G be a
group of affine transformations of & such that

card(G(x)) > w,

for each point x € E. Further, let u be a o—finite measure on E satisfying
the following relations:

1) dom(p) contains the o—ideal of subsets of E, generated by the family
of all affine hyperplanes in E;

2) p is a G—quasiinvariant measure.

Then we have u(V') = 0, for every affine hyperplane V in E.

Proof. We may assume, without loss of generality, that u is a probability
measure. From the assumption of our lemma it immediately follows that all
affine linear manifolds in F belong to dom(u). Let L denote an arbitrary
affine linear manifold in F with dim(L) < dim(F). We are going to prove
that (L) = 0. Naturally, in order to establish this fact, we use the induction
on dim(L).

If dim(L) = 0, then L can be represented in the form L = {y}, where
y is some point of E. Since card(G(y)) > w and our measure p is G-
quasiinvariant and satisfies the countable chain condition, we must have the
equality p(L) = 0.

Suppose now that, for an affine linear manifold L C E with dim(L) <
dim(£), the measure p vanishes on all affine linear manifolds in £ whose
dimensions are strictly less than dim(L). Let us show that pu(L) = 0 as well.
Only two cases are possible.

1. The family of manifolds {g(L) : g € G} is uncountable.

In this case, one can easily check that the above mentioned family is al-
most disjoint with respect to . In other words, the y—measure of the inter-
section of any two distinct manifolds from this family is equal to zero (since
the intersection is an affine linear manifold in £ with dimension strictly
less than dim(L)). Applying the G—quasiinvariance of p and the countable
chain condition, we get the equalities

#(g(L)) =0 (g € G).
In particular, we have p(L) = 0.

2. The family of manifolds {g(L) : g € G} is countable.

In this case, taking into account the fact that all G-orbits are uncounta-
ble, it is not difficult to verify that there exists a subgroup G of G satisfying
the next two relations:

a) L is invariant with respect to G1, i.e. g(L) = L for all g € Gy;

b) card(G1|L) > w, where G| denotes the family of all restrictions of
transformations from G; to the manifold L.
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Evidently, we can regard G1|r as a certain uncountable group of affine
transformations of L. For the sake of simplicity, we denote this group by
the same symbol G;. Also, we may assume, without loss of generality,
that card(G1) = w;. Obviously, the group Gy (acting in L) generates the
partition of L into Gi—orbits of points from L. Let Z be a selector of this
partition. Then we can write

Wg(Z) : geG1} =1L.
Furthermore, taking into account the inductive assumption, we have

wg(Z)nh(Z)) =0,

for any two distinct transformations ¢ € G; and h € G; (because the
set g(Z) N h(Z) is contained in an affine linear manifold with dimension
strictly less than dim(L)). Since Z € dom(u), we conclude, using the G1—
quasiinvariance of p and the countable chain condition, that u(Z) = 0.
Consequently, the family of p—measure zero sets {g(Z) : g € G1} is an
wi—covering of L and, in addition,

P(L) € dom(p),

where P(L) denotes, as usual, the collection of all subsets of L.

If we suppose, for a moment, that p(L) > 0, then a simple argument
shows us that there exists a nonzero finite diffused measure v defined on
the family of all subsets of the group G1. Indeed, we can consider a disjoint
family of sets {Z, : g € G} satisfying the relations:

(a) Zg C g(Z2), for all g € Gy;

(b)u{Z, : ge G} =U{g9(Z) : g€ G} =L.

Now, for each subset H of GG, we put

v(H) = p({Zy : he HY).

Then v is a nonzero finite diffused measure such that dom(r) = P(Gy),
where P(G7) denotes the collection of all subsets of G1. But the existence
of such a measure v immediately yields a contradiction with the above

mentioned result of Ulam stating that w; = card(G1) is not a real-valued
measurable cardinal number. This contradiction finishes the proof of our
lemma. O

We also need the following auxiliary proposition.

Lemma 2. Let E be a finite—dimensional Fuclidean space, G be a group of
affine transformations of E& such that

card(G(z)) > w,
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for each point x € E, and let p be a o—finite G—quasiinvariant measure
defined on the o—algebra of all Lebesgue measurable subsets of E. Then p is
absolutely continuous with respect to the standard Lebesque measure in E.

Proof. We may assume, without loss of generality, that u is a probability
measure. We denote by )\ the standard Lebesgue measure in E. Let us
take an arbitrary set X satisfying the relations

X € dom()\), N(X) =0,

and let us show that pu(X) = 0. Suppose otherwise: u(X) > 0. Since
G is an uncountable group, we can take a subgroup G of G such that
card(G1) = wy. Let {Z; : i € I} be an injective family of all those Gy
orbits in £ which have a nonempty intersection with the set X. Further,
let Z be a selector of the family {Z; N X : ¢ € I}. For each transformation
g € G1, we put

X, =9(Z)NnX.
Evidently, the equality

U{Xg cgeG =X

is fulfilled. Also, it can easily be checked that if g € G1, h € G1, g # h,
then the set g(Z)Nh(Z) is contained in some affine hyperplane of the space
FE. According to the previous lemma, we have

u(g(Z) Nh(Z)) = 0.
Hence, the family of sets {X, : g € G1} is almost disjoint with respect

to p. Consequently, the Gi—quasiinvariance of p and the countable chain
condition yield the equalities

1(Xg) =0 (g € Gh).
Now, we can consider a disjoint family of sets {Y, : g € G1} satisfying the
inclusions
Yy C Xy (9 € Gh)
and the equalities
U{Yg : gEGl}:U{Xg cgeGi=X.

Since the Lebesgue measure X' is complete and N (X) = 0, we have the
inclusion

P(X) C dom(p),
where P(X) denotes the collection of all subsets of X. In particular, the
union of an arbitrary subfamily of {Y, : ¢ € G;} belongs to dom(pu).
Finally, for each subset H of GGy, let us define

v(H) = p(U{Y;, : he HY).
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Then v is a nonzero finite diffused measure defined on the family of all
subsets of G1. But this contradicts again the Ulam theorem stating that
w1 = card(G7) is not a real valued measurable cardinal. The obtained
contradiction ends the proof of our lemma. O

Remark 1. It is easy to see that Lemmas 1 and 2 have the corresponding
analogues for a finite-dimensional Euclidean sphere F equipped with a
group G of its isometric transformations. In order to formulate the cor-
responding results, we only need to replace affine linear manifolds (in those
lemmas) by spheres in E.

Lemma 3. Let (E,G) be a space with a transformation group, p be a o
finite G—invariant measure defined on some o—-algebra of subsets of £, and
let v be another o—finite G—invariant measure defined on dom(u). Suppose
also that

1) v is absolutely continuous with respect to pi;

2) p is metrically transitive with respect to G, i.e. for each p—measurable
set X with u(X) > 0, there exists a countable family {g, : n < w} of
transformations from G such that

p(E\ U{gn(X) : n<w}) =0.

Then the measure v is proportional to p; in other words, there exists a
real coefficient t = t(v) such that v = tu.

This lemma is well known (for the proof, see e.g. [2] or [4]).

Let E be a finite-dimensional Euclidean space (sphere) and let G be a
subgroup of the group of all isometric transformations of E. Suppose also
that there exists a point e € E such that

card(G(e)) < w.

Then it can easily be checked that there exists a measure p on F satisfying
the next three relations:

a) dom(u) = P(E);

b) w is a nonzero o-finite G-invariant measure;

¢) p is concentrated on the countable set G(e).

It immediately follows from these relations that the Lebesgue measure X
on E (considered only as a G-invariant measure) does not have the uniqu-
eness property.

Let E be again a finite-dimensional Euclidean space (sphere) and let G
be a subgroup of the group of all isometric transformations of £. Let us
consider again the Lebesgue measure X on E as a G invariant measure. It
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is not difficult to show, applying the classical Lebesgue theorem on den-
sity points of Lebesgue measurable sets, that the next two assertions are
equivalent:

(a) X is metrically transitive (with respect to G);

(b) for each point z € E, the orbit G(x) is dense everywhere in E.

Now, we are able to formulate and prove the following statement concer-
ning the uniqueness property of the standard Lebesgue measure.

Theorem 1. Let E be either the n dimensional Fuclidean space or the n
dimensional Fuclidean sphere, where n > 0, let G be a subgroup of the
group of all isometric transformations of E, and let X be the standard n
dimensional Lebesque measure on E. Then the next two assertions are
equivalent:

a) the measure X' (considered as a G invariant measure) has the uniqu-
eness property;

b) for each point x € E, the orbit G(x) is uncountable and dense every-
where in F.

In particular, if the group G acts transitively in E, then the measure
X (considered as a G—invariant measure) has the uniqueness property.

Proof. First of all let us remind that the uniqueness property of an in-
variant measure implies the metrical transitivity of this measure. Hence,
taking into account the preceding remarks, we see that assertion b) follows
from assertion a). Conversely, suppose that b) is fulfilled, and let p be an
arbitrary o finite G invariant measure defined on dom()\’). Then, accor-
ding to Lemma 2, the measure p is absolutely continuous with respect to
N. Also, X is metrically transitive with respect to G. It remains to apply
Lemma 3, in order to establish the existence of a real coefficient ¢ = ¢(u)
such that p = t\'. Thus, assertion b) implies assertion a), and the proof of
Theorem 1 is complete. ]

Using a similar argument, one can establish a corresponding result for
the completion of a Haar measure on an uncountable o—compact locally
compact topological group (in this connection, see [5]). Namely, let £ be
a o—compact locally compact topological group, G be a subgroup of F and
let 1’ be the completion of the left invariant Haar measure on E. Then the
next two assertions are equivalent:

(a) the measure y' (considered as a left G—invariant measure) has the
uniqueness property;

(b) the group G is uncountable and dense everywhere in E.
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For a detailed proof of the equivalence of assertions (a) and (b), see
[5]. Here we notice only that the proof is essentially based on the above—
mentioned Ulam theorem and on the so called Steinhaus property of a o
finite Haar measure.

Thus, dealing with the classical Lebesgue measure or with the comple-
tion of a o—finite Haar measure, we have necessary and sufficient conditions
(formulated in purely group—theoretical and topological terms) for the uni-
queness property.

Ezxample 1. Let E be the n—dimensional FEuclidean space, where n > 2. It is
not difficult to show that there exists a group G of isometric transformations
of E such that

1) G is a free group;

2) G acts transitively in £ (in particular, card(G) is equal to the cardi-
nality continuum);

3) if g € G is a translation of F, then g is the identity transformation of
E (i.e. G does not contain nontrivial translations of £).

According to Theorem 1, the Lebesgue measure in E (considered as a
G—invariant measure) has the uniqueness property.

On the other hand, let us emphasize that Theorem 1 yields nothing for the
uniqueness property of the classical Borel measure on a finite dimensional
Euclidean space (sphere). This can be illustrated by the following fact. Let
FE be the n-dimensional Euclidean space, where n > 1. Let us denote by A
the n—dimensional Borel measure on F (i.e. A is the restriction of X to the
Borel o—algebra of E). It can easily be proved that there exists a subgroup
G of the additive group of F, satisfying the next three relations:

(1) card(G) is equal to the cardinality continuum;

(2) G is dense everywhere in E;

(3) the G—invariant measure A does not have the uniqueness property.

Indeed, let us represent our space F in the form of a direct sum FE =
E; +R, where Ej is an (n — 1)—dimensional vector subspace of E. Then we
can put G = E; + Q, where Q denotes the subgroup of R consisting of all
rational numbers.

The results presented above show an essential difference between two
classical measures, from the point of view of the uniqueness property. In
this connection, it is reasonable to formulate the following problem.

PROBLEM. Let E be either the n dimensional Euclidean space or the n
dimensional Kuclidean sphere. Find a characterization of all those groups G
of isometric transformations of £, for which the standard Borel measure A in
E (considered only as a G invariant measure) has the uniqueness property.
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Clearly, we mean here a characterization of groups G in those terms which
do not belong to measure theory (for example, topological terms, group—
theoretical terms, etc.).

The problem posed above remains open and seems to be a nontrivial one.
In the present paper, we are going to discuss a simple sufficient condition on
a group G of isometric transformations of £, under which the G invariant
Borel measure A in £ has the uniqueness property. However, the formulation
of this condition is not purely topological and group theoretical.

First we need some auxiliary notions, facts and propositions.

Suppose that (E, S, p) is a space equipped with a o—finite measure u. Let
X and Y be any two subsets of the basic set E. We say that X is thick in
Y, with respect to the measure pu, if (Y \ X) = 0, where p, denotes, as
usual, the inner measure associated with p.

In particular, we say that X is a thick subset of F, with respect to p, if
(B \ X)=0.

Let G be an arbitrary group, g1 and ps be some ¢ finite measures given
on G. We recall that p; is a right G-quasiinvariant measure if dom(p;) is
a right G—invariant class of subsets of G and

p(Xg) =0 m(X) =0,

for all sets X € dom(p;) and for all elements g € G.
Analogously, po is a left G—quasiinvariant measure if dom(usg) is a left
G—invariant class of subsets of G and

p2(9X) =0 & pa(X) =0,
for all sets X € dom(ue) and for all elements g € G.

We begin with the following result useful in many situations (cf. [2],
Chapter 11).

Lemma 4. Let py be a nonzero right G quasiinvariant measure on G and
let po be a nonzero left G—quasiinvariant measure on G. Suppose also that
1) dom(p1) = dom(pz);
2) for each set X € dom(u1), the set

X*={(g,h) e GXG : ghe X}

belongs to the product o—algebra dom(p;) ® dom(ue).
Then the measures 1 and po are equivalent (i.e. each of these two me-
asures is absolutely continuous with respect to another one).
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Proof. Evidently, it is sufficient to establish that s is absolutely continuous
with respect to p1. Let us take an arbitrary set Y € dom(pu) with pq(Y) =
0, and let us consider the set

Y*={(9,h) e GXG : gheY}.

According to condition 2), this set belongs to the o-algebra dom(pi) ®
dom(ug). Applying the classical Fubini theorem to the product measure
p1 X po and to the set Y*, we can write

(11 > 12) (V) = [ (YR )dpa(h) = 0.

Applying the Fubini theorem once more, we get

0= (1 x ) (Y") = [ palo ™'Y )dur(g).
Thus, we can conclude that the function

g— (g 'Y) (g €G)

is equivalent to zero (with respect to p1). In particular, there exists an
element g € G such that ps(g~'Y) = 0. Consequently,

p2(Y) = pa(9(g™'Y)) = 0.
This completes the proof of the lemma. U

Let us mention some (well-known) consequences of Lemma 4.

Suppose that G is a locally compact Polish topological group, 0 is the left
invariant Haar measure on G and 0’ is the right invariant Haar measure on
G. Then

1) 6 and 0" are mutually absolutely continuous measures;

2) for a subset X of G, the following two assertions are equivalent:
a) X is a thick set with respect to 6;
b) X is a thick set with respect to 6';

3) for a Borel subset Y of G, the next two assertions are equivalent:
a) Y is a set of strictly positive 6—measure;
b) Y ! is a set of strictly positive f—measure.

Notice that assertion 1) follows directly from Lemma 4. Assertions 2)
and 3) can easily be deduced from assertion 1).

Let G be a o—compact locally compact topological group. As above, we
denote the left invariant Haar measure on G by the symbol 0. Let H be an
arbitrary subgroup of G and let cl(H) be the closure of H in G. Obviously,
cl(H) is a closed subgroup of G. Consequently, cl(H) is also a o—compact
locally compact group equipped with the left invariant Haar measure which
is denoted by 0.
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We say that the group H is thick in its closure if H is a 0g—thick subset
of cl(H).

Remark 2. Let 0 be the left invariant Haar measure on cl(H) and let 6%
be the right invariant Haar measure on cl(H). It follows from 2) that the
next two assertions are equivalent:

a) H is a Og—thick subset of cl(H);

b) H is a 6;—thick subset of cl(H).

Thus, we see that the definition of a thick group in its closure does not
depend on the choice of a Haar measure in the closure.

Remark 3. Let G be a o—compact locally compact topological group, 6 be
a Haar measure on GG, and let H be a dense subgroup of G. It can be
shown, applying the metrical transitivity of 6, that the next two relations
are equivalent:

a) H is a 0-thick subset of G;

b) 0*(H) > 0, i.e. the outer § measure of H is strictly positive.

Remark 4. Let E be a finite-dimensional Euclidean space (sphere), and let
G be a group of isometric transformations of F such that the closure of G
acts transitively in £. We cannot assert, in general, that G is thick with
respect to a Haar measure in cl(G). Indeed, it may happen that G is even
a countable group and, consequently, is of measure zero.

The following important result is due to Ershov (see [1]). It has a number
of interesting applications in measure theory and probability theory.

Lemma 5. Let E be a Polish topological space and B(E) be the Borel o—
algebra of E. Let S be a countably generated o—subalgebra of B(E) and p be
a probability measure defined on S. Then there exists a measure v defined
on B(E) and extending p.

A detailed proof of Lemma 5 is given in [1]. Here we notice only that the
proof of this lemma is essentially based on some properties of the so called
Marczewski characteristic function of a sequence of sets and on a well-
known theorem concerning the existence of measurable selectors. Notice
also that several statements analogous to Lemma 5, for the case where F is
a projective topological space, are discussed in [7]. Of course, if we deal with
projective spaces, then some additional set—theoretical axioms are needed.

Remark 5. It can easily be checked that the assertion of Lemma 5 remains
true for any o—finite measure p defined on S.



60 A.B. KHARAZISHVILI

Remark 6. Let E be a topological space for which the assertion of Lemma 5
is true, i.e. if S is an arbitrary countably generated o—subalgebra of B(F)
and p is an arbitrary probability measure on S, then there exists a measure
v on B(F) extending p (in this case we say that F satisfies Lemma 5 or
E has the measure extension property). Let E' be a topological space such
that there exists a Borel surjection from F onto E’. Then the assertion of
Lemma 5 is true for the space E’, too.

In particular, it immediately follows from the previous remark that Lem-
ma, 5 holds true in the case of an analytic topological space E’. In connection
with this result, we wish to notice that Lemma 5 cannot be proved, in
theory ZFC, even for coanalytic topological spaces (for more details, see
[7]). On the other hand, this lemma is true for some ”"bad” topological
spaces. Indeed, let E be a topological space such that all one—element
subsets of E are Borel, and let E’ be a universally thick set in E (i.e., for
each o—finite diffused Borel measure p on E, we have u,(E\ E') = 0). It is
easy to show that if F satisfies Lemma 5, then E’ also satisfies this lemma.
Consequently, we obtain that every Bernstein subspace of an uncountable
Polish topological space satisfies Lemma 5.

Remark 7. Let us put

E = the unit segment [0, 1];

S = the o—algebra generated by the family of all first category Borel
subsets of [0, 1];

p = the probability measure on S vanishing on all first category Borel
subsets of [0, 1].

Applying the well-known fact from topological measure theory, stating
that any o—finite diffused Borel measure in a separable metric space is con-
centrated on a first category set, it is easy to check that p cannot be extended
to a Borel measure on [0, 1].

Thus, we see that the assumption that S is a countably generated o—
subalgebra of B(E) is essential in the formulation of Lemma 5.

Lemma 6. Let G be a locally compact Polish topological group, p be a Haar
measure on G and let H be a subgroup of G thick with respect to p. Further,
let v be a nonzero o—finite left (right) H—quasiinvariant measure defined on
dom(u). Then the measures p and v are equivalent.

This lemma easily follows from Lemma 4.

In addition, applying Lemmas 3 and 6, it is not difficult to show that if
H is a thick subgroup of a locally compact Polish topological group G, then
the left invariant Haar measure on G (considered only as a left H-invariant
measure) has the uniqueness property.
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Lemma 7. Let E denote the n-dimensional Euclidean space (sphere), where
n > 0, let G be a subgroup of the group of all isometric transformations of
E, and let p be a probability G—quasiinvariant measure defined on the Bo-
rel o—algebra of E. Suppose that, for some point e € E, the orbit G(e) is
p—thick in E. Let us define a continuous mapping

¢ G- F

by the formula
¢(g) = g(e) (g € G),

and let us put
S={¢p"'(X) : X € B(E)}.
Finally, let us define a functional v on S by the formula
v(¢~H(X)) = u(X) (X € B(E)).

Then the following assertions are true:
1) S is a countably generated o—subalgebra of B(G);
2) the definition of the functional v is correct;
3) v is a probability left G—quasiinvariant measure on S.

The proof of this lemma, is not difficult. One has to check directly the
validity of assertions 1), 2) and 3).

Lemma 8. Let G be a locally compact Polish topological group, 1 be a Haar
measure on G, and let H be a dense subgroup of G such that p*(H) > 0.
Suppose also that v is a probability left (right) H—quasiinvariant measure
defined on the Borel o—algebra of G. Then there exists a real-valued function

p: G—R

satisfying the following relations:
1) p(g) >0, for all g € G;
2) p is a Borel function;
3) for each Borel subset Z of G, we have the equality

v(Z) = /Zp(g)dﬂ(g)-

Proof. From the assumption of the lemma it follows that H is a thick sub-
group of GG with respect to p. According to Lemma 6, the measures p and
v are equivalent. Thus, it remains to apply the classical Radon—Nikodym
theorem, in order to find a real-valued function p with the desired proper-
ties. ]

The following auxiliary proposition plays the key role in our further con-
siderations.
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Lemma 9. Let FE denote the n—dimensional Euclidean space (sphere), where
n >0, let G be a group of isometric transformations of E, and let cl(G) be
the closure of G. We denote by 0 the left invariant Haar measure on cl(G).
Suppose that

1) 0*(G) > 0;

2) the group cl(G) acts transitively in E.

Suppose also that p is a nonzero o—finite G—quasiinvariant measure defi-
ned on the Borel o—algebra of . Finally, let us fix an arbitrary point e € E.
Then, for each Borel subset X of E, we have

wX)=0<0{gec(G) : gle) € X})=0.

Proof. We may assume, without loss of generality, that u is a probability
measure. It follows from the assumption of our lemma that the group G is
thick in its closure (with respect to the Haar measure ). Further, let us
define a surjective continuous mapping

¢ : d(G) = E
by the formula
¢(9) = g(e) (g € cl(G))
and let us put
S={¢pYX) : X €B(E)}.
According to Lemma 7, we can define a probability measure v on the o
algebra S by the formula
(971 (X)) = u(X) (X € B(E)).

Since the original measure p is G—quasiinvariant, the measure v on S is left
G quasiinvariant. Applying Lemma 5, we can extend v to a probability
Borel measure v/ on the group cl(G). Let us denote by € a probability
measure equivalent to the Haar measure 6. Further, for each Borel subset
Z of cl(G), let us consider a function

Y c(G) =R
defined by the formula
U(g) = V'(92) (g € l(G)).

It is not difficult to show that 1 is a Borel function (obviously, integrable
with respect to the measure €'). So, we may put

V(2= [ V(6740 s).

It can easily be checked that v” is a left cl(G)—quasiinvariant probability
Borel measure on the group cl(G). In particular, v” is left G-quasiinvariant.
Consequently, applying Lemma 6, we can assert that the measures v and
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0 are equivalent. Hence, by Lemima 8, there exists a strictly positive Borel
function

p: c(G)—=R
such that

V'(Z) = /Zp(g)dO(g),

for each Borel subset Z of cl(G). Now, it is clear that, for X € B(F), we
have

u(X) = 0 & v~ (X)) = 0.
At the same time, we can write

(¢~ (X)) =0V (¢7H(X)) =0 v (67H(X)) =0.

Therefore, we have

H(X) = 0 & 6(671(X)) = 0.
This completes the proof of the lemma. U

Finally, we can formulate and prove the following result concerning the
uniqueness property of the standard Borel measure.

Theorem 2. Let E denote the n dimensional Euclidean space (sphere),
where n > 0, let G be a subgroup of the group of all isometric transforma-
tions of E, and let X be the standard Borel measure on E. Suppose also
that

1) the closure of G acts transitively in E;

2) the group G is thick in its closure.

Then the measure X (considered only as a G-invariant measure) has the
uniqueness property.

Proof. Let v be an arbitrary o finite G invariant measure defined on the
Borel o—algebra of E. Applying Lemma 9, it is easy to see that v is abso-
lutely continuous with respect to A. Since A is metrically transitive (with
respect to G), we conclude, according to Lemma 3, that v is proportional
to A. Thus, the measure A\ has the uniqueness property. O

FEzxzample 2. Let E = S™ be the unit n—dimensional Euclidean sphere, where
n > 1, and let G be the group of all rotations of this sphere around its centre.
Using the method of transfinite induction, it is not difficult to prove that
there exists a subgroup H of G satisfying the next three relations:

1) H is of cardinality continuum;

2) H is a free group;

3) H is thick in G (with respect to the Haar measure on G).
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In particular, the group H is dense everywhere in G, it differs from G,
and the standard Borel measure on E (considered only as an H-invariant
measure) possesses the uniqueness property. In connection with this fact,
let us recall that the first example of a free group of rotations of £, having
the cardinality continuum, was constructed by Sierpiriski (see his paper [9]).
A detailed information (concerning this topic and related questions) can be
found in Chapter 6 of the well-known monograph by Wagon [11].

Let us consider especially the case when n = 3, i.e. let E be the unit
three—dimensional Kuclidean sphere and G be the group of all rotations of
FE around its centre. From the classical theory of quaternions it is known
that there exists a subgroup G’ of G satisfying the following conditions:

a) G’ acts transitively in £

b) G’ is a closed subgroup of G;

¢) the group of all rotations of the unit two-dimensional Euclidean sphere
(around its centre) is the image of G’ with respect to a homomorphism such
that the preimage of each rotation is a two element subset of G’.

In particular, we have

dim(G’) = dim(E) = 3 < 6 = dim(G).

We see also that there exists a subgroup H' of G’ such that

(1) H' is of cardinality continuum;

(2) H' is a free group;

(3) H' is thick in G’ (with respect to the Haar measure on G’).

Thus, applying Theorem 2, one can conclude that the standard Borel
measure in E (considered only as an H'-invariant measure) possesses the
uniqueness property.

Remark 8. There are several important and interesting works devoted to
the uniqueness property of the standard Lebesgue measure considered as a
positive, finitely additive, invariant, and normalized functional defined on
the family of all bounded Lebesgue measurable subsets of an Euclidean space
(sphere). This topic is discussed in detail in Chapter 11 of monograph [11]
where references to the corresponding original works of Drinfeld, Margulis,
Rosenblatt and Sullivan are presented (in this connection, see also [8]).
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