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Abstract. We show that each distance-regular graph of valency four has known parameters.
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In this note we report on a computer search that proves that each distance-regular graph
of valency four has known parameters. Here we describe first the known examples, next
how putative arrays were disposed of, and finally how the search could be limited to a
manageable number of arrays.

The distance-regular graphs of valency 3 have been determined by Biggs et al. [6].
Bannai and Ito worked on the general project of bounding the diameter of a distance-
regular graph as a function of its valerkcy They succeeded in the bipartite case [3] and in
casek = 4[4]*. This means that finding the feasible arrays for distance-regular graphs of
valency 4 was reduced to a finite amount of work, but the diameter bounds obtained were
not small enough to straightforwardly settle this case. In this note we obtain some additional
conditions, and thus reduce the parameter space to be searched, and describe a way to test
a parameter set using (small) integer arithmetic, thus avoiding accuracy problems.

Our notation for distance-regular graphs is standard (cf. [1, 5, 8]).

1. The known distance-regular graphs of valency four

In the table below, the parameters of the known distance-regular graphs of valency four are
given. (We give an ordinal number, the number of vertiggbe diameted, the intersection
array and the spectrum.)

Descriptions of these graphs 1. Complete grapKs. 2. K32 (octahedron). 3. Complete
bipartite graphK4 4. 4. 3x 3 grid. 5. K55 minus a matching. 6. Nonincidence graph
of PG(2, 2). 7. Line graph of the Petersen graph. 8. 4-cube. 9. Flag grapie, 2).
10. Incidence graph d?G(2, 3). 11. Incidence graph d&G(2, 4) minus a parallel class.
12. Odd graphD,. 13. Flag graph 06Q(2, 2). 14. Doubled Odd graph. 15. Incidence
graph ofGQ(3, 3). 16. Flag graph oGH(2, 2). 17. Incidence graph of @H(3, 3). (Here
PG(2, q) andAG(2, q) denote the projective and affine planes of ordeGQ(q, q) and
GH(q, ) denote a generalized quadrangle or hexagon of ayder

In each of these cases there is a unique graph with these parameters, except possibly in
the last case, since uniquenes&ef(3, 3) (a generalized hexagon of order 3) is not known.
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No. v d Intersection array Spectrum
1. 5 1 4,1 4t (—1?
2. 6 2 4114 4103 (—2)2
3. 8 2 4,3:1.4 +41 08
4. 9 2 4,2,1,3 4114 (—2)%
5. 10 3 431,134 +(4t1%
6. 14 3 (432123 (@420
7. 15 3 (421,114 41 25(—1)4 (—2)°
8. 16 4 {4,32,1;1,2,3 4 +(41 2% 08
9. 21 3 4,2,2,1,1,2 4 (142828
10. 26 3 (433114 +4 /3
11. 32 4 4,3,3,1;1,1,3¢ +(41212) 08
12. 35 3 4,3,3;1,1,2 41214 (114 (—3)8
13. 45 4 4,2,2,2:1,1,1,2 4139110 (—1)9 (216
14. 70 7 (43,3,2,2,1,1;1,1,2,2,3,34  +(4135214114
15. 80 4  (4333:111p (41 /67 0%
16. 189 6 4,2,2,2,2,2;1,1,1,1,132 41 (1 £ V/6)2L (14 +/2)27128 (—2)84
17. 728 6 (433333111114 +(41 3104 /3'%) o182

Each of these graphs is distance-transitive, except for those under 15 and 16—indeed,
GQ(3,3) and GH(2, 2) are not self-dual. (The single known example oGH(3, 3) is
distance-transitive; any further examples will not be.)

Our main theorem is:

Theorem 1.1 Any distance-regular graph of valendyhas one of thel7 intersection
arrays listed abovéand hence is one of tH graphs described aboyer is the point-line
incidence graph a generalized hexagon of org8er

Nomura [14] already found the seven distance-regular graphs with valency four and girth
three.

(The classification is very easy: # = 3 then we are in case 1; & = 2 thenrl is
locally a quadrangle, and hence is the octahedron, case 2; finallysifl, thenr is locally
2K5, and hence the line graph of a cubic graph. But the distance-regular line graphs are
known ([8]; [13], 4.2.16) and we find cases 4 and 7, and the flag graphs of generalized
polygons of order (2, 2), cases 9, 13, 16. In all cases the graph is uniquely determined by
the parameters. For the uniqueness (up to dualit@laef2, 2), see [9].)

Thus, below we need only consider the cage- 0.

2. Atest for feasibility

Let I' be a distance-regular graph withvertices, of diameted, and with inter-section
array{bg, by, ..., bg_1; €1, Cp, ..., Cg}. Thenr is regular of valenck := by, and there are
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ki :== bbby ---bj_1/ciCo- - - ¢ vertices at distancefrom any given vertex. LeM be the
tridiagonal matrix

0 bp
ciC a b
C @ b2

Cda &

and define polynomialg; of degree (0 <i < d) by up(X) = 1 andcu;_1(X) + g u; (X) +
bi Ui 11(X) = XU (X), i.e.,Uj11(X) = ((X — @)U (X) — G Uj_1(X))/bi. (Herecou_1(x) = 0.)
Put f (X) = (X — ag)ug(X) — CqUg_1(X), andF (x) = Zid:o kiui (x)%. Thenf hasd + 1
distinct roots, the eigenvalues ©f, and if f(0) =0, thend is an eigenvalue of" of
multiplicity f, = v/F (). (All this is completely standard—see [1, 5, 8].)

A well-known and very strong criterion for the existence of a distance-regular graph with
given intersection array is the condition that the- 1 multiplicities f; must be integral.
However, actually computing titeandv andv/F () numerically yields practical difficul-
ties: v is very large, possibly of the order ¢ — 1)¢, and one would have to computeo
an extreme precision in order to conclude thé (9) is not integral. Therefore, we chose
a different approach that allowed us to compute with small integers only.

First observe that #f; andé, are algebraically conjugate, thép = f,,, so thatF (61) =
F(62) = ¢, say. Ifm(x) is the irreducible factor of (x) that hasy, as zero, we find that
m(x) | (F(x) — o).

This is a strong existence condition. Indeed, a priori one would expectmodm(x)
to have degree one less than the degrem@©f), while in fact it has degree zero, so the
higher the degree ofi(x), the stronger this condition. In fact, we do not know of examples,
apart from the polygons, whens(x) has degree higher than three. Degree 3 occurs for the
Biggs-Smith graph but for no other known graph of valency more than two.

Thus, if f(X) = ]_[j m; (x) is the factorization ove@ of f into irreducible factors, then
there are rational numbecs such tham; (x) | (F(x) — c;), and hence

f(x)

[ Jacd f 0, Fox) —cp).
1

Unfortunately, we don't know the constamis and they may be quite large. So, letus reduce
mod p. Let p be a prime not dividindpgb; - - - by_1. Then all denominators occurring in the
coefficients ofu; and f andF are nonzero mog, and we can reduce mquto conclude
that

p—1

[Jocd f0). Fox) — 0%  (modp)

c=0

f(x)

for certain exponents;.
It is possible to avoid all fractions, by using = boby ---bj_;u; andg = bg---bg_1 f
andG =bg - - -bg_1¢1---cgF. We find
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Proposition 2.1 LetI be a distance-regular graph of diameter d with intersection array
{bo, b1, ..., bg_1;C1,Co, ..., Cq}. Let @ = 0. Define monic polynomials; (0 <i <d), g
and G bywo(x) = 1, wi11(X) = (X — a)w;i (X) — b_1Gwi_1(x) (0 <i < d), g(x) =
wy+1(X) and G(x) = Zidzo by ---bg_1G11 - - - Cqwi (X)%. Then for each positive integer p
there are constants.esuch that

p-1
900 | [Jocdgr), G(x) — o)  (mod p).

c=0

For p=2 this is useless (the condition reduces to the condition that a polygon exists),
but for p > 3 it produces restrictions.

This is the condition we applied: fgr =5, 7, 11, 13 compute they;, g, G (all mod p),
computep times a gcd and remove all factors found frgnpossibly repeatedly. (If a
nonlinear factor is removed, additional gcds are necessary to see whether part of that factor
can be removed more than once.) If after doing this a quotient of positive degree is left, no
graph with this intersection array exists.

[Usually, takingp=>5 sufficed; in a few cases algp=7, and in very few cases also
p=11 was required. After that only the actual examples and four other arrays, of dia-
meters 46, 6, 6, survived. Indeed, iy completely factors into linear factors, orlifis
bipartite, andg factors completely into factors?> — a and possiblyx, then our condition
will be empty for all p. This happens for three arrays: f@g, 3, 3, 2; 1, 1, 2, #we have
g(x) =x(x? — 5)(x?> — 16), and for both{4, 3, 3, 2, 1, 1; 1, 1, 2, 3, 3,}4and {4, 3,
3,3,1,1; 1, 1, 1, 3, 3, Bwe haveg(x) =x(x? — 3)(x2 — 7)(x*> — 16). However, it
is easy to rule out these arrays—for example, each has nonintegral multiplicities. In the
nonbipartite case there is one additional parametef4e8, 3,1, 1,1; 1, 1, 1, 3, 3,}4or
a nonexistent double cover @f;. Hereg(x) = X(X + (X — 2)(X + ) (X — H(X*> = 7)
and the multiplicities are integral—combinatorial considerations are required to rule out
this case (cf. [8], Proposition 9.1.9).]

Note that we have the Christoffel-Darboux form@ax) = wq(X)g'(X) — wy(X)g(x),
so that we may replad8(x) by wq(x)g'(X) in the above formula. (This will speed up the
computations: the naive way of computiGgtakes orded?® steps, but fowg(x)g'(x) only
orderd? steps are required.)

3. Adivisibility condition

Let I" be a distance-regular graph apda prime, such that; ., is divisible by p, but ¢;
with 1 < i < r is not. Consider the parametess bj, ¢, and the matriceg\ as being
defined over the integers magd Then(l, A, ..., A;) is closed under multiplication, and
A = fj(A) for some polynomialf; of degred (1 <i <r). (If p divides the valenck
of I, then the same holds f@A, ..., A:).) Thus, f(A) = 0 for some polynomialf of
degree + 1, but for no nonzero polynomial of smaller degree.

Now suppose moreover that, = Cnitr1 = 0 (mod p), andcmyi, bmyi # 0 (mod p)
forl <i <t. Then{Ami1, .., Amt) is closed under multiplication by, and if we put
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B ;= Ani1, thenAn,; = g_1(A)B for some polynomiatj _; of degreé —1(1 <i <t).
Thus,g(A)B = 0 for some polynomiaf) of degreet, but for no nonzero polynomial of
smaller degree. It follows thaf| f.

This is a very useful condition. In order to apply it to the bipartite case, we first need a
lemma.

Lemma 3.1 Define polynomials jpover any field F by = 0, p1(X) = X, pi1(X) =
XB (X) — Api—1(X) (i > 1), wherex is a nonzero constant. The&m;, pj) = pg,j) (Where
(—, —) denotes the g.c.j.In particular, p; | p; if and only ifi] j.

Proof: Modulo p; we find thatp; ;x = —Ap;_ for 0 < k <'i (by induction ork). O
Let us give two applications of the above divisibility condition.

Proposition3.2 LetI" be adistance-regular graphsuchthat, &, bj) = (1, 0, 1) (mod 2
forl<i<randford-—t<i<d-1 whilelhy=¢,1=by_t_1=cqy=0(mod 2.
Then(t+1)|(r +1).

Proof: TakeF = F,, A = 1. Withthe notation of the lemmawe have (o¥rA; = p; (A)
forl<i <r,andp;1(A) = 0. Similarly, Aq_i = pi(AB (1 <i <t), whereB = Ay,
and pi;+1(A)B = 0. It follows thatp;,1 | pr+1, and the conclusion follows. O

Proposition 3.3 Let I' be a distance-regular graph such théti, a, b)=(1,0,1)
mod2forl<i <randford—t <i<d-1 whilelbhy=¢,1 =bygt1=0
(mod 2 and g =1 (mod 2) Then(2t +3) | (r + 1).

Proof: With B= Aq we find Aq_j = g (A)Bforl <i <t, andg,1(A)B=0, where

g = pi + pPi-1+ -+ p1+ 1 (with notation as in the above lemma). By induction one
sees thapy1(X) = XG(X)2. Thus,01]| pra1 implies that(pa.s, pry1) has degree at
leastt +2,s0(2t +3,r +1) >t +2,s0(2t +3) | (r + 1). O

Let ' be a bipartite distance-regular graph of valency four. Then there are integers
r,s,t such that¢,a,b) = (0,0,4),(1,0,3),(2,0,2),3,0,1), (4,0,0) fori =0, for
l<i<r,forr+1<i<r+s,forr+s+1<i<r+s+t,andfori =r +s+t-+1,
respectively. The diameterof I' equalsd = r + s+t + 1. In this case the divisibility
condition says: i6> 0, then(t + 1) | (r + 1).

After writing the above we discovered that (the casel of) Proposition 3.2 is the
contents of [16]. More generally, Nomura [15] communicates a result which is the case
€ = —1 of the following:

Proposition 3.4 LetT" be a distance-regular graph such thdbr some prime p and
integere = +£1, we havec, g, b)) = (1,0, —1) (modp)forl <i <rand(g, g, bj) =
(6,0, —¢) (modp) form+1<i <m+t, whileby = ¢ 1 = by = Cnytrr = 0 (Mod p).
Ift > 1, thent+21 | + 1.
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Proof: Puti = —1. With B = Ay we finde' 1Ay = (pi/py) (A)B and(prs1/p1)
(A)B =0 sothatpi11(X) | Xpy1(X), and(t + 1,r +1) > t. O

4. The intersection array in casek =4

Given any distance-regular graph with intersection afbgybs, ..., bg_1; ¢, Co, ..., C4},
we putk=by anda =k — bj — ¢ as usual. Let,, denote the number of indicédor
which (¢, &, b)) = (c, a, b).

Lemma 4.1 LetT be a distance-regular graph of valendy Then we have one of three
cases.
(i) T is bipartite.
(i) T'isageneralized Odd grapta; = 0 fori < d, aq # 0).
(i) T hasa > Oforsomei< d, and &g, = 0.

Proof: The Brouwer-Lambeck inequalities state:ajf # 0, andi <d, thenb; <g +
a.1bi/a, and ifi > 1thenc < & + g _1Ci /g (see [8], Proposition 5.5.4). It follows that
if (¢,a,b) =(1,1,2),theng ;1 # 0, and if(g, a,b) = (2,1, 1), theng_, # 0. It
follows that if &0 > 0, thenes11 = €112 = €121 = 0, so thatg; = 0 fori < d. O

Once Case (i) has been handled, Case (ii) is eady:idfa generalized Odd graph, then
its bipartite double is distance-regular of diamet@r21, an antipodal 2-cover a@f, so that
" can be retrieved from it by folding (see [8], Proposition 4.2.11). We shall find that the
only bipartite graphs of odd diameter that are antipodal 2-coverssgeninus a matching
(v = 10) and the doubled Odd gragh = 70); folding these we findKs (v = 5) and
04 (U = 35)
From now on, we shall assume that we are not in Case (ii). This leaves us with two cases:
the bipartite case, where we put ejo3, S = €02, t = €301, and the case wheeg > 0 for
somei < d, where we put = €03, S| = €112, = €121, 3 = €11, T = E301.

Lemma 4.2 LetI be a distance-regular graph of valendy Then
@ t<r.

(i) Ift >0,theng =0.

(i) Ifsgy>0,5,=5=0,thent=0and g # 0.

Proof: (i) This follows sinceky is integral. (ii) This follows from [8], Proposition 5.5.7.
(iii) This follows from the Brouwer-Lambeck inequalities. O

A bound oney;, is provided by the following two results.

Proposition 4.3([7]; cf. [8], 5.10.1) LetI be a distance-regular graph of valency k. If
€1.1k—2 > 3then3| ey gk-1, and if moreover gox—1 > 0theng 12> < 4.
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Proposition 4.4[10] LetT be a distance-regular graph of valency-k3 with &y = 0.
Theneix2 <3, andife 1k =3, then¢ 4 > 1, wherer= ey gx_1.

In our case this means thgt< 3, and ifs, = 3, then 3r thens, = 0 andcy > 1.
Lemma4.b5 s <s.

Proof: Indeedky = 4.3 '. 257 /¢4. If ¢y = 4, then the conclusion follows by integrality
of kq. Otherwise, the conclusion follows by integrality pf, = kqpdy/k; = 3. 2% .
(4 —cq)/Cy. o

Lemma4.6 Assume t- 0, sothats + s3 > 0.
(i) Ifsg >0, theneithert=rort <(r +s —3—2)/2.
(i) Ifs3=0, s > 0, theneithert=r or (s,%,s3) =(0,1,0) ort < %r -1

Proof: T has girth 2 4+ 3, so ift <r, then no path of length at most 2 4 can be a cir-
cuit. Fix a vertexx, and putD := I'4(x). Let N, be the number of paths of lendtifrom D
to D. If yn, is the number of geodesics between two vertices at distantieen there are
preciselyym > i~ , & paths of lengtm + 1 between any two such vertices.

(i) Supposes; > 0. On the one hand, we fiMNlz45 = kg Pd 5, 5C1 " - Cat+3 = PGg Do
-+ -bot4o. On the other hand, we hawy 3 = kg-4-3' =Kg_1t =4-3 . 2%7% |t
followsthat2 +3<1+4+r +5 — S3.

(i) Supposes; =0,s, > 0. We haveNy, 3 =4-3'-2.-kgandNy 4 =4-3' - (24+by_i_»
—1) - kg sothatog_¢_»+1 > ZZiZt:Jgaai, and eithes;, =1, s, =00or2+3 <r + 1.

O
For the bipartite case we have two more restrictions:
Lemma4.7 Ifs>0,then(t+1)|(r +1).
Proof: This is just Proposition 3.2. O

Proposition 4.8[18] LetI" be a distance-regular graph of valency k and diameteauad
with intersection array{bg, by, ..., bg—1;C1,Co, ..., Cy}. Let ri=ey k1. If (Cr41, & +1,
bri1) = (G2, 42, br12) = (2,0, k — 2), thenr is even.

Using this saves (more than) half of the work in case 2. However, since the total
amount of work in the bipartite case turned out to be rather small anyway, we have not used
this proposition. (But omitting it caused the prirpe= 13 to be used twice.)

A bound ons (in the bipartite case) os, (in the non-bipartite case) follows from
Terwilliger's multiplicity bound, see Section 6 below.
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5. Location of the eigenvalues

We shall need bounds on the eigenvalues of tridiagonal maffisegh asM (with positive
entries on the diagonals above and below the main diagonal). W§HE ), Omax(T) and
0,(T) for the smallest, the largest, and the second largest eigenvalue of

Perron-Frobenius tells us that$fis a matrix obtained fronT by decreasing some ele-
ments, keeping the off-diagonal elements nonnegative Ahg(S) < Omax(T). Interlacing
tells us that ifSis a principal submatrix oT, thenfmin(T) < Omin(S) ands(S) < 62(T)
andfmax(S) < Omax(T). But we can be more precise. if, is a series of orthogonal poly-
nomials, then fon > m there is a root ofp, between any two roots gf,. Since the
characteristic polynomialg; of the upper left-hand cornét (of orderi) of T form a se-
quence of orthogonal polynomials, there is an eigenvallelmdtween any two eigenvalues
of Tj.

The eigenvalues distinct frokof the tridiagonal matriXM are the eigenvalues of

—C1 b]_
C1 k — bl — Cp b2
M =
Cq—2 K—Dbg2—Cyg_1 bg-1
Cd—1 K—Dbg_1 —Cq
(cf. [8]).
Lemma 5.1 Let:t = {bg,...,by_1;Cy1,...,Cq} be an intersection arrayand put r =

€1.0k—1 and t= e_10,1, Where k= by. Then the second largest eigenvatyef the array
will decrease if we decreaser ort o &=k — cy).

Proof: By interlacing and Perron-Frobenius. (i) Decreasily one means removing the
first row and column oM’ and then decreasing the top left corner element. (ii) Decreasing
t by one means removing the last row and columidfpossibly followed by decreasing
the bottom right corner element. (i@ only occurs in the diagonal elemest — by_; of

M. O

Let us apply these ideas in the case of valency 4.

Lemma 5.2 LetI be a bipartite distance-regular graph of valendyand put s= eyp».
Thend(I') > 4 cossi—l.

Proof: Decrease both andt to 0. Now M is twice the tridiagonal matrix of a circuit of
size 2s + 1) and has eigenvalues 4 cﬁ%(o <j<2s+1). O

Similarly, we have for the nonbipartite case:

Lemma 5.3 LetI" be a distance-regular graph of valendywith s, := ;51 > 1. Then
0,(I') > 2+ 2cos§z. Moreover if both g > 0and § > 0O, thend,(I') > 2+ 2 cossﬁ.
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Proof: M’ has a submatrix 2+ A, whereA is the adjacency matrix of a path gf — 1
vertices, and hence has largest eigenvalde2cost. If both s ands; are nonzero, then
we can pick a submatrix of sizg + 1 and find 2 + C’ whereC’ is a matrix that has as its
eigenvalues the different eigenvalues other than 2 of a circuit of §&et21), so that this
submatrix has largest eigenvalug-2 co%. O
Lemma5.4 LetI be adistance-regular graph of valendyand putr:= ejz. Ifr > Othen
02(T") > 2/3 oSt andfmin(I") < —2+/3 cog?;. Moreover each intervat2/3 costtD

23 cosr”le) (j =1,...,r —1) contains an eigenvalue .

Proof: The submatrix oM’ formed by rows and columns 1 up tchas eigenvalueg;
with 2¢/3 cosh < ¥ < 2v/3cos; (j=1.....1). |

Using Sturm sequences, we can show that in the nonbipartite case the smallest eigenvalue
is not too small. (In the bipartite case the smallest eigenvalue egkabnd only a bound
on the second smallest eigenvalue would be interesting).

Theorem 5.5 LetI" be a distance-regular graph of diameterd1, ando a positive real
number satisfying

(i) o2+ a0 — 3k >0, and

(i) o>+ a0 —b_16>02<i<d-1),and
(i) 02+ 3ago — 2by_1cq > 0.
Let6 be the smallest eigenvalue Bf Thend > —2¢ with equality if and only if equality
holds in all inequalitiesi), (ii), (i) .

Proof: The number of eigenvalues larger than or equat quals the number of sign
changesinthe sequengda) (0 <i < d+1) (where a sign change is either a zero entry or
a pair of subsequent elements of opposite sign), so we want to show th&v) has sign
(—1)! foralli. Theu; are given byup =1, u; = —20/K, G Ui _1 + (& + 20)Uj + bjuj 1 =0.
Scale theu; by puttingg, = boby - - - bi_1u; /(—0)'. Thengy = 1,91 = 2 andg,1 =
2+ %)qi - %qi_l. Now the number of eigenvalues smaller than or equal2e equals
the number of sign changes gf (0 < i < d + 1). By induction oni we show that
g.1>0¢ >2@A<i=<d-1). Fori =1thisfollows from (i), and for 2<i < d — 1 from

(ii). Finally, g4+1 > O then follows from (iii). O

Examples with equality are the flag graphs (of diameteof the generalizech-gons of
order(s, t) = (4, q). (These have intersection arri2q, q,...,q;1,...,1,2}. Forg=1
we find the even polygons. Far= 2 these are the lattice graptg + 1) x (q + 1) grid
graphs). Examples exist fon= 3, 4, 6). All these examples have= 1.

Corollary 5.6 LetT be a distance-regular graph of valendy not bipartite and not a
generalized Odd graph. Then the smallest eigenvalugisflarger than—2+/3.

Proof: This follows directly from the above theorem and Lemma 4.2 (iii). O
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According to Lemma 5.4, for largemany roots lie close te-2+/3, so this bound cannot
be improved.

6. Terwilliger's multiplicity bound

Proposition 6.1(cf. [19]) LetI" be a distance-regular graph of valency&nd T a tree
in " such that for all vertices w, w € T, if dt(u, v) = dr(u, w) then also @ (u, v) =
dr(u, w). Then the multiplicity f of any eigenvalde# +k of I is at least the number of
leavesinT.

Corollary 6.2 If (c1, a1, b1) = (¢, &, by) = (1,0, 3), then f> 2-3/2. Moreover if r
is odd then f> 4.30-D/2,

This lower bound on the multiplicity implies that the second largest eigenvabafd"
cannot be too large, otherwise its multiplicifywould be too small.

Let us work out the details for bipartife of valency 4. As before, lat = €103, S = €02,
t =ezo1, Sothatd =r +s+t+ 1. Then

v=1444+ ... +4.3 0.3 L. 423 4.3 .3 L3t
r terms s terms t terms

=1+4+2@3 -1)+25-3 +2.3 '3 -1 +3 ' <25+23 -2

(sincet <r).
For any eigenvalu® distinct from +£2+/3, let us computes; = u; (8). Using up =1,
U = %9 and the three-term recurrence relation, we find

wherea = (;119 — )/ — ) andp = (%0 —A)/(A — ), andx, u are the two roots of
3x2 — Ox + 1 = 0. Now assume that3 < 6 < 4. Thenx andu are real, and we can
choose them such that< u < % <i<1.

For larger we findu, ~ @A", and

T
v 2(s+2)3

2.32%2 < f <
=1 = krur2 ~ %«3ra2A2r
so that
3(s+2 3(r+2

do?2 T 4a?

(sinces < r, by Terwilliger, cf. [8], 5.2.5). Consequently, we find a boundrgorovided
thati?y/3 > 1 (i.e.,A > 0.76), i.e., provided thad > 34 4 3%4 (i.e.,0 > 3.6).
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Let us do the precise calculations. Assume that 37/4 + 3%4 so thatr2+/3 > 1. Since
0 <4andr+p=30andr—p=,/202—%>1wefind3 —p>2+210> 10,50
thata > 38.

Also, o > 1sincer < 70 (becausér — 30)(A — 150) = (02 — 16) < 0).

Thus,u, > ((ﬁ)r — D'

Sincel% = f—; > /3 we find forr > 7 thatu, > 0.99x". Thus, forr > 7, we have

s+2
22V/3) 0.77(s+ 2) < 0.77(r +2).
( )<%(O.99)2< (s+2) < 0.77(r +2)

From Lemma 5.2 we know that &is large, ther® := 6, is large.

Supposes > 8. Thend > 4 cosy > 3.758. NextA = (0 + /62 —12)/6 > 0.869 and
124/3 > 1.3 and(x2v/3)8 > 8 > 0.77- 10, a contradiction. Hence< 7.

Suppose = 7. Thery > 4 cosg > 3.695 andh > 0.83 andi2v/3 > 1.193. Now from
1.193 <0.77(s+ 2) = 6.93 we findr < 10.

Supposes = 6 andr > 0. Then by Lemma 5.1 we have > 3.64 > /13. But if
6 > +/13 ands < 6, theni2y/3 > 1.02. Now from 102 <0.77(s + 2) < 6.16 we find
r <91.

Thus we proveds < 7, and if eithers > 6 or§ > /13, thenr < 91. Moreover, we
have seen already thatsf> 0, then(t + 1) | (r + 1).

A small computer search of the regifm, s,t) |[r <100, s < 7,t <r andifs > 0then
(t+2)|(r + 1)} (using the test described in Section 2) finds only the known examples.

Thus we may now assume in the bipartite caserthatl00 ands < 5 andd < +/13.

Next, consider the non-bipartite case. As before, rlet ejg3, S1 = €112, S, = €121,
S3=6p1,t =€e30,s0thad =r + 5+ + 3+t + 1. Then

v=144+- +4.-31 4 4.3 4. . 42.293 4 4.3 4 ... 4 4.293

r terms s terms S, terms
+4.29713 4 4429793 4 4.8 4. 09783
s3 terms t terms

+4. 29723 g
=142@3 -1 +4-3(22—-1)+4.2%93 5, + 4. 295723 (2% _ 1)
+2.29793 713 - 1) + 4. 29793 gy
=4 +22%3 —1-2.3 —2.2%7%3 _ (2 —4/cq)2% %3
<Ap+2223 -1-2.3.

Thus, we find here fos, > 0 that

v A+ 2)223F

2.3”%2 < f <
- T ku? ~ 23u2
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so that for > 7 (usingu, > 0.9928\" ands; < 2)

2 /my A +22%

Now we want to bound;. In the bipartite case we could use< r. Here we can use
Ivanov's results (cf. [8], Corollary 5.9.6), andfisd<r +s5 +1<r + 3.

Supposes, > 13. Then (by Lemma 5.3) > 2 + 2 cosfz > 3.94. Next,A = (0 +
V602 —12)/6 > 0.969 andi?+/3 > 1.626 and2?v/3)" > 129> 15.6.09, a contradiction.
Hences, < 12.

Supposes; > 6. Theng > 2+ 2 cosg = 2+ /3, and > .8534 and\?/3 > 1.261,
so that 1261 < 85.26, andr < 20.

Supposes; = 50rs; = 4,5 > 0,53 > 0. Thend > 2+ 2 cosg > 3.61803, and
A > 0.777, andh?y/3 > 1.0456, so that D456 < 48.72, andr < 88.

If & > +/13 > 3.605, them. > 0.7675 andh?v/3 > 1.02,r < 182.

A computer search of the region< 200 finds only the known parameter sets. Thus, we
may now assume in the nonbipartite case that200,s, < 4,0 < /13~ 3.60555.

Afewmore cases canberuled outusingLemmab.1. Indeedsifl, t = 0,(s;, S, ) =
(2,3,2)wefindd >3.61. Forr =1,t =0, (51, &, &) = (1, 4, 0) we findd > 3.61. Forr =
t=0,(s,% %) = (24,0 wefindd > 3.64. Thus,(s;, S, ) is not(2, 3, 2), (1, 4, 0)
or(2,4,0).

For the middle parts;, s;, S3) the following 27 possibilities are [ef(0, s,,0) (1 < s, <
4),(1,%,0),(2,%,0,(1,%1),2,% 1) (0=<%<3),2%2,0<%<2,30 )
O=x=<3).

So, what is left now (in both cases) is to find an upper bound dm this end, we follow
Bannai and Ito [4]. The idea is to compute the multiplicftyof an eigenvalué and show
that it is different from the multiplicityf, of an algebraically conjugate eigenvaliethus
deriving a contradiction. We first need some result that shows that conjujabeist that
are sufficiently distinct frons.

7. The distribution of conjugates of a totally real algebraic number

Given an eigenvalue of T", we shall want to find a conjugate of 6, not very close t@.
The following theorem shows that not all conjugates can lie in a short interval.

Theorem 7.1[12] Supposé is an algebraic integer such that it and all its conjugates
are real and lie in[—2, 2]. Thend = 2 co% for certain integers j and m.

All numbers 2 co%r’fTJ with fixed m and (j, m) = 1 are conjugate. It follows that if
0 and all its conjugates lie iG—2, 2 cos??”), theno = 2 cosZ%J with2 < m < n. In
particulat if 6 and all its conjugates lie if—2, 2 cos%”) (where 2cos’;—’ ~ 1.2469796),
thend € {—1,0, 1, (-1 + v/5)/2}.

More generally, Schur [17] (p. 391) shows that, given an integemnd a real interval
[p, q] of length less than 4, there are only finitely many polynomigls’ + - - - + a, with
integral coefficients and real distinct roots, all jpy [].
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A slightly better interval is provided by the following:

Theorem 7.2 Leta = (—3+ /7 + 2/5)/2 ~ 0.193527 Letd be an algebraic integer
suchthatall ofits conjugates arereal. o < 6 < 3+ «, thend has an algebraic conjugate
0’ with®’ < —a or 8’ > 3+ «, unless is one of the numbe® 1, 2, 3, (3+ +/5)/2.

Proof: Letp e Z[X]besuchthatG< |p(®)| < 1. Since[ ] p(®’) isintegral, wher@’ runs
over all conjugates af, and is nonzero (singeandé’ are roots of the same polynomials in
Z[X]), ithas absolute value atleast 1, so that for séf®njugate t® we have p(6’)| > 1.
Remains to find, given anywith0 < 8 < ¢ and—8 < 6 < 3+ 8, apolynomialp € Z[X]
that satisfiesp(x)| < 1 for—8 < x < 3+ g and 0< |p®)| < 1.

Putr = (14 +/5)/2. For any reak with |£| < 7, the sequence®” defined byt © = &
andg(+D) = (£0)2 _ 1 satisfiesc®| < 1 for almost alli. Starting with the function
f (X) = X2 —=3X +1, which satisfie$f (x)| < t for —a < x < 3+«, we find after finitely
many steps a functiog(X) := f(X)™ that satisfiesg(x)| < 1 for —8 < x <3+ g and
19(0)| < 1.

Remains the question whether perhgps) = 0. We havef @ (X) = X(X — 1)(X — 2)
(X — 3), which vanishes only on integers. 12 (x) = 0, then| f ¥ (x)| = 1, and we find
X =3+ +5)/2.1f f®x) =0but fDx) #0,thenf@(x) =1, fV(x) = +v/2, but
this only happens fox that have non-real conjugates. O

For the application to distance-regular graphs, supposestigtan eigenvalue close
to 2¢/3. Then#? is close to 12, and has a conjugate outside-[8, 12 + «]. In other
words,# has a conjugat with |8'| < 2.968 or|¢’| > 3.491. Similarly, ifv/10 < 6 < /13,
then#? has a conjugate outside [10«, 13 + «], so there is a conjugat® of 6 with
|0'] < 3.132 or|0’| > 3.632. In this latter case we need not worry about the possibility
that92 = 10+ (3 + +/5)/2 in the nonbipartite case, becausevould have a conjugate

—/10+ (3+ +/5)/2 and this is smaller thar2./3, contradicting Corollary 5.6.

8. Formulas for the multiplicity

Fix an eigenvalu@ of the tridiagonal matriXM. If we define right and left eigenvectous
andv’ of M by Mu = gu andv™M = 6v" andug = vg = 1, thenvy; = kiu; andé has

multiplicity fy = v/ Y kiu? = v/ Y uivi = v/ Y. (v?/k).
Theu; satisfy the recurrence

GUi—1+ U +biui1=60u (@andug=1,u1=0)
and they; satisfy the recurrence

bi_1vi—1 + & v +G1viyr =60y (@ndvg=1,v_1 = 0).
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In order to avoid fractions (and problems with the interpretatiomgqf), it is useful to
definew; =bg---bj_1u; = ¢ - - Gvj. Thew; satisfy the recurrence

Wit1 = 0@ —a)w —b_1Gwi—1 (@ndwe =1, w_3 =0).

If we regardd as a variable, then these recurrences define polynomials, w; of degree
iineg.
Lemma 8.1

D bibiaCia e Gui(X)? = w] O)wn (X) — wf (X)(wi41.(X).
i=0

Proof. Use induction oth. We have to show tha; , ,(X)w;+1(X) —w]_; (X)wi;2(X) =
B¢ 1w, (X)w (X)) — w (X)wy41(X)) + wy+1(X)?, and this is clear from the recurrence
relation (applied taw; ). O

Lemma 8.2

vbg - --bg_1C1---Cyg
Wy (@) wa(6)

fy =

Proof: From the above we findy = v/ Y ku? = vbg---by_1¢; -+ Cq/(wy, wa —
wywd+1) butwgy1(0) = 0. O

PutFi =cp---G(vo+---+v) = Zij:O Cj+1--- CGwj, thenF; satisfies the recurrence
Fii=0—-k+b+c)F —bcgF_1 (andFy=1,F_; =0).
Now wqy1 = (@ — K)Fg andwg = Fq — cqFg_1.
Lemma 8.3 If 6 #£ K, then

_ vbo . bd—lcl B ]
(k—60)F;(O)Fa-1(0)

fo

Proof: From the above, sincéy(6) = 0. O

The following theorem, due to Bannai and Ito [4], expresses the dependence of the
multiplicity of an eigenvalu® onr = e; gx_1. We see that iff stays away from:-2/k — 1
the multiplicity behaves likeCr~1, while close to+2./k — 1 the multiplicity is much
smaller. A bound om is obtained by showing that there are conjugate eigenvalues, one
close tot2/k — 1, the other not.
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Theorem 8.4 LetI" be a distance-regular graph withvertices and with valency kand
let 6 be an eigenvalue df distinct from+k and from+2k — 1. Putr := e gx_1 and
t:=ec—101- Putd :=1—a4ift > 0ands :=0ift = 0. If ay = O, then the multiplicity
fo of 0 is given by

¢ 1 4(k 1) —
=V 92 Mg
where
A4S SPP—-QQ Ar—uRD—RD
My =r 4t OHT X e

A+1lu+1 RR 2 RR

wherex, u are the two roots of X— 6 X +k—1=0(sothath + p =6 andiu =k -1
and(L +D(u+ 1A —u) #0)and P, P, Q, Q are defined by

(590 hrmo ol )
where
T (0 —bi_1Ci1 )
1 6—Kk+b_1+4+¢
(sothat P — QQ = (4(k — 1) — #%)by 11641+ - - by_t_1C4_t_1) and R R are defined by

8 A+ - A4S 8
Rzi + 2 " Qo' and R:Lp_&

A+1 A+1 nw+1 u+1Q

witho = A/u, and D, D are defined by

B A+6 - A48 2\ s -\
D:(ip) ( + Q> and D:(LP>—<&Q>M.
A+1 nw+1 nw+1

Here (- - -)’ denotes differentiation with respect #o(so that)’ = = ,M = k o ,o' =
f"u) Note that in casé? < 4(k — 1) the rootsi, u are conjugate complex numbeemd
the bars above denote complex conjugation. In genénal bars denote interchange of

andu. For an eigenvalu® of I', we haveRo'*' + R = 0.

Proof: Apply Lemma 8.3 and compute. See [4]. O

This theorem is essentially the special case0 of Theorem 2 of [4]. (We could have
written the general case, but have no need for that here.) But note that Bannai and Ito take
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8 = 1—a4, whichis correctonly if > 0 (thatis, the second sentence of their proof is false).
The restrictiora; = 0 (thatisr > 0) is needed because otherwRe — QQ = R=0and
the expressions become indefinite.

9. Estimates

Now let us estimatef, for the casgd| < 2\/3. Continue the notation of the foregoing
theorem. Pup = 2+/3 cosp, so thatr = /3€¥ andu = +/3e7'? ando = €*¢. PutS =
(12— 60%)br 411G 41 -bgt-1Ca+—1 SO thatPP — QQ = S. From|P — Q| > |P| — |Q| we
find

R > ‘A+8
T A+1 IPI+|Q|

Finally, usingip = 3and(A + 1)(u +1) = 4+96,

A+ 6+ u+ 38
A—ul- Dl < |——| A= P’ ! - ||P
A — -] |—‘/\+1 [A — pl(] |+|Q|)+’ 410 ‘I | 4+9 ‘IQI
and
(1P| +1Q? ID|
Mg <r 4+t—m— + |1 — u|—.
g <T + S + | u||R|

Since|P|? — |Q|?> = S > 0, we havgQ| < |P|. If t = 0, thens = 0 and 2P|?/S gets
coefficient(|6 + A| + |A])/|3+ A| < 3+ +/3. Ift > 0, thens = 1 and 2P|?/S gets
coefficient(6 + 0)/(4 + 0) < 3+ +/3. So, in both cases we have the estimate

4P* 2P| 2(3+ /3)|P|?
S .

My <T +t +—|?» wl(IP+1Q) + S

For the choices fofs;, s, s3) listed below, we find for > 100, using Sturm, thaf
has precisely two eigenvalues larger thafi@namely the valency 4 and an eigenvafue
bounded below as listed. Estimating as in Section 6 we find a lower boungdfgthat is
exponential irr:

v 2 2 251 r
—>=a?(1-5(= 02 =a-c.
) > 30[ < ( ) (319) a-c

On the other hand, by Theorem 7é2has a conjugaté; with 61| < +/10, and the above
estimate yields (using/f,, < %Mgl andt < r) an upper bound on/f, thatis linear irr.
For sufficiently large this will yield a contradiction.
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In the table below we list the estimates used to obtain a contradiction ¢at,,). We
write s:= (s1, S, S3) andx = A — u to save some space.

s 0 a-c IP| [P’ Ik Q| 3 My, I min
(0, 4, 0) 3.593 217 320 760 380 308000 + 5) 100
(2,3,1) 3.501 217 2500 8000 4000 23500G0 + 5) 100
1,3,1) 3.548 3155 700 2100 860 368000 + 5) 100
(2,3,0) 3.537 415 740 2200 1060 411000 + 5) 100
2,2,2) 3.502 6134 1750 6000 3200 575000 + 6) 100
(1,3,0) 3.484 101.238 210 560 230 66200 + 5) 100
(2,2,1) 3.4703 291.127 480 1600 700 86500 + 5) 110

Thus, assuming > 110, we ruled out 7 of the 27 possible triples, s, s3). Left are
the 20 triples 010, 020, 030, 100, 101, 110, 111, 120, 121, 200, 201, 202, 210, 211, 212,
220, 300, 301, 302, 303.
The second largest eigenvalue for an array increases watid increases withy. The
above 7 cases had a second largest eigenvalue ak@®én2the worst caseé = aq = 0.
(And the same is true for 303, but a contradiction is only obtained for lajgén a few
other cases we find a sufficiently lar@eassuming a lower bound dn The conclusion is
that either < rnyi, (and our computer search will handle the case), artmi, (and we will
have a sharp bound dvi, later).

s tmin G a-c P Ik P'| kQ'| 3My, Fmin
0,3,0) 5 3.49 8127 64 150 54 1230Qr +5) 100
3,0,3) 2 3.475 17117 800 3000 1800 30100 + 5) 100
(2,2,0) 9 3.473 211.154 150 420 190 16900 + 5) 105
1,2,1) 18 3.466 861.068 140 400 150 14800 +5) 160
3,0,2) 13 3.466 861.068 215 750 420 4400 + 6) 140
(2,1, 2) 18 3.466 861.068 350 1200 550 23000 + 5) 165

If no eigenvalue much larger than/3 is available, we can use one very close &,/3 and
find a bound on its multiplicity that decreases cubically witand again find a contradiction
for larger.

Theorem 9.1([2], Proposition 6) If we define § by S, = Y " kiu?, and putd =
2k — 1 cosg, whereg is imaginary ifo > 2./k — 1, then $ is given by

_ 2r (k—22 r B sinr¢
SO = Y k=D st kK1) siPe

x((k — 1% cogr + 3)¢ — 2(k — 1) cosr + 1)¢ + cosr — 1)¢).
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In our case&k = 4 this means

. } 1 B sinr ¢
S(Q)_1+r<2+65inz¢) 2457 ¢
x (9cogr + 3)¢p — 6 ¢cogr + 1)¢ + cogr — D)¢p).

Now choosé to be the smallest eigenvalueldf We saw earlier that in the nonbipartite
case we have-2v/3 < § < —2/3cog’y. Thus,0 = 2V/3cosp with 0 < w — ¢ < Z5.
SinceS (0) decreases on the intervakQ¢ < 27 /r (for any fixedr > 11), and increases

on the intervalr — 2 /r < ¢ < n (for any fixedr > 10), we find

r3
v/fg > S(©6) > 602"

The eigenvalu@ has a conjugate’ with |6'| < 3.132 < +/10 (note that we already know
thatd’ < +/13), and this conjugate is used with the above estimat®gnin the six cases
listed above (where we already have an upper bourtg.on

s IP| |« P'| e Q| tmax 3 My Fimin
0,3,0) 64 150 54 4 g(r + 65539 185
1,2,1) 140 400 150 17 %’(r + 215600 270
(2,1, 2) 331 1200 550 17 %’(r + 301300 300
(2,2,0) 150 420 190 8 %(r + 147000 240
3,0,2) 215 750 420 12 3(r +52100 170
3,0,3) 800 3000 1800 1 %’(r + 140000 240

In the remaining 14 cases we known (by use of Sturm) that there are no eigenvalues
0’ + +4 with |¢'| > 2/3, and we have the stronger conclusion thatas a conjugateé’
with |0’ < 2.968.

s P I P’| kQ'| My Tmin
(0,1,0) 5 8 2 4%r +3) 100
(0, 2,0) 12.1 30 10 226 +5) 120
1,0,0) 7 10 4 4Qr +4) 100
(1,0,1) 8 21 9 27 +5) 100
1,1,0) 8 22 6 51r 4+ 5) 100
1,1,1) 28 80 28 30 +5) 140
1,2,0) 39 110 37 1185 +5) 270
(2,0,0) 12 23 15 58 +5) 100
(2,0,1) 14 55 22 40 +6) 100
2,0,2) 50 185 100 246 + 6) 125
2,1,0) 28 80 30 30% +5) 140
2,1,1) 90 290 120 1577 + 6) 310
(3,0,0) 42 122 74 3486 +5) 150
3,0,1) 50 185 82 248 + 6) 125
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Altogether, we used in the nonbipartite case182 in the Terwilliger bound, arrd> 310
here, so checking < 310 suffices to settle the nonbipartite case.

Inthe bipartite case, Lemma 5.4 guarantees the existence of an eigehwétlue-2./3 <
0 < —2/3co<, and we find

3

r

Here we use the existence of a conjugatavith |6;] < +/10 (note that we already know
that|6’| < +/13 for all eigenvalue8’ # +4), and the same arguments as before settle these
cases.

s [P I« P'| Q| 3Mg, I min
0 4.6 4 0 43r + 3) 105
1 7.5 12 6 3ar +4) 100
2 19 35 22 47r +5) 115
3 35 100 65 4Qr +5) 100
4 75 260 170 A% + 6) 110
5 150 650 450 4% +7) 110

We did a computer search uprte= 500 and found only the known arrays (and four others,
as described in Section 2). These computations took about two months on a 275 MHz DEC
Alpharunning Linux. (The programs were written before many of the refinements discussed
above had been discovered. Probably one week would suffice now.)

This completes the proof of our main theorem.

Note

1. The second author very recently succeeded in handling thelcasgss, 7.
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