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Abstract. Let G be a simple graph on d vertices. We define a monomial ideal K in the Stanley-Reisner ring A
of the order complex of the Boolean algebra on d atoms. The monomials in K are in one-to-one correspondence
with the proper colorings of G. In particular, the Hilbert polynomial of K equals the chromatic polynomial of G.

The ideal K is generated by square-free monomials, so A/K is the Stanley-Reisner ring of a simplicial com-
plex C . The h-vector of C is a certain transformation of the tail T (n) = nd − χ(n) of the chromatic polynomial
χ of G. The combinatorial structure of the complex C is described explicitly and it is shown that the Euler
characteristic of Cequals the number of acyclic orientations of G.
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1. Introduction and preliminaries

Let G be a simple graph on d vertices. In this paper we construct a monomial ideal K in the
face ring (Stanley-Reisner ring) A of the order complex of the Boolean algebra on d atoms,
which is isomorphic to a cone over the first barycentric subdivision of a (d − 1)-simplex.
The monomials in K are in one-to-one correspondence with the proper colorings of G. The
quotient of A by K is the face ring of a simplicial complex whose structure can be described
explicitly.

The construction of the ideal K is based on a definition of Chung and Graham [6], whose
purpose was to give a combinatorial interpretation to the coefficients of the chromatic
polynomial χ(n) of G when written in the basis {(n+k

d )}k=0,...,d . It was shown by Chow [5]
that this result can also be derived from a theorem of Stanley’s concerning his chromatic
symmetric function [9]. However, our construction does not seem to be much related to
Stanley’s chromatic symmetric function. In fact, our complexes are isomorphic for the two
non-isomorphic graphs on n ≥ 4 vertices and two edges, whereas Stanley’s functions for
these graphs are not equal. On the other hand, our complex does distinguish the two non-
isomorphic (but chromatically equivalent) graphs on five vertices that Stanley’s function
does not distinguish.

As it happens, invariants related to colorings of a graph G often have connections to the
acyclic orientations of G. In our case, we show that the Euler characteristic of the coloring
complex equals the number of acyclic orientations of G.
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It should also be mentioned that Brenti asked [3] whether there exists, for an arbitrary
graph G, a standard graded algebra whose Hilbert polynomial equals the chromatic
polynomial of G. This was answered in the affirmative by Almkvist [1], but his proof
is non-constructive. The structure of such a graded algebra, however, will not necessar-
ily be closely related to the colorings of G, since its monomials of degree less than the
chromatic number of G cannot correspond to colorings of G.

Throughout this paper, unless otherwise specified, G is a graph on d vertices labeled by
the elements of [d] = {1, 2, . . . , d}, with no loops and no multiple edges. Frequently, but
not always, we suppress G from the notation for simplicity.

A path of length k in G is a sequence v0, v1, v2, . . . , vk of vertices of G such that there
is an edge between vi−1 and vi , for each i ∈ [k].

A stable set in G is a set of vertices with no edge between any pair.
Let V be the set of vertices of G. A coloring of G is a map φ : V −→ N with φ(x) �= φ(y)

if x and y are adjacent in G, that is, if there is an edge between x and y. Thus, we treat the
natural numbers as colors and when referring to the ordering of colors, we mean the usual
ordering on N. (Observe that we omit the word “proper” from the definition of coloring,
since we only consider proper colorings).

A coloring of G with n colors, or n-coloring, is a map φ : V −→ [n] with φ(x) �= φ(y)

if x and y are adjacent. (Observe that φ need not be surjective.)

Definition 1 Let S1, S2, . . . , Sm be an ordered partition of the vertices of G. For v ∈ G
let 
(v) be the length of the longest path vi1 , vi2 , . . . , vi p = v (ending in v) in G such that
vi j ∈ Si j for each j and i1 < i2 < · · · < i p.

If π = a1a2 · · · ad is a permutation in the symmetric groupSd we let π induce the ordered
partition of the vertices in G obtained by letting ai constitute the i-th block (singleton) in the
ordered partition. In accordance with the definition of 
(v) subject to an ordered partition,
we then let 
(k) be the length of the longest path ai1 , ai2 , . . . , ak (ending in ak) in G such
that i1 < i2 < · · · < k.

The following definition is a variation of a definition of Chung and Graham in [6, §5].

Definition 2 The integer k ∈ [0, . . . , d − 1] is a cut in π (with respect to G), if

1. k = 0, or
2. 
(k) < 
(k + 1), or
3. 
(k) = 
(k + 1) and ak < ak+1.

Definition 3 Let π = a1a2 · · · ad be a permutation with cuts i1 = 0, i2, . . . , ik . The
G-sequence of π is the sequence of sets S1, S2, . . . , Sk where Sj = {ai j +1, ai j +2, . . . , ai j+1},
for j < k, and Sk = {aik+1, aik+2, . . . , ad}. The short G-sequence of π is S1, S2, . . . , Sk−1.

As an example, let G be the graph
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and let π be the permutation 5236417. Then the path lengths 
(k) associated to π are given
by

5 2 3 6 4 1 7

0 0 1 0 2 1 1

so π has cuts 0, 2, 4 and 6 and thus G-sequence {2, 5}, {3, 6}, {1, 4}, {7}.

Lemma 4 Let S1, S2, . . . , Sk be the G-sequence of a permutation π . If am, am+1 ∈ Si

then either 
(m) > 
(m + 1) or else 
(m) = 
(m + 1) and am > am+1. Moreover, each Si

is a stable set in G.

Proof: The first part of the lemma follows directly from Definitions 2 and 3. Thus, if am

and ak both belong to Si , with m < k, then 
(m) ≥ 
(k). But if am and ak are adjacent in
G then 
(m) < 
(k), since a path ending in am can always be extended to end in ak . That
is a contradiction, so no two elements in Si are adjacent in G. ✷

The following theorem is stated (in a different, but equivalent, form) in [6], where it
is claimed that it follows from the work of Brenti in [2]. Also, in [4] it is shown that the
theorem follows from certain properties of the chromatic symmetric function of Stanley
[9]. We give a proof that is different from both of these, but which better suits our purposes.
First, a definition.

Definition 5 Let P(n) be a polynomial of degree d. The W-transform of P is the polyno-
mial W defined by

∑
n≥0

P(n)tn = W (t)

(1 − t)d+1
.

That W is a polynomial is easily shown, as is the fact that its degree is at most equal to the
degree of P .

Theorem 6 Let WG(t) be the W -transform of χG , that is,

∑
n≥0

χG(n)tn = WG(t)

(1 − t)d+1
.

Then we have

WG(t) =
∑
π∈Sd

t c(π),

where c(π) is the number of cuts in π . In particular,
∑

π∈Sd
t c(π) is independent of the

labeling of G.
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Proof: Define wi , for 0 ≤ i ≤ d , by setting WG(t) = w0 + w1t + · · · + wd td . Then the
claim is equivalent to saying that

χG(n) =
d∑

k=0

(
n + k

d

)
wd−k,

or, in other words, that there are, for each permutation in Sd with (d − k) cuts, exactly (n+k
d )

ways to color G with n colors. Let π be such a permutation. By the latter part of Lemma 4,
there is an obvious way to associate a permutation π with k cuts to a coloring using k (out
of n available) colors. Namely, color the vertices corresponding to the letters between the
(i − 1)-st and the i-th cut with color number i , and the letters after the last cut with color k.

Since π has (d − k) cuts, there are exactly k places between adjacent letters in π that do
not correspond to cuts. Let us pick, among n colors and k non-cuts, exactly d items, say i
non-cuts and (d − i) colors. Then we have chosen which (d − i) colors to use, and which
i non-cuts to retain. We now introduce extra cuts at the remaining (k − i) non-cuts, which
means we have a total of (d − k) + (k − i) = (d − i) cuts, and thereby (d − i) stable sets,
which get colored by the (d − i) colors chosen, in the order prescribed by π .

Thus, we have associated (n+k
d ) colorings to each permutation π ∈ Sd with (d − k) cuts.

For the converse, we need to show that each coloring of G using some of n available
colors arises from a unique permutation, together with a choice of extra cuts, as described
above. Given such a coloring, partition the vertices of G into blocks, each consisting of all
vertices with like color, and order the blocks increasingly by color. Within each block, order
the vertices so that their corresponding maximal path lengths 
(m) are (weakly) decreasing,
and so that the vertices are decreasing when two vertices have the same maximal path length
associated to them. This can always be done, because the path lengths of two vertices in
the same block depend only on the vertices in preceding blocks. Thus, writing the vertices
in the order described we get a unique permutation π in Sd .

By the construction of π , all of its cuts occur between blocks of the ordered partition P
from which π was constructed. Thus, the coloring from which P was constructed arises
from π together with the extra cuts (separating blocks in P) that are not cuts in π . ✷

2. The coloring ideal

The field k in the following definition can be taken to be the complex numbers. Also, all
rings are taken to be commutative. Recall that the short G-sequence of a permutation π is
the G-sequence of π take away the last set in the sequence.

For undefined terminology and background in what follows, see [10].
Let A = k [xS | S ⊆ [d]], that is, A is the polynomial ring whose indeterminates cor-

respond to all subsets of [d]. Throughout, R will denote the face ring (or Stanley-Reisner
ring) of the order complex of the Boolean algebra on d atoms. This ring is the quotient A/I ,
where I = {xS xT | S �⊆ T and T �⊆ S}. Thus, the monomials of R correspond precisely to
those monomials M = xS1 xS2 · · · xSk ∈ A for which ∅ ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sk ⊆ [d] (for
some (unique) rearrangement of the indices).
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Definition 7 Let M = xS1 xS2 · · · xSk be a monomial in A such that

∅ � S1 � S2 � · · · � Sk � [d],

where � denotes strict inclusion. Then M is a basic coloring monomial for G if there is a
permutation π ∈ Sd with short G-sequence S1, S2\S1, . . . , Sk\Sk−1.

A nonzero monomial M = xS1 xS2 · · · xSk ∈ A is a coloring monomial for G if M is
divisible by a basic coloring monomial for G.

Definition 8 The coloring ideal of G is the ideal KG in R generated by all (equivalently
by the basic) coloring monomials for G.

Note that a coloring monomial may not be divisible by x[d], since no basic coloring
monomial is divisible by x[d], as it is constructed from a short G-sequence. That we choose
to define the coloring ideal in this way is due to a technicality which will be explained in
Remark 15.

We shall now show that the monomials of degree n in KG are in one-to-one correspon-
dence with the colorings of G with n + 1 colors.

It follows from the definitions of R and KG that any monomial M in KG can be written
as

xe1
S1

xe2
S2

· · · xek
Sk

such that S1 � S2 � · · · � Sk ⊆ [d] and such that Si\Si−1 is a stable set in G for each i .
Such a monomial gives rise to a unique coloring of G with n colors where n is the degree
of M . Namely, if S1 = ∅, the colors 1, 2, . . . , e1 are not used. Otherwise, the vertices in S1

get color 1. The vertices in S2\S1 get color e1 + 1 and, in general, the vertices in Si\Si−1

get color e1 + e2 + · · · + ei−1 + 1. The vertices in [d]\Sk get color
∑

i ei + 1. If Sk = [d]
and ek > 0 then the last ek colors are not used (recall that in an n-coloring not all n colors
have to be used).

As an example, suppose

M = x2
∅ · x3

25 · x2
235

is a coloring monomial for G (where we write 25 for the set {2, 5} etc.). In the corresponding
coloring of G with 8 colors, the vertices 2 and 5 get color 3, the vertex 3 gets color 6 and all the
remaining vertices (however many they are) get color 8. Multiplying M by xe

[d] corresponds
to regarding the coloring in question as a coloring with 8 + e colors. Clearly, two different
monomials yield different colorings. If they are identical except for the exponent to x[d]

they correspond to colorings with a different number of colors, although each vertex gets
the same color in each of the two colorings.

Conversely, suppose we have a coloring of G with n colors (of which not all have to be
used). Then each color is associated to a stable set. Order these sets increasingly by color
and let Si be the union of the first i of them. Then we can construct a corresponding coloring
monomial as we now explain by an example. Suppose we have a 9-coloring of G where
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vertices 3 and 6 have color 4, vertex 7 has color 6 and vertices 1, 2, 4 and 5 have color 7.
Then we have the sequence of sets {3, 6}, {3, 6, 7} and {1, 2, 3, 4, 5, 6, 7}. Given the colors
used, and the fact that this is to be a 9-coloring, the corresponding coloring monomial is

x3
∅ · x2

36 · x367 · x2
[7].

We record this in the following theorem.

Theorem 9 There is a one-to-one correspondence between the (n + 1)-colorings of G
and the monomials of degree n in KG. ✷

As an immediate consequence we now get the following.

Corollary 10 Let F(KG, t) be the Hilbert series of KG and let d be the number of vertices
in G. Then

F(KG, t) = 1

t
· WG(t)

(1 − t)d+1
,

Equivalently, H(KG, n) = χG(n + 1), that is, the Hilbert polynomial of KG equals, up to
a shift by one, the chromatic polynomial of G. ✷

3. The coloring complex and its face ring

Clearly, the basic coloring monomials are square-free. Thus, the quotient R/KG is the face
ring of a simplicial complex whose vertex set is a subset of {S | S ⊆ [d]} and whose minimal
non-faces are

{{S1, S2, . . . , Sk} | xS1 xS2 · · · xSk is a basic coloring monomial}.

We call this complex the coloring complex of G and denote it by �G .
One of the fundamental facts in the theory of face rings is that the h-vector of a

d-dimensional complex � is given by the coefficients of the numerator when the Hilbert
series of the face ring S of � is written as a rational function with denominator (1 − t)d+1.
Thus, one customarily writes the Hilbert series F(S, t) of such a ring in the form

F(S, t) = h(S, t)

(1 − t)d+1
= h0 + h1t + · · · + hd+1td+1

(1 − t)d+1
,

where (h0, h1, . . . , hd+1) is the h-vector of �.
The following is easy to prove.

Lemma 11 If M is an ideal in a ring S then F(S/M, t) = F(S, t) − F(M, t). ✷
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It is shown in Theorem 14 that the complex �G , whose face ring is R/KG , has codimen-
sion one as a subcomplex of the order complex of the Boolean algebra on d atoms, whose
face ring is R. Thus, letting S = R and M = KG in Lemma 11, we obtain

h(R/KG, t)

(1 − t)d
= F(R/KG, t) = F(R, t) − F(KG, t). (1)

Also, the ring R is the face ring of a cone over the first barycentric subdivision of a
(d − 1)-simplex and it is well-known that its Hilbert series is given by

F(R, t) = 1

t
· Ad(t)

(1 − t)d+1
,

where Ad(t) is the d-th Eulerian polynomial, which satisfies

∑
n≥0

ndtn = Ad(t)

(1 − t)d+1
.

Using this, together with identity (1) and Corollary 10, allows us to relate the Hilbert series
of R/KG to the tail of the chromatic polynomial of G, which we now define.

Definition 12 The tail of the chromatic polynomial χG of G is TG(n) = nd − χG(n).

Theorem 13 We have

1

t

∑
n≥0

TG(n)tn = h(R/KG, t)

(1 − t)d
.

Thus, up to a shift by one, the W -transform of the tail TG of χG equals the polynomial whose
coefficients are the coordinates of the h-vector of the coloring complex of G.

Proof: We have

1

t

∑
n≥0

TG(n)tn =
∑
n≥0

(n + 1)d tn − 1

t

∑
n≥0

χG(n)tn

= 1

t
· Ad(t)

(1 − t)d+1
− 1

t
· WG(t)

(1 − t)d+1

= F(R, t) − F(KG, t) = F(R/KG, t) = h(R/K , t)

(1 − t)d
.

✷

We shall now describe the structure of the complex �G .
First, however, to facilitate the following discussion we will let the ring R be the face ring

of the order complex of the truncated Boolean algebra B̃d on d atoms, where B̃d is Bd with ∅
and [d] removed. This is a harmless modification with respect to our previous results (except
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in the rather trivial cases when G has fewer than three vertices) because the indeterminates
x[d] and x∅ divide none of the basic coloring monomials. Thus, the Hilbert series of R/KG

is changed only in that the denominator is divided by (1 − t)2. The order complex of B̃d is
isomorphic to the first barycentric subdivision of the boundary of a (d − 1)-simplex, which
has dimension d − 2.

This, of course, amounts to a redefinition of the coloring complex, but even here the
modification is trivial. Namely, in the complex �G , ∅ and [d] are both cone points that is,
they belong to every facet of �G . It is easy to show that removing a cone point (and all faces
containing it) from a complex changes the h-vector only by removing its last coordinate,
which is necessarily 0. Thus, the h-vector of �G remains essentially the same after removing
∅ and [d].

To each edge e = ij of G, with i < j , we associate the (d−1)! permutations of the letters in
Se = [d]\{i, j} ∪ {e}. We call the permutations of Se e-permutations and we shall show that
the facets of �G correspond precisely to the edge permutations for G. It is important to note
that, since we have removed the cone point [d] from our complex, the facet corresponding to
an edge permutation does not contain the vertex [d]. As an example, the facet corresponding
to the 25-permutation 3 − 25 − 1 − 4 has vertices {3}, {2, 3, 5} and {1, 2, 3, 5}.

Theorem 14 Let G be a graph with d ≥ 3 vertices.

1. To each edge of G there correspond exactly (d − 1)! facets of �G and these are all the
facets of �G. The sets of such facets for two distinct edges of G are disjoint. The facets
thus corresponding to an edge form a (d − 3)-sphere, which we call an edge-sphere and
which is isomorphic to the order complex of a truncated Boolean algebra on (d − 1)

elements. That is, an edge-sphere is isomorphic to the first barycentric subdivision of
the boundary of a (d − 3)-simplex. In particular, �G has dimension d − 3, unless G is
the graph with no edges, in which case �G is the empty complex.

2. Any two edge-spheres intersect in a (d − 4)-sphere which is isomorphic to the order
complex of a truncated Boolean algebra on (d − 2) elements. Moreover, if e and f = ij
are two edges, then the intersection of their two spheres separates the e-sphere into two
halves, where one contains all vertices of �G that contain i and not j , whereas the other
half contains those vertices that contain j and not i .

Proof:

1. If G has no edges, then the permutation π = d (d − 1) . . . 2 1 has no cuts except 0, since

(i) = 0 for all i . Thus, π corresponds to the empty monomial, or 1, and therefore the
ideal KG is the entire ring R, so �G is the empty complex.

Suppose then that e = ij is an edge in G. Let π = a1a2 · · · ad where, for some k, we
have ak = i and ak+1 = j . Let S0 = ∅ and let F = {S1, S2, . . . , Sd−2}, where

Sm =




Sm−1 ∪ {am}, if m < k,

Sm−1 ∪ {i, j}, if m = k,

Sm−1 ∪ {am+1}, if m > k.
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Clearly, F is a facet, since it has d − 2 vertices and thus has maximal dimension. We
claim that �G contains F . If �G doesn’t contain F then the ideal KG must contain a
monomial dividing xS1 · xS2 . . . . . xSd−2 and thus there must be a permutation with a short
G-sequence of which S1, S2\S1, . . . , Sd−2\Sd−3 is a refinement. But such a sequence
must contain a set containing both i and j , which is a contradiction since ij is an edge in
G (see Lemma 4). We have thus exhibited (d − 1)! facets F associated to the edge ij. It
is easy to see that two facets thus corresponding to different edges are different. Namely,
each vertex in such a facet is a set of vertices from G that either contains both or neither
of a unique pair of vertices in G, and this pair of vertices constitutes the edge associated
to the facet.

Conversely, we need to show that any face of �G belongs to a facet associated to some
edge of G as described above. Let F = {S1 ⊆ S2 ⊆ · · · ⊆ Sk} be a face of �G .

We first show that some of the difference sets Di = Si\Si−1 must contain the vertices
of an edge in G. If that is not the case then all the Di are stable sets in G. Construct a
permutation π in Sd by first writing all the elements of D1 in decreasing order, then those
of D2 in order of decreasing path lengths (w.r.t. to the vertices in D1) and in decreasing
order when two vertices have the same path length associated to them (see the proof of
Theorem 6). Continue this way with all the Di ’s. Then D1, D2, . . . , Dk is a refinement
of the short G-sequence of π , so the coloring ideal of G contains a monomial dividing
xS1 xS2 · · · xSk . This implies that F is a non-face of �G , a contradiction, so some of the
Di ’s must contain an edge e of G.

This means that we can refine the chain of vertices of F down to singletons except
for having one of the sets in the refinement consist of the two vertices of e. We have
shown above that this refinement is a facet of �G , and it is easy to see that it contains
the face F .

2. If the edges e = ij and f = km are disjoint, then the intersection of the e-sphere and the
f -sphere consists of the subcomplex of �G whose vertices contain either both or neither
of the vertices of the edge e and, independently, either both or neither of the vertices of the
edge f . This subcomplex contains all faces of �G corresponding to permutations of [d]
where i and j are adjacent and in increasing order and where the same is true of m and k.

If e = ij and f = kj are distinct edges then the intersection of the e-sphere and the
f -sphere consists of the subcomplex of �G whose vertices contain either all of i, j, k or
none of them. This subcomplex contains all faces of �G corresponding to permutations
of [d] where i , j and k are three successive letters and in increasing order.

In either case it is easy to see that the subcomplex of the intersection has dimen-
sion d − 4 and that it separates the e-sphere as claimed. Namely, there is a path along
edges of �G , not crossing the subcomplex, between any pair of vertices that belong to
the same one of the halves described, but no such path between vertices in different
halves. ✷

Remark 15 It is possible to consider the complex obtained in the same way as the coloring
complex except that we don’t remove the cone point [d] from �G . This corresponds to
associating the basic coloring monomials to the G-sequences of the permutations in Sd

rather than their short G-sequences (and not stripping the face ring of the indeterminate x[d]).
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Figure 1. Two non-isomorphic graphs (trees) with the same chromatic polynomial but non-isomorphic coloring
complexes.

The h-vector of this complex is the d-th Eulerian vector (coefficients of the d-th Eulerian
polynomial) plus the h-vector of the coloring complex shifted one step right. Thus, knowing
the h-vector of this complex is equivalent to knowing the h-vector of �G . As an example,
for the graphs in figure 1 we get h-vector

(1, 11, 11, 1) + (0, 1, 10, 7) = (1, 12, 21, 8),

since the fourth Eulerian polynomial is A4(t) = t + 11t2 + 11t3 + t4.

Clearly, if the coloring complexes of two graphs are isomorphic, then the graphs must be
chromatically equivalent, that is, they must have the same chromatic polynomial. However, it
is possible for two non-isomorphic graphs to have isomorphic coloring complexes. Namely,
there are two non-isomorphic graphs on n ≥ 4 vertices and two edges. It follows from
Theorem 14 that the coloring complexes of these graphs must be isomorphic, because each
consists of two edge-spheres that intersect in a way independent of whether the edges in
question are disjoint. Although these are the only examples we know of non-isomorphic
graphs with isomorphic coloring complexes we do not know what the situation is in general.
In figure 1 we give the coloring complexes of the two non-isomorphic—but chromatically
equivalent—graphs on three edges and four vertices. As can be seen, these complexes are
not isomorphic (one has a “triangle” and the other one doesn’t).

Perhaps more interesting is that the coloring complex distinguishes the two graphs given
in Stanley’s paper [9, figure 1], which his chromatic symmetric function does not distinguish
(see figure 2). This can be seen as follows: A complex on a given vertex set is determined by
(in fact equivalent to) its set of minimal non-faces, which in turn is equivalent to the (unique)
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Figure 2. Another two non-isomorphic graphs with the same chromatic polynomial and same symmetric
chromatic function but non-isomorphic coloring complexes. (see [9, figure 1].)

minimal set of generators of the ideal defining its face ring. Suppose the graphs G and H
in figure 2 have isomorphic coloring complexes. Then there is a bijection φ between their
vertex sets so that A is a minimal non-face of �G if and only if φ(A) is a minimal non-face
of �H . Thus, the minimal sets of generators for the coloring ideals of G and H must have
the same number of monomials of each degree. Also, the multiplicities of corresponding
indeterminates in the sets of monomials constituting the respective minimal generating sets
for each coloring ideal must be the same. This is not the case for the coloring ideals of G and
H , which we have verified with the aid of the computer algebra program MACAULAY 2 [7].

The next corollary follows from part 1 of Theorem 14. It can also be proved directly from
the well-known fact that the coefficient to −nd−1 in χG , which is the leading coefficient
of TG , equals the number of edges in G.

Corollary 16 The number of facets of �G , and thus the sum of the coefficients of the
h-vector of �G , is E · (d − 1)!, where E is the number of edges in G.

Theorem 17 The Euler characteristic of �G equals the number of acyclic orientations
of G.

Proof: Up to a sign, the reduced Euler characteristic of a (d − 1)-dimensional complex
� is equal to the d-th coordinate hd(�) of the h-vector of � and thus the reduced Euler
characteristic of �G equals the leading coefficient of the W -transform of the tail TG(n) of
the chromatic polynomial. It is well known (and easy to prove) that the leading coefficient
of the W -transform of a polynomial P(x) = a0 + a1x +· · ·+ ad xd equals, up to a sign, the
alternating sum of the coefficients of P . More precisely, it equals (−1)d P(−1), where d is
the degree of P . Clearly, (−1)d−1T (−1) = (−1)dχG(−1)−1. But, by a theorem of Stanley
[8, Corollary 1.3], (−1)dχG(−1) equals the number of acyclic orientations of G. Since the
reduced Euler characteristic is one less than the Euler characteristic, this establishes the
claim. ✷

Open problems

An obvious question is whether �G is shellable. A consequence of shellability would be that
�G (equivalently R) is Cohen-Macaulay In that case the h-vector of the coloring complex
must be an M-vector (see [10]), which would put certain restrictions on the values of the
tail TG and thereby on the values of the chromatic polynomial.
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For i = 1, . . . , d , let θi = ∑
|S|=i xS . Then it can be shown that θ = θ1, θ2, . . . , θd is

a homogeneous (linear) system of parameters for R. Is R a free k[θ ]-module? That is
equivalent to R being Cohen-Macaulay. However, a proof of this would likely be equivalent
to finding a shelling of �G , and shellability of �G would imply that �G (equivalently R)
is Cohen-Macaulay.

It might be interesting to know what the minimal set of generators is for the coloring ideal
of a graph G and in particular what the size of this set is. Perhaps it is more interesting to
determine this for the ideal K ∪ I , where K is the coloring ideal of G and I is the ideal used
in defining the ring R, since the face ring of the coloring complex C is given by A/(K ∪ I ).
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