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Abstract. We show that each distance-regular graph of valency four has known parameters.
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In this note we report on a computer search that proves that each distance-regular graph
of valency four has known parameters. Here we describe first the known examples, next
how putative arrays were disposed of, and finally how the search could be limited to a
manageable number of arrays.

The distance-regular graphs of valency 3 have been determined by Biggs et al. [6].
Bannai and Ito worked on the general project of bounding the diameter of a distance-
regular graph as a function of its valencyk. They succeeded in the bipartite case [3] and in
casek = 4[4]1. This means that finding the feasible arrays for distance-regular graphs of
valency 4 was reduced to a finite amount of work, but the diameter bounds obtained were
not small enough to straightforwardly settle this case. In this note we obtain some additional
conditions, and thus reduce the parameter space to be searched, and describe a way to test
a parameter set using (small) integer arithmetic, thus avoiding accuracy problems.

Our notation for distance-regular graphs is standard (cf. [1, 5, 8]).

1. The known distance-regular graphs of valency four

In the table below, the parameters of the known distance-regular graphs of valency four are
given. (We give an ordinal number, the number of verticesv, the diameterd, the intersection
array and the spectrum.)

Descriptions of these graphs. 1. Complete graphK5. 2. K3×2 (octahedron). 3. Complete
bipartite graphK4,4. 4. 3×3 grid. 5. K5,5 minus a matching. 6. Nonincidence graph
of PG(2,2). 7. Line graph of the Petersen graph. 8. 4-cube. 9. Flag graph ofPG(2,2).
10. Incidence graph ofPG(2,3). 11. Incidence graph ofAG(2,4) minus a parallel class.
12. Odd graphO4. 13. Flag graph ofGQ(2,2). 14. Doubled Odd graph. 15. Incidence
graph ofGQ(3,3). 16. Flag graph ofGH(2,2). 17. Incidence graph of aGH(3,3). (Here
PG(2,q) andAG(2,q) denote the projective and affine planes of orderq, GQ(q,q) and
GH(q,q) denote a generalized quadrangle or hexagon of orderq.)

In each of these cases there is a unique graph with these parameters, except possibly in
the last case, since uniqueness ofGH(3,3) (a generalized hexagon of order 3) is not known.
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No. v d Intersection array Spectrum

1. 5 1 {4; 1} 41 (−1)4

2. 6 2 {4,1; 1,4} 41 03 (−2)2

3. 8 2 {4,3; 1,4} ±41 06

4. 9 2 {4,2; 1,2} 41 14 (−2)4

5. 10 3 {4,3,1; 1,3,4} ±(41 14)

6. 14 3 {4,3,2; 1,2,4} ±(41
√

2
6
)

7. 15 3 {4,2,1; 1,1,4} 41 25(−1)4 (−2)5

8. 16 4 {4,3,2,1; 1,2,3,4} ±(41 24)06

9. 21 3 {4,2,2; 1,1,2} 41 (1±√2)6 (−2)8

10. 26 3 {4,3,3; 1,1,4} ±(41
√

3
12
)

11. 32 4 {4,3,3,1; 1,1,3,4} ±(41 212)06

12. 35 3 {4,3,3; 1,1,2} 41 214 (−1)14 (−3)6

13. 45 4 {4,2,2,2; 1,1,1,2} 41 39 110 (−1)9 (−2)16

14. 70 7 {4,3,3,2,2,1,1; 1,1,2,2,3,3,4} ±(41 36 214 114)

15. 80 4 {4,3,3,3; 1,1,1,4} ±(41
√

6
24
)030

16. 189 6 {4,2,2,2,2,2; 1,1,1,1,1,2} 41 (1±√6)21 (1±√2)27 128 (−2)64

17. 728 6 {4,3,3,3,3,3; 1,1,1,1,1,4} ±(41 3104
√

3
168
)0182

Each of these graphs is distance-transitive, except for those under 15 and 16—indeed,
GQ(3,3) and GH(2,2) are not self-dual. (The single known example of aGH(3,3) is
distance-transitive; any further examples will not be.)

Our main theorem is:

Theorem 1.1 Any distance-regular graph of valency4 has one of the17 intersection
arrays listed above(and hence is one of the16graphs described above, or is the point-line
incidence graph a generalized hexagon of order3).

Nomura [14] already found the seven distance-regular graphs with valency four and girth
three.

(The classification is very easy: Ifa1 = 3 then we are in case 1; ifa1 = 2 then0 is
locally a quadrangle, and hence is the octahedron, case 2; finally, ifa1 = 1, then0 is locally
2K2, and hence the line graph of a cubic graph. But the distance-regular line graphs are
known ([8]; [13], 4.2.16) and we find cases 4 and 7, and the flag graphs of generalized
polygons of order (2, 2), cases 9, 13, 16. In all cases the graph is uniquely determined by
the parameters. For the uniqueness (up to duality) ofGH(2,2), see [9].)

Thus, below we need only consider the casea1 = 0.

2. A test for feasibility

Let 0 be a distance-regular graph withv vertices, of diameterd, and with inter-section
array{b0,b1, . . . ,bd−1; c1, c2, . . . , cd}. Then0 is regular of valencyk := b0, and there are
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ki := b0b1 · · ·bi−1/c1c2 · · · ci vertices at distancei from any given vertex. LetM be the
tridiagonal matrix

0 b0

c1 a1 b1

c2 a2 b2

. . .

cd ad


and define polynomialsui of degreei (0≤ i ≤ d) by u0(x) = 1 andci ui−1(x)+ai ui (x)+
bi ui+1(x) = xui (x), i.e.,ui+1(x) = ((x−ai )ui (x)− ci ui−1(x))/bi . (Herec0u−1(x) = 0.)
Put f (x) = (x − ad)ud(x) − cdud−1(x), andF(x) = ∑d

i=0 ki ui (x)2. Then f hasd + 1
distinct roots, the eigenvalues of0, and if f (θ)=0, thenθ is an eigenvalue of0 of
multiplicity fθ = v/F(θ). (All this is completely standard—see [1, 5, 8].)

A well-known and very strong criterion for the existence of a distance-regular graph with
given intersection array is the condition that thed+1 multiplicities fθ must be integral.
However, actually computing theθ andv andv/F(θ) numerically yields practical difficul-
ties: v is very large, possibly of the order of(k−1)d, and one would have to computeθ to
an extreme precision in order to conclude thatv/F(θ) is not integral. Therefore, we chose
a different approach that allowed us to compute with small integers only.

First observe that ifθ1 andθ2 are algebraically conjugate, thenfθ1 = fθ2, so thatF(θ1) =
F(θ2) = c, say. Ifm(x) is the irreducible factor off (x) that hasθ1 as zero, we find that
m(x) | (F(x)− c).

This is a strong existence condition. Indeed, a priori one would expectF(x) modm(x)
to have degree one less than the degree ofm(x), while in fact it has degree zero, so the
higher the degree ofm(x), the stronger this condition. In fact, we do not know of examples,
apart from the polygons, wherem(x) has degree higher than three. Degree 3 occurs for the
Biggs-Smith graph but for no other known graph of valency more than two.

Thus, if f (x) =∏ j mj (x) is the factorization overQ of f into irreducible factors, then
there are rational numberscj such thatmj (x) | (F(x)− cj ), and hence

f (x)

∣∣∣∣∣ ∏
j

gcd( f (x), F(x)− cj ).

Unfortunately, we don’t know the constantscj , and they may be quite large. So, let us reduce
mod p. Let p be a prime not dividingb0b1 · · ·bd−1. Then all denominators occurring in the
coefficients ofui and f andF are nonzero modp, and we can reduce modp to conclude
that

f (x)

∣∣∣∣∣ p−1∏
c=0

gcd( f (x), F(x)− c)ec (mod p)

for certain exponentsec.
It is possible to avoid all fractions, by usingwi = b0b1 · · ·bi−1ui andg = b0 · · ·bd−1 f

andG = b0 · · ·bd−1c1 · · · cd F . We find
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Proposition 2.1 Let0 be a distance-regular graph of diameter d with intersection array
{b0,b1, . . . ,bd−1; c1, c2, . . . , cd}. Let c0 = 0. Define monic polynomialswi (0≤ i ≤ d), g
and G byw0(x) = 1, wi+1(x) = (x − ai )wi (x) − bi−1ciwi−1(x) (0 ≤ i ≤ d), g(x) =
wd+1(x) and G(x) =∑d

i=0 bi · · ·bd−1ci+1 · · · cdwi (x)2. Then for each positive integer p
there are constants ec such that

g(x)

∣∣∣∣∣ p−1∏
c=0

gcd(g(x),G(x)− c)ec (mod p).

For p=2 this is useless (the condition reduces to the condition that a polygon exists),
but for p ≥ 3 it produces restrictions.

This is the condition we applied: forp = 5,7,11,13 compute thewi , g,G (all mod p),
computep times a gcd and remove all factors found fromg, possibly repeatedly. (If a
nonlinear factor is removed, additional gcds are necessary to see whether part of that factor
can be removed more than once.) If after doing this a quotient of positive degree is left, no
graph with this intersection array exists.

[Usually, taking p=5 sufficed; in a few cases alsop=7, and in very few cases also
p=11 was required. After that only the actual examples and four other arrays, of dia-
meters 4,6,6,6, survived. Indeed, ifg completely factors into linear factors, or if0 is
bipartite, andg factors completely into factorsx2−a and possiblyx, then our condition
will be empty for all p. This happens for three arrays: for{4, 3, 3, 2; 1, 1, 2, 4} we have
g(x)= x(x2 − 5)(x2 − 16), and for both{4, 3, 3, 2, 1, 1; 1, 1, 2, 3, 3, 4} and {4, 3,
3, 3, 1, 1; 1, 1, 1, 3, 3, 4} we haveg(x)= x(x2 − 3)(x2 − 7)(x2 − 16). However, it
is easy to rule out these arrays—for example, each has nonintegral multiplicities. In the
nonbipartite case there is one additional parameter set:{4, 3, 3, 1, 1, 1; 1, 1, 1, 3, 3, 4} for
a nonexistent double cover ofO4. Hereg(x) = x(x + 1)(x − 2)(x + 3)(x − 4)(x2 − 7)
and the multiplicities are integral—combinatorial considerations are required to rule out
this case (cf. [8], Proposition 9.1.9).]

Note that we have the Christoffel-Darboux formulaG(x)=wd(x)g′(x) − w′d(x)g(x),
so that we may replaceG(x) bywd(x)g′(x) in the above formula. (This will speed up the
computations: the naive way of computingG takes orderd3 steps, but forwd(x)g′(x) only
orderd2 steps are required.)

3. A divisibility condition

Let 0 be a distance-regular graph andp a prime, such thatcr+1 is divisible by p, but ci

with 1 ≤ i ≤ r is not. Consider the parametersai , bi , ci and the matricesAi as being
defined over the integers modp. Then〈I , A, . . . , Ar 〉 is closed under multiplication, and
Ai = fi (A) for some polynomialfi of degreei (1 ≤ i ≤ r ). (If p divides the valencyk
of 0, then the same holds for〈A, . . . , Ar 〉.) Thus, f (A) = 0 for some polynomialf of
degreer +1, but for no nonzero polynomial of smaller degree.

Now suppose moreover thatbm = cm+t+1 = 0 (mod p), andcm+i ,bm+i 6= 0 (mod p)
for 1 ≤ i ≤ t . Then〈Am+1, . . . , Am+t 〉 is closed under multiplication byA, and if we put
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B := Am+1, thenAm+i = gi−1(A)B for some polynomialgi−1 of degreei −1 (1≤ i ≤ t).
Thus,g(A)B = 0 for some polynomialg of degreet , but for no nonzero polynomial of
smaller degree. It follows thatg | f .

This is a very useful condition. In order to apply it to the bipartite case, we first need a
lemma.

Lemma 3.1 Define polynomials pi over any field F by p0 = 0, p1(x) = x, pi+1(x)=
xpi (x) − λpi−1(x) (i ≥ 1), whereλ is a nonzero constant. Then(pi , pj ) = p(i, j ) (where
(−,−) denotes the g.c.d.). In particular, pi | pj if and only if i | j .

Proof: Modulo pi we find thatpi+k = −λk pi−k for 0≤ k ≤ i (by induction onk). 2

Let us give two applications of the above divisibility condition.

Proposition 3.2 Let0 be a distance-regular graph such that(ci ,ai ,bi )≡ (1,0,1) (mod 2)
for 1 ≤ i ≤ r and for d− t ≤ i ≤ d − 1, while b0 ≡ cr+1 ≡ bd−t−1 ≡ cd ≡ 0 (mod 2).
Then(t + 1) | (r + 1).

Proof: TakeF = F2, λ = 1. With the notation of the lemma we have (overF) Ai = pi (A)
for 1 ≤ i ≤ r , andpr+1(A) = 0. Similarly, Ad−i = pi (A)B (1 ≤ i ≤ t), whereB = Ad,
and pt+1(A)B = 0. It follows thatpt+1 | pr+1, and the conclusion follows. 2

Proposition 3.3 Let 0 be a distance-regular graph such that(ci ,ai ,bi )≡ (1,0,1)
(mod 2) for 1 ≤ i ≤ r and for d− t ≤ i ≤ d − 1, while b0 ≡ cr+1 ≡ bd−t−1 ≡ 0
(mod 2) and cd ≡ 1 (mod 2). Then(2t + 3) | (r + 1).

Proof: With B= Ad we find Ad−i = qi (A)B for 1 ≤ i ≤ t , andqt+1(A)B=0, where
qi = pi + pi−1 + · · · + p1 + 1 (with notation as in the above lemma). By induction one
sees thatp2t+1(x) = xqt (x)2. Thus,qt+1 | pr+1 implies that(p2t+3, pr+1) has degree at
leastt + 2, so(2t + 3, r + 1) ≥ t + 2, so(2t + 3) | (r + 1). 2

Let 0 be a bipartite distance-regular graph of valency four. Then there are integers
r, s, t such that (ci ,ai ,bi ) = (0,0,4), (1,0,3), (2,0,2), (3,0,1), (4,0,0) for i =0, for
1≤ i ≤ r , for r + 1≤ i ≤ r + s, for r + s+ 1≤ i ≤ r + s+ t , and fori = r + s+ t + 1,
respectively. The diameterd of 0 equalsd = r + s+ t + 1. In this case the divisibility
condition says: ifs>0, then(t + 1) | (r + 1).

After writing the above we discovered that (the caset >1 of) Proposition 3.2 is the
contents of [16]. More generally, Nomura [15] communicates a result which is the case
ε = −1 of the following:

Proposition 3.4 Let 0 be a distance-regular graph such that, for some prime p and
integerε = ±1, we have(ci ,ai ,bi ) ≡ (1,0,−1) (mod p) for 1≤ i ≤ r and (ci ,ai ,bi ) ≡
(ε,0,−ε) (mod p) for m+ 1≤ i ≤ m+ t, while b0 ≡ cr+1 ≡ bm ≡ cm+t+1 ≡ 0 (mod p).
If t > 1, then(t + 1) | (r + 1).
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Proof: Putλ = −1. With B = Am+1 we findε i−1Am+i = (pi /p1) (A)B and(pt+1/p1)

(A)B = 0 so thatpt+1(x) | xpr+1(x), and(t + 1, r + 1) ≥ t . 2

4. The intersection array in casek = 4

Given any distance-regular graph with intersection array{b0,b1, . . . ,bd−1; c1, c2, . . . , cd},
we putk=b0 andai = k − bi − ci as usual. Letecab denote the number of indicesi for
which (ci ,ai ,bi ) = (c,a,b).

Lemma 4.1 Let0 be a distance-regular graph of valency4. Then we have one of three
cases.

(i) 0 is bipartite.
(ii) 0 is a generalized Odd graph(ai = 0 for i < d,ad 6= 0).

(iii) 0 has ai > 0 for some i< d, and e202= 0.

Proof: The Brouwer-Lambeck inequalities state: ifai 6= 0, andi <d, thenbi ≤ai +
ai+1bi /ai , and if i > 1 thenci ≤ ai + ai−1ci /ai (see [8], Proposition 5.5.4). It follows that
if (ci ,ai ,bi ) = (1,1,2), thenai+1 6= 0, and if(ci ,ai ,bi ) = (2,1,1), thenai−1 6= 0. It
follows that ife202> 0, thene211= e112= e121= 0, so thatai = 0 for i < d. 2

Once Case (i) has been handled, Case (ii) is easy: If0 is a generalized Odd graph, then
its bipartite double is distance-regular of diameter 2d+1, an antipodal 2-cover of0, so that
0 can be retrieved from it by folding (see [8], Proposition 4.2.11). We shall find that the
only bipartite graphs of odd diameter that are antipodal 2-covers areK5,5 minus a matching
(v = 10) and the doubled Odd graph(v = 70); folding these we findK5 (v = 5) and
O4 (v = 35).

From now on, we shall assume that we are not in Case (ii). This leaves us with two cases:
the bipartite case, where we putr = e103, s= e202, t = e301, and the case whereai > 0 for
somei < d, where we putr = e103, s1 = e112, s2 = e121, s3 = e211, t = e301.

Lemma 4.2 Let0 be a distance-regular graph of valency4. Then
(i) t ≤ r .

(ii) If t > 0, then ad = 0.
(iii) If s1 > 0, s2 = s3 = 0, then t= 0 and ad 6= 0.

Proof: (i) This follows sincekd is integral. (ii) This follows from [8], Proposition 5.5.7.
(iii) This follows from the Brouwer-Lambeck inequalities. 2

A bound one112 is provided by the following two results.

Proposition 4.3([7]; cf. [8], 5.10.1) Let0 be a distance-regular graph of valency k. If
e1,1,k−2 ≥ 3 then3 |e1,0,k−1, and if moreover e1,0,k−1>0 then e1,1,k−2 ≤ 4.
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Proposition 4.4 [10] Let 0 be a distance-regular graph of valency k>3 with a1 = 0.
Then e1,1,k−2 ≤ 3, and if e1,1,k−2 = 3, then cr+4 > 1, where r= e1,0,k−1.

In our case this means thats1 ≤ 3, and ifs1 = 3, then 3| r thens2 = 0 andcd > 1.

Lemma 4.5 s3 ≤ s1.

Proof: Indeed,kd = 4.3r−t ·2s1−s3/cd. If cd=4, then the conclusion follows by integrality
of kd. Otherwise, the conclusion follows by integrality ofp1

dd = kd pd
1d/k1 = 3r−t ·2s1−s3 ·

(4− cd)/cd. 2

Lemma 4.6 Assume t> 0, so that s2+ s3 > 0.
(i) If s3 > 0, then either t= r or t ≤ (r + s1− s3− 2)/2.

(ii) If s3 = 0, s2 > 0, then either t= r or (s1, s2, s3) = (0,1,0) or t ≤ 1
2r − 1.

Proof: 0 has girth 2r +3, so if t < r , then no path of length at most 2t +4 can be a cir-
cuit. Fix a vertexx, and putD := 0d(x). Let Nl be the number of paths of lengthl from D
to D. If γm is the number of geodesics between two vertices at distancem, then there are
preciselyγm

∑m
i=0 ai paths of lengthm+1 between any two such vertices.

(i) Supposes3 > 0. On the one hand, we findN2t+3 = kd pd
d,2t+3c1 · · · c2t+3 = p2t+3

d,d b0

· · ·b2t+2. On the other hand, we haveN2t+3 = kd ·4 ·3t = kd−1−t = 4 ·3r ·2s1−s3. It
follows that 2t + 3≤ 1+ r + s1− s3.

(ii) Supposes3 = 0,s2 > 0. We haveN2t+3 = 4 ·3t ·2 · kd andN2t+4 = 4 ·3t · (2+bd−t−2

−1) · kd so thatbd−t−2+ 1≥ 2
∑2t+3

i=0 ai , and eithers2 = 1, s2 = 0 or 2t + 3≤ r + 1.
2

For the bipartite case we have two more restrictions:

Lemma 4.7 If s>0, then(t + 1) | (r + 1).

Proof: This is just Proposition 3.2. 2

Proposition 4.8[18] Let0 be a distance-regular graph of valency k and diameter d, and
with intersection array{b0,b1, . . . ,bd−1; c1, c2, . . . , cd}. Let r :=e1,0,k−1. If (cr+1,ar+1,

br+1) = (cr+2,ar+2,br+2) = (2,0, k− 2), then r is even.

Using this saves (more than) half of the work in cases ≥ 2. However, since the total
amount of work in the bipartite case turned out to be rather small anyway, we have not used
this proposition. (But omitting it caused the primep=13 to be used twice.)

A bound ons (in the bipartite case) ors2 (in the non-bipartite case) follows from
Terwilliger’s multiplicity bound, see Section 6 below.
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5. Location of the eigenvalues

We shall need bounds on the eigenvalues of tridiagonal matricesT such asM (with positive
entries on the diagonals above and below the main diagonal). Writeθmin(T), θmax(T) and
θ2(T) for the smallest, the largest, and the second largest eigenvalue ofT .

Perron-Frobenius tells us that ifS is a matrix obtained fromT by decreasing some ele-
ments, keeping the off-diagonal elements nonnegative, thenθmax(S) < θmax(T). Interlacing
tells us that ifS is a principal submatrix ofT , thenθmin(T) ≤ θmin(S) andθ2(S) ≤ θ2(T)
andθmax(S) ≤ θmax(T). But we can be more precise. Ifpn is a series of orthogonal poly-
nomials, then forn > m there is a root ofpn between any two roots ofpm. Since the
characteristic polynomialsui of the upper left-hand cornerTi (of orderi ) of T form a se-
quence of orthogonal polynomials, there is an eigenvalue ofT between any two eigenvalues
of Ti .

The eigenvalues distinct fromk of the tridiagonal matrixM are the eigenvalues of

M ′ =


−c1 b1

c1 k− b1− c2 b2

· · ·
cd−2 k− bd−2− cd−1 bd−1

cd−1 k− bd−1− cd


(cf. [8]).

Lemma 5.1 Let ι = {b0, . . . ,bd−1; c1, . . . , cd} be an intersection array, and put r =
e1,0,k−1 and t= ek−1,0,1, where k= b0. Then the second largest eigenvalueθ2 of the array
will decrease if we decrease r or t or ad (=k− cd).

Proof: By interlacing and Perron-Frobenius. (i) Decreasingr by one means removing the
first row and column ofM ′ and then decreasing the top left corner element. (ii) Decreasing
t by one means removing the last row and column ofM ′ possibly followed by decreasing
the bottom right corner element. (iii)ad only occurs in the diagonal elementad − bd−1 of
M ′. 2

Let us apply these ideas in the case of valency 4.

Lemma 5.2 Let0 be a bipartite distance-regular graph of valency4, and put s= e202.
Thenθ2(0) > 4 cos π

s+1.

Proof: Decrease bothr andt to 0. NowM is twice the tridiagonal matrix of a circuit of
size 2(s+ 1) and has eigenvalues 4 cos2π j

2s+2(0≤ j ≤ 2s+ 1). 2

Similarly, we have for the nonbipartite case:

Lemma 5.3 Let0 be a distance-regular graph of valency4, with s2 := e121 > 1. Then
θ2(0) > 2+ 2 cosπs2

. Moreover, if both s1 > 0 and s3 > 0, thenθ2(0) > 2+ 2 cos π
s2+1.
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Proof: M ′ has a submatrix 2I + A, whereA is the adjacency matrix of a path ofs2 − 1
vertices, and hence has largest eigenvalue 2+ 2 cosπs2

. If both s1 ands3 are nonzero, then
we can pick a submatrix of sizes2+ 1 and find 2I +C′ whereC′ is a matrix that has as its
eigenvalues the different eigenvalues other than 2 of a circuit of size 2(s2+ 1), so that this
submatrix has largest eigenvalue 2+ 2 cos 2π

2(s2+1) . 2

Lemma 5.4 Let0 be a distance-regular graph of valency4,and put r:=e103. If r > 0 then
θ2(0) > 2

√
3 cosπr andθmin(0) < −2

√
3 cos π

r+1. Moreover,each interval(2
√

3 cosπ( j+1)
r ,

2
√

3 cosπ j
r+1) ( j = 1, . . . , r − 1) contains an eigenvalue of0.

Proof: The submatrix ofM ′ formed by rows and columns 1 up tor has eigenvaluesψ j

with 2
√

3 cosπ j
r < ψ j < 2

√
3 cosπ j

r+1 ( j = 1, . . . , r ). 2

Using Sturm sequences, we can show that in the nonbipartite case the smallest eigenvalue
is not too small. (In the bipartite case the smallest eigenvalue equals−k, and only a bound
on the second smallest eigenvalue would be interesting).

Theorem 5.5 Let0 be a distance-regular graph of diameter d> 1, andσ a positive real
number satisfying

(i) σ 2+ a1σ − 1
2k ≥ 0, and

(ii) σ 2+ aiσ − bi−1ci ≥ 0(2≤ i ≤ d − 1), and
(iii) σ 2+ 1

2adσ − 1
2bd−1cd ≥ 0.

Let θ be the smallest eigenvalue of0. Thenθ ≥ −2σ with equality if and only if equality
holds in all inequalities(i), (ii), (iii) .

Proof: The number of eigenvalues larger than or equal toα equals the number of sign
changes in the sequenceui (α) (0≤ i ≤ d+1) (where a sign change is either a zero entry or
a pair of subsequent elements of opposite sign), so we want to show thatui (−2σ) has sign
(−1)i for all i . Theui are given byu0=1,u1= −2σ/k, ci ui−1+(ai +2σ)ui +bi ui+1=0.
Scale theui by puttingqi = b0b1 · · ·bi−1ui /(−σ)i . Thenq0 = 1,q1 = 2 andqi+1 =
(2+ ai

σ
)qi − bi−1ci

σ 2 qi−1. Now the number of eigenvalues smaller than or equal to−2σ equals
the number of sign changes ofqi (0 ≤ i ≤ d + 1). By induction oni we show that
qi+1 ≥ qi ≥ 2 (1≤ i ≤ d−1). For i =1 this follows from (i), and for 2≤ i ≤ d−1 from
(ii). Finally, qd+1 ≥ 0 then follows from (iii). 2

Examples with equality are the flag graphs (of diameterm) of the generalizedm-gons of
order(s, t) = (q,q). (These have intersection array{2q,q, . . . ,q;1, . . . ,1,2}. Forq=1
we find the even polygons. Form=2 these are the lattice graphs((q + 1)× (q + 1) grid
graphs). Examples exist form=3,4,6). All these examples haveσ = 1.

Corollary 5.6 Let 0 be a distance-regular graph of valency4, not bipartite and not a
generalized Odd graph. Then the smallest eigenvalue of0 is larger than−2

√
3.

Proof: This follows directly from the above theorem and Lemma 4.2 (iii). 2
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According to Lemma 5.4, for larger many roots lie close to−2
√

3, so this bound cannot
be improved.

6. Terwilliger’s multiplicity bound

Proposition 6.1(cf. [19]) Let0 be a distance-regular graph of valency k, and T a tree
in 0 such that for all vertices u, v, w ∈ T, if dT (u, v) = dT (u, w) then also d0(u, v) =
d0(u, w). Then the multiplicity f of any eigenvalueθ 6= ±k of0 is at least the number of
leaves in T .

Corollary 6.2 If (c1,a1,b1) = (cr ,ar ,br ) = (1,0,3), then f ≥ 2 ·3r/2. Moreover, if r
is odd, then f ≥ 4 ·3(r−1)/2.

This lower bound on the multiplicity implies that the second largest eigenvalueθ of 0
cannot be too large, otherwise its multiplicityf would be too small.

Let us work out the details for bipartite0 of valency 4. As before, letr = e103, s= e202,
t = e301, so thatd = r + s+ t + 1. Then

v = 1+ 4+ · · · + 4 ·3r−1︸ ︷︷ ︸
r terms

+ 2 ·3r + · · · + 2 ·3r︸ ︷︷ ︸
s terms

+ 4 ·3r−1+ · · · + 4 ·3r−t︸ ︷︷ ︸
t terms

+3r−t

= 1+ 2(3r − 1)+ 2s ·3r + 2 ·3r−t (3t − 1)+ 3r−t ≤ 2(s+ 2)3r − 2

(sincet ≤ r ).
For any eigenvalueθ distinct from±2

√
3, let us computeui =ui (θ). Using u0=1,

u1 = 1
4θ and the three-term recurrence relation, we find

ui = αλi − βµi (for 0≤ i ≤ r + 1)

whereα = ( 1
4θ − µ)/(λ − µ) andβ = ( 1

4θ − λ)/(λ − µ), andλ,µ are the two roots of
3x2 − θx + 1 = 0. Now assume that 2

√
3 < θ < 4. Thenλ andµ are real, and we can

choose them such that1
3 < µ < 1√

3
< λ < 1.

For larger we findur ∼ αλr , and

2 ·3r/2 ≤ f ≤ v

kr u2
r

.
2(s+ 2)3r

4
33rα2λ2r

so that

(λ2
√

3)r .
3(s+ 2)

4α2
≤ 3(r + 2)

4α2

(sinces ≤ r , by Terwilliger, cf. [8], 5.2.5). Consequently, we find a bound onr provided
thatλ2

√
3> 1 (i.e.,λ & 0.76), i.e., provided thatθ > 31/4+ 33/4 (i.e.,θ & 3.6).
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Let us do the precise calculations. Assume thatθ > 31/4+33/4 so thatλ2
√

3> 1. Since
θ < 4 andλ+ µ = 1

3θ andλ− µ =
√

1
9θ

2− 4
3 >

1
3 we find 3λ− µ > 2

3 + 1
3θ >

1
2θ , so

thatα > 3β.
Also,α > 1 sinceλ < 1

4θ (because(λ− 1
4θ)(λ− 1

12θ) = 1
48(θ

2− 16) < 0).
Thus,ur > (( λ

µ
)r − 1

3)µ
r .

Since λ
µ
= λ2

λµ
>
√

3 we find forr ≥ 7 thatur ≥ 0.99λr . Thus, forr ≥ 7, we have

(λ2
√

3)r <
s+ 2

4
3(0.99)2

< 0.77(s+ 2) ≤ 0.77(r + 2).

From Lemma 5.2 we know that ifs is large, thenθ := θ2 is large.
Supposes ≥ 8. Thenθ > 4 cosπ9 > 3.758. Next,λ = (θ +√θ2− 12)/6> 0.869 and

λ2
√

3> 1.3 and(λ2
√

3)8 > 8> 0.77 · 10, a contradiction. Hences ≤ 7.
Supposes= 7. Thenθ > 4 cosπ8 > 3.695 andλ > 0.83 andλ2

√
3> 1.193. Now from

1.193r <0.77(s+ 2) = 6.93 we findr ≤ 10.
Supposes = 6 andr > 0. Then by Lemma 5.1 we haveθ > 3.64 >

√
13. But if

θ ≥ √13 ands ≤ 6, thenλ2
√

3 > 1.02. Now from 1.02r <0.77(s+ 2) ≤ 6.16 we find
r ≤ 91.

Thus we proved:s ≤ 7, and if eithers ≥ 6 or θ ≥ √13, thenr ≤ 91. Moreover, we
have seen already that ifs> 0, then(t + 1) | (r + 1).

A small computer search of the region{(r, s, t) | r ≤ 100, s ≤ 7, t ≤ r and ifs> 0 then
(t + 1) | (r + 1)} (using the test described in Section 2) finds only the known examples.

Thus we may now assume in the bipartite case thatr > 100 ands ≤ 5 andθ <
√

13.
Next, consider the non-bipartite case. As before, letr = e103, s1 = e112, s2 = e121,

s3 = e211, t = e301, so thatd = r + s1+ s2+ s3+ t + 1. Then

v = 1+ 4+ · · · + 4 · 3r−1︸ ︷︷ ︸
r terms

+ 4 · 3r + · · · + 2 · 2s13r︸ ︷︷ ︸
s1 terms

+ 4 · 2s13r + · · · + 4 · 2s13r︸ ︷︷ ︸
s2 terms

+ 4 · 2s1−13r + · · · + 4 · 2s1−s33r︸ ︷︷ ︸
s3 terms

+ 4 · 2s1−s33r−1+ · · · + 4 · 2s1−s33r−t︸ ︷︷ ︸
t terms

+4 · 2s1−s33r−t/cd

= 1+ 2(3r − 1)+ 4 · 3r (2s1 − 1)+ 4 ·2s13r s2+ 4 · 2s1−s33r (2s3 − 1)

+2 · 2s1−s33r−t (3t − 1)+ 4 · 2s1−s33r−t/cd

= 4(s2+ 2)2s13r − 1− 2 · 3r − 2 ·2s1−s33r − (2− 4/cd)2
s1−s33r−t

≤ 4(s2+ 2)2s13r − 1− 2 · 3r .

Thus, we find here fors2 > 0 that

2 · 3r/2 ≤ f ≤ v

kr u2
r

≤ 4(s2+ 2)2s13r

4
33r u2

r
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so that forr ≥ 7 (usingur ≥ 0.9928λr ands1 ≤ 2)

(λ2
√

3)r ≤ 3(s2+ 2)2s1

2(0.9928)2
< 6.09(s2+ 2).

Now we want to bounds2. In the bipartite case we could uses ≤ r . Here we can use
Ivanov’s results (cf. [8], Corollary 5.9.6), and finds2 ≤ r + s1+ 1≤ r + 3.

Supposes2≥13. Then (by Lemma 5.3)θ > 2 + 2 cosπ13 > 3.94. Next,λ = (θ +√
θ2− 12)/6> 0.969 andλ2

√
3> 1.626 and(λ2

√
3)r > 129> 15·6.09, a contradiction.

Hences2 ≤ 12.
Supposes2 ≥ 6. Thenθ > 2+ 2 cosπ6 = 2+√3, andλ > .8534 andλ2

√
3 > 1.261,

so that 1.261r < 85.26, andr < 20.
Supposes2 = 5 or s2 = 4, s1 > 0, s3 > 0. Thenθ > 2+ 2 cosπ5 > 3.61803, and

λ > 0.777, andλ2
√

3> 1.0456, so that 1.0456r <48.72, andr < 88.
If θ ≥ √13> 3.605, thenλ > 0.7675 andλ2

√
3> 1.02, r < 182.

A computer search of the regionr < 200 finds only the known parameter sets. Thus, we
may now assume in the nonbipartite case thatr ≥ 200,s2 ≤ 4, θ <

√
13≈ 3.60555.

A few more cases can be ruled out using Lemma 5.1. Indeed, ifr = 1, t = 0,(s1, s2, s3)=
(2,3,2)we findθ >3.61. Forr =1, t =0, (s1, s2, s3)= (1,4,0)we findθ >3.61. Forr =
t = 0, (s1, s2, s3) = (2,4,0) we findθ > 3.64. Thus,(s1, s2, s3) is not(2,3,2), (1,4,0)
or (2,4,0).

For the middle part(s1, s2, s3) the following 27 possibilities are left:(0, s2,0) (1≤ s2 ≤
4), (1, s2,0), (2, s2,0), (1, s2,1), (2, s2,1) (0≤ s2 ≤ 3), (2, s2,2), (0≤ s2 ≤ 2), (3,0, s3)

(0≤ s3 ≤ 3).
So, what is left now (in both cases) is to find an upper bound onr . To this end, we follow

Bannai and Ito [4]. The idea is to compute the multiplicityfθ of an eigenvalueθ and show
that it is different from the multiplicityfθ ′ of an algebraically conjugate eigenvalueθ ′, thus
deriving a contradiction. We first need some result that shows that conjugatesθ ′ exist that
are sufficiently distinct fromθ .

7. The distribution of conjugates of a totally real algebraic number

Given an eigenvalueθ of 0, we shall want to find a conjugateθ ′ of θ , not very close toθ .
The following theorem shows that not all conjugates can lie in a short interval.

Theorem 7.1[12] Supposeθ is an algebraic integer such that it and all its conjugates
are real and lie in[−2,2]. Thenθ = 2 cos2π j

m for certain integers j and m.

All numbers 2 cos2π j
m with fixed m and (j,m) = 1 are conjugate. It follows that if

θ and all its conjugates lie in(−2,2 cos2π
n ), thenθ = 2 cos2π j

m with 2 < m < n. In
particular, if θ and all its conjugates lie in(−2,2 cos2π

7 ) (where 2 cos2π7 ≈ 1.2469796),
thenθ ∈ {−1,0,1, (−1±√5)/2}.

More generally, Schur [17] (p. 391) shows that, given an integera0 and a real interval
[ p,q] of length less than 4, there are only finitely many polynomialsa0xn + · · · + an with
integral coefficients and real distinct roots, all in [p,q].
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A slightly better interval is provided by the following:

Theorem 7.2 Letα = (−3+
√

7+ 2
√

5)/2 ≈ 0.193527. Letθ be an algebraic integer
such that all of its conjugates are real. If−α < θ < 3+α, thenθ has an algebraic conjugate
θ ′ with θ ′ ≤ −α or θ ′ ≥ 3+ α, unlessθ is one of the numbers0,1,2,3, (3±√5)/2.

Proof: Let p ∈ Z[X] be such that 0< |p(θ)| < 1. Since
∏

p(θ ′) is integral, whereθ ′ runs
over all conjugates ofθ , and is nonzero (sinceθ andθ ′ are roots of the same polynomials in
Z[X]), it has absolute value at least 1, so that for someθ ′ conjugate toθ we have|p(θ ′)| > 1.
Remains to find, given anyβ with 0≤ β < α and−β < θ < 3+β, a polynomialp ∈ Z[X]
that satisfies|p(x)| ≤ 1 for−β ≤ x ≤ 3+ β and 0< |p(θ)| < 1.

Putτ = (1+√5)/2. For any realξ with |ξ | < τ , the sequenceξ (i ) defined byξ (0) = ξ
and ξ (i+1) = (ξ (i ))2 − 1 satisfies|ξ (i )| ≤ 1 for almost alli . Starting with the function
f (X)= X2−3X+1, which satisfies| f (x)| < τ for−α < x < 3+α, we find after finitely
many steps a functiong(X) := f (X)(m) that satisfies|g(x)| ≤ 1 for−β ≤ x ≤ 3+β and
|g(θ)| < 1.

Remains the question whether perhapsg(θ)=0. We havef (1)(X)= X(X − 1)(X − 2)
(X − 3), which vanishes only on integers. Iff (2)(x) = 0, then| f (1)(x)| = 1, and we find
x = (3±√5)/2. If f (3)(x) = 0 but f (1)(x) 6= 0, then f (2)(x) = 1, f (1)(x) = ±√2, but
this only happens forx that have non-real conjugates. 2

For the application to distance-regular graphs, suppose thatθ is an eigenvalue close
to 2
√

3. Thenθ2 is close to 12, and has a conjugate outside [9− α,12+ α]. In other
words,θ has a conjugateθ ′ with |θ ′| < 2.968 or|θ ′| > 3.491. Similarly, if

√
10< θ <

√
13,

then θ2 has a conjugate outside [10− α,13+ α], so there is a conjugateθ ′ of θ with
|θ ′| < 3.132 or |θ ′| > 3.632. In this latter case we need not worry about the possibility
that θ2 = 10+ (3+ √5)/2 in the nonbipartite case, becauseθ would have a conjugate

−
√

10+ (3+√5)/2 and this is smaller than−2
√

3, contradicting Corollary 5.6.

8. Formulas for the multiplicity

Fix an eigenvalueθ of the tridiagonal matrixM . If we define right and left eigenvectorsu
andv> of M by Mu = θu andv>M = θv> andu0 = v0 = 1, thenvi = ki ui andθ has
multiplicity fθ = v/

∑
ki u2

i = v/
∑

ui vi = v/
∑
(v2

i /ki ).
Theui satisfy the recurrence

ci ui−1+ ai ui + bi ui+1 = θui (andu0 = 1,u−1 = 0)

and thevi satisfy the recurrence

bi−1vi−1+ ai vi + ci+1vi+1 = θvi (andv0 = 1, v−1 = 0).
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In order to avoid fractions (and problems with the interpretation ofvd+1), it is useful to
definewi = b0 · · ·bi−1ui = c1 · · · ci vi . Thewi satisfy the recurrence

wi+1 = (θ − ai )wi − bi−1ciwi−1 (andw0 = 1, w−1 = 0).

If we regardθ as a variable, then these recurrences define polynomialsui , vi , wi of degree
i in θ .

Lemma 8.1

l∑
i=0

bi · · ·bl−1ci+1 · · · clwi (X)
2 = w′l+1(X)wl (X)− w′l (X)(wl+1(X).

Proof: Use induction onl . We have to show thatw′l+2(X)wl+1(X)−w′l+1(X)wl+2(X) =
bl cl+1(w

′
l+1(X)wl (X)−w′l (X)wl+1(X))+wl+1(X)2, and this is clear from the recurrence

relation (applied towl+2). 2

Lemma 8.2

fθ = vb0 · · ·bd−1c1 · · · cd

w′d+1(θ)wd(θ)
.

Proof: From the above we findfθ = v/
∑

ki u2
i = vb0 · · ·bd−1c1 · · · cd/(w

′
d+1wd−

w′dwd+1) butwd+1(θ) = 0. 2

Put Fi = c1 · · · ci (v0+ · · · + vi ) =
∑i

j=0 cj+1 · · · ciw j , thenFi satisfies the recurrence

Fi+1 = (θ − k+ bi + ci+1)Fi − bi ci Fi−1 (andF0 = 1, F−1 = 0).

Nowwd+1 = (θ − k)Fd andwd = Fd − cd Fd−1.

Lemma 8.3 If θ 6= k, then

fθ = vb0 · · ·bd−1c1 · · · cd−1

(k− θ)F ′d(θ)Fd−1(θ)
.

Proof: From the above, sinceFd(θ) = 0. 2

The following theorem, due to Bannai and Ito [4], expresses the dependence of the
multiplicity of an eigenvalueθ onr = e1,0,k−1. We see that ifθ stays away from±2

√
k− 1

the multiplicity behaves likeCr−1, while close to±2
√

k− 1 the multiplicity is much
smaller. A bound onr is obtained by showing that there are conjugate eigenvalues, one
close to±2

√
k− 1, the other not.
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Theorem 8.4 Let0 be a distance-regular graph withv vertices, and with valency k, and
let θ be an eigenvalue of0 distinct from±k and from±2

√
k− 1. Put r := e1,0,k−1 and

t := ek−1,0,1. Putδ := 1− ad if t > 0 andδ := 0 if t = 0. If a1 = 0, then the multiplicity
fθ of θ is given by

fθ = 1

2
vk

4(k− 1)− θ2

k2− θ2

1

Mθ

where

Mθ = r + t
λ+ δ
λ+ 1

µ+ δ
µ+ 1

PP̄ − QQ̄

RR̄
+ λ− µ

2

RD̄ − R̄D

RR̄

whereλ,µ are the two roots of X2− θX + k− 1= 0 (so thatλ+µ = θ andλµ = k− 1
and(λ+ 1)(µ+ 1)(λ− µ) 6= 0) and P, P̄, Q, Q̄ are defined by

(
P̄ Q̄

Q P

)
=
(
λ−1 1

µ−1 1

)
Tr+1Tr+2 · · · Td−t

(−µ −λ
1 1

)

where

Ti =
(

0 −bi−1ci−1

1 θ − k+ bi−1+ ci

)

(so that P̄P − QQ̄ = (4(k− 1)− θ2)br+1cr+1 · · ·bd−t−1cd−t−1) and R, R̄ are defined by

R= µ+ δ
λ+ 1

P − λ+ δ
λ+ 1

Qσ t and R̄= λ+ δ
µ+ 1

P̄ − µ+ δ
µ+ 1

Q̄σ−t

with σ = λ/µ, and D, D̄ are defined by

D =
(
µ+ δ
λ+ 1

P

)′
−
(
λ+ δ
λ+ 1

Q

)′
σ t and D̄ =

(
λ+ δ
µ+ 1

P̄

)′
−
(
µ+ δ
µ+ 1

Q̄

)′
σ−t .

Here (· · ·)′ denotes differentiation with respect toθ (so thatλ′ = λ
λ−µ, µ

′ = −µ
λ−µ, σ

′ =
2σ
λ−µ). Note that in caseθ2 < 4(k− 1) the rootsλ,µ are conjugate complex numbers, and
the bars above denote complex conjugation. In general, the bars denote interchange ofλ
andµ. For an eigenvalueθ of 0, we haveR̄σ r+t + R= 0.

Proof: Apply Lemma 8.3 and compute. See [4]. 2

This theorem is essentially the special casea=0 of Theorem 2 of [4]. (We could have
written the general case, but have no need for that here.) But note that Bannai and Ito take
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δ = 1−ad, which is correct only ift > 0 (that is, the second sentence of their proof is false).
The restrictiona1 = 0 (that is,r > 0) is needed because otherwisePP̄−QQ̄ = R= 0 and
the expressions become indefinite.

9. Estimates

Now let us estimatefθ for the case|θ | < 2
√

3. Continue the notation of the foregoing
theorem. Putθ = 2

√
3 cosφ, so thatλ =√3eiφ andµ =√3e−iφ andσ = e2iφ . Put S =

(12− θ2)br+1cr+1 · · ·bd−t−1cd−t−1 so thatPP̄− QQ̄ = S. From|P− Q| ≥ |P| − |Q| we
find

|R| ≥
∣∣∣∣λ+ δλ+ 1

∣∣∣∣ S

|P| + |Q| .

Finally, usingλµ = 3 and(λ+ 1)(µ+ 1) = 4+ θ ,

|λ− µ| · |D| ≤
∣∣∣∣λ+ δλ+ 1

∣∣∣∣ · |λ− µ|(|P′| + |Q′|)+ ∣∣∣∣6+ µ+ δλ4+ θ
∣∣∣∣ |P| + ∣∣∣∣ (δ − 1)λ

4+ θ
∣∣∣∣ |Q|

and

Mθ ≤ r + t
(|P| + |Q|)2

S
+ |λ− µ| |D||R| .

Since|P|2 − |Q|2 = S> 0, we have|Q| < |P|. If t = 0, thenδ = 0 and 2|P|2/S gets
coefficient(|6+ λ| + |λ|)/|3+ λ| ≤ 3+ √3. If t > 0, thenδ = 1 and 2|P|2/S gets
coefficient(6+ θ)/(4+ θ) ≤ 3+√3. So, in both cases we have the estimate

Mθ ≤ r + t
4|P|2

S
+ 2|P|

S
|λ− µ|(|P′| + |Q′|)+ 2(3+√3)|P|2

S
.

For the choices for(s1, s2, s3) listed below, we find forr ≥ 100, using Sturm, that0
has precisely two eigenvalues larger than 2

√
3 namely the valency 4 and an eigenvalueθ

bounded below as listed. Estimating as in Section 6 we find a lower bound onv/ fθ that is
exponential inr :

v

fθ
>

4

3
α2

(
1− β

α

(
µ

λ

)100)2

(3λ2)r := a · cr .

On the other hand, by Theorem 7.2,θ has a conjugateθ1 with |θ1| <
√

10, and the above
estimate yields (usingv/ fθ1 <

3
2 Mθ1 andt ≤ r ) an upper bound onv/ fθ1 that is linear inr .

For sufficiently larger this will yield a contradiction.
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In the table below we list the estimates used to obtain a contradiction (forr ≥ rmin). We
write s := (s1, s2, s3) andκ := λ− µ to save some space.

s θ a · cr |P| |κP′| |κQ′| 3
2 Mθ1 rmin

(0, 4, 0) 3.593 2· 1.7r 320 760 380 308000(r + 5) 100

(2, 3, 1) 3.591 2· 1.7r 2500 8000 4000 2350000(r + 5) 100

(1, 3, 1) 3.548 3· 1.55r 700 2100 860 368000(r + 5) 100

(2, 3, 0) 3.537 4· 1.5r 740 2200 1060 411000(r + 5) 100

(2, 2, 2) 3.502 6· 1.34r 1750 6000 3200 575000(r + 6) 100

(1, 3, 0) 3.484 10· 1.238r 210 560 230 66200(r + 5) 100

(2, 2, 1) 3.4703 29· 1.127r 480 1600 700 86500(r + 5) 110

Thus, assumingr > 110, we ruled out 7 of the 27 possible triples(s1, s2, s3). Left are
the 20 triples 010, 020, 030, 100, 101, 110, 111, 120, 121, 200, 201, 202, 210, 211, 212,
220, 300, 301, 302, 303.

The second largest eigenvalue for an array increases witht , and increases withad. The
above 7 cases had a second largest eigenvalue above 2

√
3 in the worst caset = ad = 0.

(And the same is true for 303, but a contradiction is only obtained for larger .) In a few
other cases we find a sufficiently largeθ2 assuming a lower bound ont . The conclusion is
that eitherr < rmin (and our computer search will handle the case), ort < tmin (and we will
have a sharp bound onMθ later).

s tmin θ a · cr |P| |κP′| |κQ′| 3
2 Mθ1 rmin

(0, 3, 0) 5 3.49 8· 1.27r 64 150 54 12300(r + 5) 100

(3, 0, 3) 2 3.475 17· 1.17r 800 3000 1800 30100(r + 5) 100

(2, 2, 0) 9 3.473 21· 1.154r 150 420 190 16900(r + 5) 105

(1, 2, 1) 18 3.466 86· 1.068r 140 400 150 14800(r + 5) 160

(3, 0, 2) 13 3.466 86· 1.068r 215 750 420 4400(r + 6) 140

(2, 1, 2) 18 3.466 86· 1.068r 350 1200 550 23000(r + 5) 165

If no eigenvalue much larger than 2
√

3 is available, we can use one very close to−2
√

3 and
find a bound on its multiplicity that decreases cubically withr , and again find a contradiction
for larger .

Theorem 9.1 ([2], Proposition 6) If we define Sm by Sm =
∑m

i=0 ki u2
i , and putθ =

2
√

k− 1 cosφ, whereφ is imaginary ifθ > 2
√

k− 1, then Sr is given by

Sr (θ) = 1+ 2r

k
+ (k− 2)2

2k(k− 1)

r

sin2φ
− sin rφ

2k(k− 1) sin3 φ

×((k− 1)2 cos(r + 3)φ − 2(k− 1) cos(r + 1)φ + cos(r − 1)φ).
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In our casek = 4 this means

Sr (θ) = 1+ r

(
1

2
+ 1

6 sin2 φ

)
− sinrφ

24 sin3 φ

× (9 cos(r + 3)φ − 6 cos(r + 1)φ + cos(r − 1)φ).

Now chooseθ to be the smallest eigenvalue of0. We saw earlier that in the nonbipartite
case we have−2

√
3 < θ < −2

√
3 cos π

r+1. Thus,θ = 2
√

3 cosφ with 0 < π − φ < π
r+1.

SinceSr (θ) decreases on the interval 0≤ φ ≤ 2π/r (for any fixedr ≥ 11), and increases
on the intervalπ − 2π/r ≤ φ ≤ π (for any fixedr ≥ 10), we find

v/ fθ > Sr (θ) >
r 3

6π2
.

The eigenvalueθ has a conjugateθ ′ with |θ ′| < 3.132<
√

10 (note that we already know
thatθ ′ <

√
13), and this conjugate is used with the above estimate onMθ ′ in the six cases

listed above (where we already have an upper bound ont).

s |P| |κP′| |κQ′| tmax
3
2 Mθ ′ rmin

(0, 3, 0) 64 150 54 4 3
2(r + 65536) 185

(1, 2, 1) 140 400 150 17 3
2(r + 215600) 270

(2, 1, 2) 331 1200 550 17 3
2(r + 301300) 300

(2, 2, 0) 150 420 190 8 3
2(r + 147000) 240

(3, 0, 2) 215 750 420 12 3
2(r + 52100) 170

(3, 0, 3) 800 3000 1800 1 3
2(r + 140000) 240

In the remaining 14 cases we known (by use of Sturm) that there are no eigenvalues
θ ′ 6= ±4 with |θ ′|>2

√
3, and we have the stronger conclusion thatθ has a conjugateθ ′

with |θ ′| < 2.968.

s |P| |κP′| |κQ′| 7
6 Mθ ′ rmin

(0, 1, 0) 5 8 2 41(r + 3) 100

(0, 2, 0) 12.1 30 10 229(r + 5) 120

(1, 0, 0) 7 10 4 40(r + 4) 100

(1, 0, 1) 8 21 9 27(r + 5) 100

(1, 1, 0) 8 22 6 51(r + 5) 100

(1, 1, 1) 28 80 28 307(r + 5) 140

(1, 2, 0) 39 110 37 1185(r + 5) 270

(2, 0, 0) 12 23 15 58(r + 5) 100

(2, 0, 1) 14 55 22 40(r + 6) 100

(2, 0, 2) 50 185 100 245(r + 6) 125

(2, 1, 0) 28 80 30 307(r + 5) 140

(2, 1, 1) 90 290 120 1577(r + 6) 310

(3, 0, 0) 42 122 74 345(r + 5) 150

(3, 0, 1) 50 185 82 245(r + 6) 125
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Altogether, we used in the nonbipartite caser ≥182 in the Terwilliger bound, andr ≥ 310
here, so checkingr < 310 suffices to settle the nonbipartite case.

In the bipartite case, Lemma 5.4 guarantees the existence of an eigenvalueθ with−2
√

3<
θ < −2

√
3 cos2π

r , and we find

Sr (θ) >
r 3

24π2
.

Here we use the existence of a conjugateθ1 with |θ1| <
√

10 (note that we already know
that|θ ′| < √13 for all eigenvaluesθ ′ 6= ±4), and the same arguments as before settle these
cases.

s |P| |κP′| |κQ′| 3
2 Mθ1 rmin

0 4.6 4 0 43(r + 3) 105

1 7.5 12 6 30(r + 4) 100

2 19 35 22 47(r + 5) 115

3 35 100 65 40(r + 5) 100

4 75 260 170 45(r + 6) 110

5 150 650 450 45(r + 7) 110

We did a computer search up tor = 500 and found only the known arrays (and four others,
as described in Section 2). These computations took about two months on a 275 MHz DEC
Alpha running Linux. (The programs were written before many of the refinements discussed
above had been discovered. Probably one week would suffice now.)

This completes the proof of our main theorem.

Note

1. The second author very recently succeeded in handling the casesk=5,6,7.
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