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Abstract. In this work we study when an arbitrary linear random opera-
tor between Banach spaces must behave as a continuous operator on some
measurable set with positive measure. We deal with the continuity in pro-
bability as well as the continuity in r—mean.

0. Introduction. Linear random operators arise extensively in the the-
ory of random equations which, at the present time, is a very active area of
mathematical research [2], [5]. On the other hand, (non continuous) linear
random operators behaving as continuous operators on some measurable set
with positive measure were found recently [6], [9] in a natural way. These
papers were devoted to show the continuity properties of some algebraically
well behaved linear random operators defined on Banach algebras. In [8] we
proved that the biggest measure of a measurable set on which an arbitrary
linear random operator T' must behave as an operator which is continuous
in probability, is given by

lim lim P[||T'(2)| < ¢].
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The first section of the present paper is a brief survey about that fact, which
became a very useful tool for the treatment of some continuity problems
[6 —9]. The aim of this paper is to obtain a similar approach for the
continuity in 7—mean of linear random operators with moment of order r.

The second section is devoted to measure the continuity in r—mean of a
linear random operator with moment of order r.

Finally, in the third section, we get a characterization of operators beha-
ving as continuous operators on some measurable set with positive measure.
Here the continuity is considered as continuity in probability as well as con-
tinuity in r—mean.

1. Continuity in probability. Let X, Y be Banach spaces and
(Q,X,P) a probability space. We denote by Ly(P,Y) the space of all Y
valued Bochner random variables on €. A mapping 7' : X — Lo(P,Y) is
said to be a random operator from X to Y. Linear random operators are
those T" such that

P[T(az + By) = oT'(z) + BT(y)] = 1,

for all x,y in X and «, 8 constants.

The usual convergence in probability provides a complete semimetrizable
linear topology on Lo(P,Y’) (see [3] Section 11.2.2) which can be derived
from the paranorm

Iyl
Iylo = [ 5B, vy € Lo(®.Y),

We obtain the complete metrizable topological linear space Ly(P,Y") from
the almost surely identification on Lo(P,Y) (abbr. a.s.). Note that every
linear random operator from X to Y can be regarded as a linear Lo(P,Y)—
valued operator on X. The continuity of T' as a Ly(P,Y')-valued operator,
that is the continuity in probability, is equivalent to the continuity of T’
as a Lo(P,Y)—valued operator. The continuity in probability also will be
referred as the || - |o—continuity.

We inquire on the continuity of a linear random operator T' by conside-
ring, as it is usual, its so-called separating subspace,
So(T) ={y € Lo(P,Y) : Tz, — 0 with | T(z,) — yl|lo — 0},

which is || - [0 closed in Lo(P,Y). The closed graph theorem [10], Section
5.3, can be established as follows.

Theorem 1. Let T be a linear random operator from a Banach space X to
a Banach space Y. Then T is | - ||o—continuous if, and only if, Ply = 0] =
1,Vy € So(T).
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Let €y be a measurable set in the probability space (€2, 3, P) such that
P[] > 0. In order to study the behaviour of a random operator T' on
o, we consider 2y as a new probability space with the inherited structure
from Q (the induced probability on € is the conditional probability Py).
Therefore, we define the random operator

Ty : X — Lo(Po,Y)
as the restriction
To,(z) =T(x)/Q, Vo € X.
Such an operator Tq, is said to be a conditional operator of T'.

In order to know “how continuous” a random operator T is, we calculate
the biggest measure of a measurable set on which 7" must behave as a || - ||o
continuous operator. That is the meaning of the number

ap(T) = sup{P[Q] : T, is | -0 —continuous},

which is considered as the probability with which T is || - ||o—continuous.
On the other hand, from the last theorem, whenever T is linear can be also
expect to determine “how continuous” T is through its separating subspace.
The “stochastic size” of the separating subspace, given by
sup{d : Ply = 0] > ¢, Vy € So(T)},
is considered as the probability with which the graph of T is closed.
The next result establishes that the probability with which a linear ran-

dom operator is continuous coincides with the probability with which its
graph is closed.

Theorem 2. [8] For a linear random operator T from X to'Y the following
assertions are equivalent:

1. T has a || - |Jo—continuous conditional operator Tg, with
P[] > 4.
2. For every 0 < &' < ¢ there exists a constant Mg such that

P|T(z)l| < Myllz[] > &',V € X.
3. lim P[||T'(z)]| <e¢] > 9, Ve > 0.
4 Ply = 0] > 6, Vy € So(T).
In fact, the sets
{60 >0:3M >0 with P[||T'(z)|| < M||z|]] > 6 Vz € X}

and
{6>0:Ply =0 > 5, Vy € S(T)}
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attain a maximum respectively and
ao(T) = max{d > 0: IM > 0 with P[|T(z)|| < M||z|] >0 Vz € X}
—{6>0:Ply=0] > 6 Yy € So(T)}
— lim lim P{|7(2)]| < o]

Classically, linear random operators are classified into continuous and
non continuous operators. However we just got some additional information
about non continuous linear random operators. Indeed some of them seem
to be “more non continuous” than others, in a sense determined by mean
a number. Now, random operators can be arranged according with the
probability with which they are continuous, in a very reasonable way.

The above result was obtained from the following principle which will be
applied again in the next section.

Theorem 3. [8] Let M be an additive subgroup of random wvariables.
1. If there exists 0 €]0,1[ such that Ply = 0] > 6 for all y in M, then
there ezists a measurable subset Qo C 0 with P[Qg] > 0 such thaty = 0
a. s. on g, for all'y in M.
2. The sets {P[Q] : Qo is measurable andy =0 a. s. on Qy, Vy € M}
and {6 > 0:Ply =0] >4, Yy € M} attain a mazimum respectively,
and these values coincide.

2. Continuity in r—mean. As it is well known, essential subspaces of
Lo(P,Y) are the spaces L,.(P,Y) of all Y—valued Bochner random variables

having finite moment of order r, i.e.
Lo(PY) = {x € Lo(P,Y) : / x| dP < oc}.
Q

In addition to the inherited topology from Ly(P,Y"), every space L, (P,Y)
also has its own topology which is given by the paranorm

Il = [ <l d®, x € £,(B.Y),

when 0 < 7 < 1, while for » > 1 this topology is given by the seminorm

1
Il = ([ Ixlrde)" xe .e.v).

The usual almost surely identification in £,.(P,Y") leads to the complete
metrizable topological linear space L,(P,Y).

We say that a random operator T : X — Ly(P,Y) has moment of order r
whenever T'is a £, (P, Y )-valued mapping. Therefore (apart from the || - [|o—
continuity) random operators with 7 moment have their specific notion of



On the continuity of random operators 97

continuity, namely the || - ||,—continuity also called continuity in r—-mean.
We note that a random operator T" with r—moment is continuous in r—
mean precisely when T is || - ||,—continuous considered as a L, (P, Y )—valued
mapping.

To estimate the r—mean continuity of a linear random operator 1" with
r moment we have the separating subspace

S’F(T) = {y € Er(Pa Y) : dz,, — 0 with HT(xn) - YHT - 0}7

which is || - ||,—closed in £,(P,Y’). In this frame, the classical closed graph
theorem [10], Section 5.3, leads to the following result.

Theorem 4. Let'l" be a linear random operator having moment of order r.
Then T is continuous in r—mean if, and only if, Ply = 0] = 1, Vy € §,(T).

Let T be a random operator with moment of order r. In order to know
“how continuous in r—mean” T is, we calculate the biggest measure of a
measurable set on which 7" must behave as a || - ||,—continuous operator.
That is the meaning of the number

a,(T) = sup{P[Q] : Tq, is || |,—continuous}.

Finally we observe that every linear random operator 1" with moment of
order 7, also has moment of order g, for every 0 < g < r. We recall that the
|| - [|[,—convergence is stronger than the || - ||,—convergence. However, in spite
of that, we proves that T is || - ||, continuous if, and only if, T is || - |,
continuous for some 0 < g < r. This will be a straightforward consequence
of the next result.

Proposition 5. Let T be a linear random operator with moment of order
r. Then the following conditions are equivalent:

1. T is || - ||o—continuous.
2. T is| |l continuous.

Proof. (ii) = (i) is obvious because the || - ||,—convergence is stronger than
the || - |[o—convergence [1], Theorem 7.1.5.

(1) = (ii). Let z,, be a sequence in X converging to zero and such that
T(xy,) is || - ||;—convergent to a random variable y. Then T'(z,,) is also || [jo—

convergent to y. Since T is || - [[p—continuous, we have that Ply = 0] = 1,
from Theorem 1. Now we apply Theorem 4 to deduce the || - ||,—continuity
of T. O

Let T be a linear random operator with moment of order r. In the next
result we obtain a precise estimation of the probability with which T is
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continuous in 7—mean. We get it through the separating subspace Sy(7) as
well as through the most natural subspace S, (T, respectively.

Theorem 6. Let 1" be a linear random operator from X to'Y having mo-
ment of order r. Then the following assertions are equivalent:

1. T has a || - ||r—continuous conditional operator Tq, with
P[Qo] > 6.

2. T has a || - ||o—continuous conditional operator Tq, with
P[] > 4.

3. For every 0 < &' < § there exists Mg > 0 such that
Pl|T(z)|| < My |lz|] = &', Yz € X.
4. Tim P[|T(2)] < ¢] > 6, Ve > 0.
z—0
5 Ply =0] >4, Vy € So(T).
6. Ply =0] > ¢, Vy € S;(T).
In fact
o, (T) = ao(T)
=max{d > 0:3IM > 0 with P[||T(z)|| < M||z|] > Vx € X}
=max{d > 0:Ply =0] >4, Yy € Sy(T")}
=max{d0 > 0:Ply =0] >4, Yy € S§,(T)}
— tim lim P[|T(2)]| < e].
e—=0250

Proof. The equivalence 1 < 2 and the equality a,(7') = ag(7T) follow from
Proposition 5. The assertions 2 < 3 < 4 < 5 and the equalities

ap(T) = max{d > 0: IM > 0 with P[||T(z)|| < M|z|]] > d Vz € X}
=max{d > 0:Ply =0] >0, Vy € So(T)}
= lim lim P[[[7(z)[| < €]
e—=Vz—0
were obtained in Theorem 2.
The inclusion S, (T") C So(T") shows 5 = 6 and also that
max{d > 0:Ply=0] >4, Vy € So(T)} >
sup{d > 0:Ply =0] > o, Vy € S.(T)}.

To prove 6 = 1 we apply Theorem 3, by considering M = §,(T), to get a
measurable set Qo with P[Qy] > § such that

y =0 a.s. on Q, Vy € S,(T).
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We observe that T, = RT where T is considered as a L,(P,Y)—valued
operator and R : Lo(P,Y) — Lo(Pq,.,Y) given by
R(y) =y/S0.

From the closed graph theorem (see [4], Lemma 1.3, which also holds for
operators defined between metrizable complete linear spaces) it follows that
RT is continuous if and only if S, (T") C ker R. Hence Tgq, is ||-||,—continuous.
On the other hand, from Theorem 3, the set

{6020:Ply=0] =0, Vy € S(1))}

attains a maximum which coincides with «,.(T"). That concludes the proof.
O

Consequently, in order to prove the existence of a measurable set €}y on
which T behaves as a continuous operator, we do not need to check the
behaviour of 1" on each measurable set €. It is suffices to compute

lim lim P[|T'(z)[| < ¢]
e—=0350

to know if such a measurable set )y exists having positive measure, and
also to determine the “biggest measure” that can be expected for it.

3. Probably continuous linear random operators. The aim of this
section is to study when «, (7)) > 0. Linear random operators with this
property will be called probably continuous operators.

Previously we establish the following technical result which will be essen-
tial to our purpose.

Lemma 7. Givenr >0, let M be a || - ||, —closed linear subspace of random
variables with moment of order r. Then, for every 0 < § < 1, the set

Cs:={y e M: Ply=0] >4}

is || - [l —closed.

Proof. Let y, be a sequence in Cy such that ||y, —y||, — 0, for a random
variable y. Then y,, converges to y in probability, that is

o 1+ [lynll o1+l
from [1], Theorem 7.1.5. By defining Q, = {w € Q : y,(w) # 0}, we

observe that
o L+ [lyall Qn L+ [yl
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Since y,, € Cs, for every n € N, it follows that P[S2,] <1 —4, so that

/ Yl gp <1,
ol+|yl

But, given k € N, it is obvious that ky, € Cs, for every n € N. Moreover
ky, converges in probability to ky. Therefore, from above,

[
Q

1+ Ryl
Letting £ — oo, we deduce that P[Qy] < 1 — 9, where Qy = {w € Q :
y(w) # 0}. Hence y € Cy, so that Cs is closed. O

Theorem 8. Forr >0, let M be a |- ||, —closed linear subspace of Y —valued
random variables with moment of order r. If Ply = 0] > 0, Vy € M, then

inf{Ply =0]: y € M} >0.

oo
1
Proof. Because M = U{y e M : Ply = 0] > —}, we have that M
n
n=1
is a numerable union of linear subspaces, which are || - ||,—closed from the
last lemma. We apply Baire’s theorem to the canonical projection of M
on Lo(P,X) in order to obtain ny € N such that the set {y € M :
Py = 0] > n—lo} has an interior point, yo. Since for every y € M and

every scalar A\, with | A | enough small,

1
Plyo + Ay = 0] > —,
no

it follows that
1
— < Plyo = —\y]
no

=Plyo = —Ay,yo = 0]+ Plyo = =y, yo # 0]

< Plyo =y = 0]+ Bllyol =| A | [y Iyoll #0)
—Plyo =y = 0+ P57 = 1 [yoll 0

Let A — 0 to obtain

Thus,

which proves the result. O
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From the above theorem, probably || - ||,—continuous operators (i.e. those
whose probability of being continuous in 7—mean is not zero) are characte-
rized as follows.

Theorem 9. Let r > 0 and let T be a linear random operator T from X to
Y having moment of order v (if it is v > 0). Then the next assertions are
equivalent:

1. T is probably continuous in r—mean.
2. There exists a constant M such that

PT(z)|| < M|z[] >0, Vz € X.
3. lim P[||T()]| <& > 0, Ve > 0.
z—0

4. Ply = 0] > 0, Yy € S,(T).
5 Ply =0] >0, Vy € So(T).
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