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Abstract. Generalized table algebras were introduced in Arad, Fisman and Muzychuk (Israel J. Math. 114
(1999), 29–60) as an axiomatic closure of some algebraic properties of the Bose-Mesner algebras of association
schemes. In this note we show that if all non-trivial degrees of a generalized integral table algebra are even, then
the number of real basic elements of the algebra is bounded from below (Theorem 2.2). As a consequence we
obtain some interesting facts about association schemes the non-trivial valencies of which are even. For example,
we proved that if all non-identical relations of an association scheme have the same valency which is even, then
the scheme is symmetric.
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1. Introduction

Let R be an integral domain. An R-algebra A with a distinguished basis B is called a
generalized table algebra (briefly, GT-algebra) with a distinguished basis B if it satisfies
the following axioms [2]:

GT0. A is a free left R-module with a basis B.
GT1. A is an R-algebra with unit 1, and 1 ∈ B.
GT2. There exists an antiautomorphism a → ā, a ∈ A, such that (ā) = a holds for all

a ∈ A and B̄ = B.
Let λabc ∈ R be the structure constants of A in the basis B, i.e.,

ab =
∑
c∈B

λabcc, a, b ∈ B

GT3. For each a, b ∈ B λab1 = λba1, and λab1 = 0 if a �= b̄.

†The contribution of this author to this paper is a part of his Ph.D. thesis at Bar-Ilan University.
∗This author was partially supported by the Israeli Ministry of Absorption.
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In what follows the notation (A, B) will mean a GT-algebra A with the distinguished
basis B. We also set B# := B\{1}.

A GT-algebra will be called real if R ⊆ R, λaā1 > 0 and λabc ≥ 0 for each triple
a, b, c ∈ B. A real commutative GT-algebra is called a table algebra. In what follows we
shall consider only real GT-algebras.

Let t : A → R be the linear function defined by t(
∑

b∈B xbb) = x1. As a direct conse-
quence of GT3, we obtain that t(xy) = t(yx), x, y ∈ A.

We define a bilinear form 〈,〉 on A by setting

〈x, y〉 = t(x ȳ).

According to GT3, 〈,〉 is a symmetric bilinear form values of which may be computed by
the following formula:〈 ∑

b∈B

xbb,
∑
b∈B

ybb

〉
=

∑
b∈B

xb ybλbb̄1. (1)

A subset D ⊂ B is said to be closed subset if the R-submodule 〈c〉c∈D is a GT-algebra
with distinguished basis D.

An element b ∈ B is called real (or symmetric), if b̄ = b [1].
If (A; B) is a real GT-algebra, then, by Theorem 3.14 [2] there exists a unique algebra

homomorphism || ||: A → R such that ||b|| = ||b̄|| > 0 for each b ∈ B. We call it the degree
homomorphism. The positive real numbers {||b||}b∈B are called the degrees of (A, B).

A real GT-algebra such that all its structure constants λabc and all the degrees ||b|| are
rational integers [4] is called an integral GT-algebra (briefly, IGTA). A commutative integral
GT-algebra is exactly integral table algebra (ITA) as defined in [4].

A GT-algebra is called homogeneous of degree λ if all its non-trivial degrees are equal to
λ. A GT-algebra is called standard if ||b|| = λbb̄1 for each b ∈ B. We say that a GT-algebra
(A, B′) is a rescaling of (A, B) if there exist non-zero scalars rb ∈ R, b ∈ B such that
B′ = {rbb | b ∈ B}.

Any real GT-algebra may be rescaled to one which is homogeneous and any IGTA can be
rescaled to a homogeneous IGTA ([5], Theorem 1). Any real GT-algebra may be rescaled
to a standard one by setting b′ := ||b||

λbb̄1
b. The number

o(B) :=
∑
b∈B

||b||2
λbb̄1

does not depend on a rescaling of the table algebra (A; B) [5]. It is called the order of (A;
B). If (A; B) is standard, then o(B) = ∑

b∈B ||b|| = ||B||. We need the following

Proposition 1.1 ([2]) Let (A, B) be a real standard GT-algebra. Then for all a, b, c ∈ B
the following conditions hold:

(i) ∑
t∈B

λabtλtcd =
∑
t∈B

λatdλbct ;
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(ii) ||1|| = 1 and ||b|| = ||b̄||;
(iii) λabc = λb̄āc̄;
(iv) λabc||c|| = λc̄ab̄||b|| = λcb̄a||a||, and λbb̄c = λbb̄c̄;
(v) 〈ab, ab〉 = 〈āa, bb̄〉 and∑

c∈B

λ2
abc||c|| =

∑
c∈B

λāacλbb̄c||c||;

(vi) λaba = λab̄a = λbāā = λb̄āā ;
(vii) ∀a,b∈B

∑
x∈B λaxb = ∑

x∈B λxab = ||a||.
(viii) ∀a,b∈B

∑
x∈B λabx ||x || = ||a||||b||.

2. Even GT-algebras

Till the end of the paper we consider GT-algebras such that their structure constants and
degrees belong to the ring S := Z[O−1] ⊆ Q, where O := Z\2Z. It is easy to see that S is
a local ring with a unique maximal ideal 2S. The elements of 2S (S\2S) will be called even
(resp. odd) elements of the ring S.

We write that x ≡ y(mod 2) if x − y ∈ 2S. A direct check shows that S/(2S) ∼= Z2.
Therefore

r2 ≡ r (mod 2) and

r ≡ 1(mod 2) ⇔ r ∈ S\(2S).
(2)

We write r̂ for the image of r ∈ S in S/(2S). Each non-zero element r ∈ S has a unique
presentation as the product r = 2αs with α ≥ 0 and s ∈ S\2S. We set ν2(r ) := α and
ν2(0) := ∞.

A GT-algebra is called even (odd) if all its degrees are even (resp. odd) elements of S.
In what follows we use the following notation

ν2(b) := ν2(||b||);
α0 := min{ν2(b) | b ∈ B#};
Ba := {b ∈ B | b̄ �= b};
Bs := {b ∈ B | b̄ = b};
Bα := {b ∈ B | ν2(b) = α};
B≥α := {b ∈ B | ν2(b) ≥ α};
B>α := {b ∈ B | ν2(b) > α};
Xa := X ∩ Ba, Xs := X ∩ Bs if X ⊆ B.

Since A is a free S-module with basis B, (SB)/(2SB) ∼= S/(2S) ⊗S B. In what follows we
shall write Z2B for S/(2S)⊗S B. We also write b for 1⊗b unless it leads to a contradiction.
If X ⊆ B, then Z2X denotes Z2-vector subspace of Z2B spanned by the elements x ∈ X. If
B is standard, then the Z2-linear subspace Z2B>α spanned by B>α is an ideal of the algebra
Z2B.
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The following result was proved in [7] for association schemes, but its proof works also
for GT-algebras over S. We give here the proof in order to make the text self-contained.

Proposition 2.1 Let (A, B) be a standard GT-algebra defined over a ring R ⊆ S. If all
elements of B# are non-real, then
(i) o(B) is odd;

(ii) ||b|| is odd for each b ∈ B.

Proof: Part (i) is a direct consequence of ||b|| = ||b̄||, b ∈ B.
(ii) Pick an arbitrary a ∈ B and denote by A the set of all b ∈ B which appear in the

product aā with non-zero coefficient. Since λaāb = λaāb̄, A = {a1, . . . , ak, ā1, . . . , āk}. It
follows from Proposition 1.1, part (viii) that

||a|| − 1 =
k∑

i=1

2
λaāai ||ai ||

||a|| . (3)

By Proposition 1.1, part (iv)
λaāai ||ai ||

||a|| = λai aa ∈ R. Therefore the right-hand side of (3) is
even which implies that ||a|| is odd.

The above Proposition implies that if o(B) is even, then B contains a non-identical real
element. If o(B) is odd, then we cannot say something definite about the number of real
elements in general. Nevertheless, there exists one case when the number of real elements
may be bounded from below.

Theorem 2.2 Let (A, B) be a standard GT-algebra the structure constants of which belong
to S. If α0 > 0, then

(i) each element of Bα0 is real;
(ii) the elements b2, b ∈ Bα0 are linearly independent. In particular, the elements b2, b ∈

Bα0 are pairwise distinct;
(iii) the factor-algebra Z2B/Z2B>α0 is commutative and semisimple.

Proof: (i) For each b ∈ Bα0 we define the vector eb the coordinates of which are labelled
by the elements of Bα0 and defined as follows: ebx := λbb̄x , x ∈ Bα0 . Consider a Z2-vector
space V spanned by the vectors êb, êbx := λ̂bb̄x . Since λbb̄x = λbb̄x̄ and Bα0 = Bα0 , dim(V )
is at most |Bs

α0
| + |Ba

α0
|/2. Denote (x, y) := ∑

b∈Bα0
xb yb. Then

(êa, êb) =
∑

x∈Bα0

λ̂aāx λ̂bb̄x .

Since ||x ||
2α0 ∈ S for each x ∈ B# and ||x ||

2α0 is odd if and only if x ∈ Bα0 ,

(êa, êb) ≡
∑
x∈B#

λaāxλbb̄x
||x ||
2α0

(mod 2).
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Since (A, B) is standard, ν2(λaā1λbb̄1/2α0 ) = ν2(||a||||b||/2α0 ) = α0 > 0 for each a, b ∈ Bα0 .
Therefore

(êa, êb) ≡
∑
x∈B

λaāxλbb̄x
||x ||
2α0

≡ 1

2α0
〈aā, bb̄〉(mod 2).

By Proposition 1.1, part (v)

1

2α0
〈aā, bb̄〉 = 1

2α0
〈b̄a, b̄a〉 =

∑
x∈B

λ2
b̄ax

||x ||
2α0

.

If a �= b, then∑
x∈B

λ2
b̄ax

||x ||
2α0

=
∑
x∈B#

λ2
b̄ax

||x ||
2α0

≡
∑
x∈B#

λb̄ax
||x ||
2α0

≡ ||a||||b||
2α0

≡ 0(mod 2)

Thus we obtain that (êa, êb) = 0 if a �= b.
If a = b, then

(êa, êa) ≡
∑

x∈Bα0

λ2
aāx ≡

∑
x∈Bα0

λaāx ≡
∑
x∈B#

λaāx
||x ||
2α0

= ||a||2
2α0

− ||a||
2α0

≡ 1(mod 2)

Therefore (êa, êb) = δab for a, b ∈ Bα0 . This implies that the vectors êa, a ∈ Bα0 are linearly
independent. Hence dim(V ) = |Bα0 |. On the other hand, dim(V ) ≤ |Bs

α0
| + |Ba

α0
|/2. Hence

|Ba
α0

| = 0.
(ii) Since all elements from Bα0 are real, λaāx = λaax and a2 = ∑

b∈B λaābb. It follows
from part (i) that the vectors ea = (λaāb)b∈Bα0

are linearly independent modulo 2S. There-
fore, the vectors ea are linearly independent over S. Hence the elements a2 are linearly
independent.

(iii) Denote I := Z2B>α0 just for a convenience. Since Z2B>α0 is −-invariant, the mapping
x �→ x̄, x ∈ Z2B/I is well-defined. Since Z2B = Z2B≤α0 ⊕ I and − acts on Z2B≤α0

identically (see part (i)), − acts identically on the factor-algebra Z2B/I . On the other hand,
− is an antiautomorphism. Hence Z2B/I is commutative and − is identical on Z2B/I .

A commutative algebra is semisimple if and only if it does not contain nilpotent el-
ements. According to part (i) the vectors êb, b ∈ Bα0 are linearly independent. Since
b2 ≡ ∑

c∈Bα0
êbcc(mod I ), the elements 1 + I, b2 + I, b ∈ Bα0 form a Z2-basis of Z2B/I .

Hence (Z2B/I )2 = Z2B/I and the statement follows.

We have two immediate corollaries.

Corollary 2.3 Let (A, B) be a standard GT-algebra the structure constants of which
belong to S. If ν2(b) = α > 0 for each b ∈ B#, then

(i) A is commutative and real;
(ii) The elements b2, b ∈ B are linearly independent;

(iii) (S/(2S)) ⊗S A is semisimple.
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Remark 2.4 If α = 0 it might happen that there are symmetric and non-symmetric
relations. For example, the S-ring over the group Z4 × Z4 induced by a fixed-point-free
automorphism of order 3 contains one symmetric and four non-symmetric basic elements.

Corollary 2.5 Let (A, B) be a homogeneous GT-algebra of degree k ∈ S, ν2(k) > 0 such
that its structure constants belong to S. If ν2(λbb̄1) = β for each b ∈ B# and β ≤ ν2(k),
then
(i) A is commutative and real;

(ii) The elements b2, b ∈ B are linearly independent.

Proof: Consider the algebra A with a rescaled basis 1′ := 1, b′ := k
λbb̄1

b, b ∈ B#. It is
well-known that (A, B′) is a standard GT-algebra.

We have that

ν2(b′) = ν2

(
k2

λbb̄1

)
= 2ν2(k) − β > 0

and

λa′b′c′ = k

λaā1

k

λbb̄1

λcc̄1

k
λabc = kλcc̄1

λaā1λbb̄1
λabc.

Since ν2( kλcc̄1
λaā1λbb̄1

) = ν2(k) − β ≥ 0, kλcc̄1
λaā1λbb̄1

∈ S, and, consequently, λa′b′c′ ∈ S. Now
Corollary 2.3 yields the claim.

3. Some applications

Let (X, F) be a finite association scheme in a sense of [8]. The Bose-Mesner algebra A of
F is a standard integral table algebra the table basis of which is formed by the adjacency
matrices A( f ), f ∈ F . The degree of A( f ) concides with a valency of the relation f and
will be denoted by n f . We say that a scheme F is even if all its valencies are even. As before
we set

ν2( f ) := ν2(n f );

α0 := min{ν2( f ) | f ∈ F#};
Fα := { f ∈ F | ν2( f ) = α};
F≥α := { f ∈ F | ν2( f ) ≥ α};
F>α := { f ∈ F | ν2( f ) > α};

As a direct consequence of Theorem 2.2 we obtain the following

Proposition 3.1 Let (X, F) be an even association scheme. Denote I := 〈A( f ) | f ∈
F>α0〉. Then

(i) each f ∈ Fα0 is symmetric;
(ii) the elements A( f )2, f ∈ Fα0 are linearly independent;

(iii) the factor-algebra (Z2 ⊗Z A)/(Z2 ⊗Z I ) is symmetric, commutative and semisimple.
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Theorem 3.2 Let (X, F) be an even association scheme such that ν2( f ) = α > 0 for
each f ∈ F#. Then

(i) (X, F) is symmetric and commutative;
(ii) the elements A( f )2, f ∈ F form a basis of A;

(iii) the algebra (Z2 ⊗Z A) is semisimple;
(iv) ν2(m) = α for each non-principal multiplicity m of F ;
(v) if f = 2α for each f ∈ F#, then each nontrivial multiplicity of F is equal to 2α .

Proof: The parts (i)–(iii) are direct consequences of the previous statement. Let n0 =
1, n1, . . . , nr and m0 = 1, m1, . . . , mr be the valencies and the multiplicities of F .

(iv) Since (Z2 ⊗Z A) is semisimple, the Frame number |X |r+1
∏r

i=0 ni∏r
i=0 mi

is odd (Theorem 1.1
[2]). Therefore

r∑
i=1

ν2(mi ) =
r∑

i=1

ν2(ni ) = rα

By Theorem 4.2, part (iii) [3] ν2(mi ) ≤ α. Hence ν2(mi ) = α, as desired.
(v) We have that mi ≥ 2α for i > 0, since mi is divisible by 2α . Now the equality

r∑
i=1

mi = |X | − 1 = r2α

implies the claim.

Remark 3.3 If νp( f ), f ∈ F# is constant for some odd prime p, then the algebra Zp ⊗Z A
may not be semisimple. The Johnson scheme [3] with two classes on 7 points is such an
example with p = 5.

Let G be a finite group, then each subgroup H ≤ G gives rise to an association scheme
(G/H, G//H ) where G/H and G//H are the sets of right and double H -cosets respectively:
two points Hg1, Hg2 are related via HgH if Hg1g−1

2 H = HgH. Following [8] we denote
this scheme as (G/H, G//H ). The valency of the relation corresponding to the double coset
HgH is equal to [H : H ∩ H g]. The GT-algebra corresponding to the association scheme
(G/H, G//H ) is exactly isomorphic to the Hecke algebra of double cosets of the subgroup
H .

If H ≤ G is such that ν2([H : H ∩ H g]) = α > 0 holds1 for each g ∈ G\H , then the
association scheme (G/H, G//H ) satisfies the conditions of Proposition 3.2 which implies
the following

Corollary 3.4 Let H ≤ G be finite groups such that ν2([H : H ∩ H g]) = α > 0 for each
g ∈ G\H. Then
(i) HgH = Hg−1 H for each g ∈ G;

(ii) the character 1G
H is multiplicity-free and ν2(χ (1)) = 2α for each non-trivial χ ∈ lrr(G)

which appears in 1G
H .
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Note

1. Such a situation happens, for example, if H is a strongly embedded subgroup of G.
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