
J Algebr Comb (2008) 28: 235–260
DOI 10.1007/s10801-007-0100-5

A noncommutative symmetric system over
the Grossman-Larson Hopf algebra of labeled
rooted trees

Wenhua Zhao

Received: 23 April 2007 / Accepted: 30 August 2007 / Published online: 25 September 2007
© Springer Science+Business Media, LLC 2007

Abstract In this paper, we construct explicitly a noncommutative symmetric (NCS)
system over the Grossman-Larson Hopf algebra of labeled rooted trees. By the
universal property of the NCS system formed by the generating functions of cer-
tain noncommutative symmetric functions, we obtain a specialization of noncom-
mutative symmetric functions by labeled rooted trees. Taking the graded duals, we
also get a graded Hopf algebra homomorphism from the Connes-Kreimer Hopf
algebra of labeled rooted forests to the Hopf algebra of quasi-symmetric func-
tions. A connection of the coefficients of the third generating function of the con-
structed NCS system with the order polynomials of rooted trees is also given and
proved.

Keywords Noncommutative symmetric functions · Grossman-Larson Hopf
algebra · Connes-Kreimer Hopf algebras · Labeled rooted trees

1 Introduction

Let K be any unital commutative Q-algebra and A a unital associative but not neces-
sarily commutative K-algebra. Let t be a formal central parameter, i.e. it commutes
with all elements of A, and A[[t]] the K-algebra of formal power series in t with
coefficients in A. A NCS (noncommutative symmetric) system over A (see Defini-
tion 2.1) by definition is a 5-tuple � ∈ A[[t]]×5 which satisfies the defining equations
(see Eqs. (2.1)–(2.5)) of the NCSFs (noncommutative symmetric functions) first in-
troduced and studied in the seminal paper [10]. When the base algebra K is clear
in the context, the ordered pair (A,�) is also called a NCS system. In some sense,
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a NCS system over an associative K-algebra can be viewed as a system of analogs
in A of the NCSFs defined by Eqs. (2.1)–(2.5). For some general discussions on the
NCS systems, see [28]. For a family of NCS systems over differential operator al-
gebras and their applications to the inversion problem, see [29] and [30]. For more
studies on NCSFs, see [6, 16–18, 25] and [5].

One immediate but probably the most important example of the NCS systems
is (NSym,�) formed by the generating functions of the NCSFs defined in [10] by
Eqs. (2.1)–(2.5) over the free K-algebra NSym of NCSFs (see Sect. 2). It serves as
the universal NCS system over all associative K-algebra (see Theorem 2.6). More
precisely, for any NCS system (A,�), there exists a unique K-algebra homomor-
phism S : NSym → A such that S×5(�) = � (here we have extended the homo-
morphism S to S :NSym[[t]] → A[[t]] by the base extension).

The universal property of the NCS system (NSym,�) can be applied as follows
when a NCS system (A,�) is given. Note that, as an important topic in the symmet-
ric function theory, the relations or polynomial identities among various NCSFs have
been worked out explicitly (see [10]). When we apply the K-algebra homomorphism
S : NSym → A guaranteed by the universal property of the system (NSym,�) to
these identities, they are transformed into identities among the corresponding ele-
ments of A in the system �. This will be a very effective way to obtain identities
for certain elements of A if we can show they are involved in a NCS system over
A. On the other hand, if a NCS system (A,�) has already been well-understood,
the K-algebra homomorphism S : NSym → A in return provides a specialization
or realization [10, 24] of NCSFs, which may provide some new understandings on
NCSFs. For more studies on the specializations of NCSFs, see the references quoted
above for NCSFs.

In this paper, we apply the gadget above to the Grossman-Larson Hopf algebra
of labeled rooted trees. To be more precise, for any non-empty W ⊆ N+,1 let HW

GL

be the Grossman-Larson Hopf algebra HW
GL [4, 8, 9, 12] of rooted trees labeled by

positive integers of W . We first introduce five generating functions (see Eqs. (4.1)–
(4.4) and Eq. (4.15)) of certain elements of HW

GL and show that they form a NCS
system �W

T
over HW

GL (see Theorem 4.5). Then, by the universal property of the NCS
system (NSym,�) from NCSFs, we obtain a graded Hopf algebra homomorphism
TW : NSym → HW

GL, which gives a specialization of NCSFs by W -labeled rooted
trees (see Theorem 4.6). By taking the graded duals, we get a graded Hopf algebra
homomorphism T ∗

W : HW
CK → QSym from the Connes-Kreimer Hopf algebra HW

CK

[4, 8, 9, 15] to the Hopf algebra QSym of quasi-symmetric functions [11, 20, 24].
Later in [31], it will be shown that, when W = N+, the specialization TW above
is actually an embedding and hence the Hopf algebra homomorphism T ∗

W is onto.
Finally, we give a combinatorial interpretation of the constants θT (see Definition
4.2) of rooted trees T that appeared in the third component d̃(t) (see Eq. (4.15)) of
the NCS system �W

T
above. We show that, for each rooted tree T , the constant θT

1All constructions and results of this paper work equally well for any non-empty weighted set W , i.e. any

non-empty set W with a fixed weight function wt : W → N+ such that, for any k ∈ N+, wt−1(k) is a
finite subset of W . But, for simplicity and convenience, we will always assume that W is a non-empty
subset of N+ .
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coincides with the coefficient of s in the order polynomial �(B−(T ), s) (see [24]),
where B−(T ) is the rooted forest obtained by cutting off the root of T .

The arrangement of the paper is as follows. In Sect. 2, we first recall the definition
of the NCS systems [28] � over the K-algebras A and a result (see Proposition 2.2)
on the NCS systems when A is further a bialgebra or Hopf algebra. We then recall
the universal NCS system (NSym,�) formed by generating functions of certain
NCSFs in [10]. The Hopf algebra structure of NSym and the universal property of
the NCS system (NSym,�) (see Theorem 2.6) will also be reviewed.

In Sect. 3, we first fix certain notation on rooted trees and recall the Connes-
Kreimer Hopf algebra HW

CK and the Grossman-Larson Hopf algebra HW
GL of W -

labeled rooted forests and rooted trees, respectively. Then, by using the duality be-
tween the Grossman-Larson Hopf algebra and the Connes-Kreimer Hopf algebra (see
Theorem 3.2), we prove a technic lemma, Lemma 3.4, that will be crucial for our later
arguments.

In Sect. 4, we introduce five generating functions of W -labeled rooted trees and
show in Theorem 4.5 that they form a NCS system �W

T
over the Grossman-Larson

Hopf algebra HW
GL. By the universal property of the system (NSym,�), we get a

graded K-Hopf algebra homomorphism TW : NSym →HW
GL (see Theorem 4.6). By

taking the graded duals, we get a graded Hopf algebra homomorphism T ∗
W :HW

CK →
QSym from the Connes-Kreimer Hopf algebra HW

CK to the Hopf algebra QSym of
quasi-symmetric functions (see Corollary 4.7).

In Sect. 5, we first recall the strict order polynomials and the order polynomials of
finite posets (partially ordered sets). Then, by applying some of results proved in [26]
for the strict order polynomials of rooted forests and the well-known Reciprocity
Relation (see Proposition 5.1) between the strict order polynomials and the order
polynomials of finite posets, we show in Proposition 5.8 that, for any T ∈ T̄, the
constant θT involved in the third component of the NCS system �W

T
is same as the

coefficient of s of the order polynomial �(B−(T ), s) of the rooted forest B−(T ).
Finally, two remarks are as follows. First, as we pointed out early, by applying

the specialization TW :NSym → HW
GL, we will get a host of identities for the rooted

trees involved in the NCS system �W
T

from the identities of the NCSFs in �. We
believe some of these identities are interesting, at least from a combinatorial point
view. But, to keep this paper in a certain size, we have to ask the reader who is
interested to do the translations via the Hopf algebra homomorphism TW :NSym →
HW

GL. Secondly, some relations between the NCS system (HW
GL,�W

T
) constructed

in this paper and the NCS systems constructed in [29] over differential operator
algebras will be further studied in the followed paper [31]. Some consequences of
those relations to the inversion problem ([3] and [7]) and specializations of NCSFs
will also be derived there. In particular, it will be shown that, with the label set W =
N+, the K-Hopf algebra homomorphism TW : NSym → HW

GL in Theorem 4.6 is
actually an embedding.

2 The universal N CS system from noncommutative symmetric functions

In this section, we first recall the definition of the NCS systems [28] over associative
algebras and some of the NCSFs (noncommutative symmetric functions) first intro-
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duced and studied in the seminal paper [10]. We then discuss the universal property
of the NCS system formed by the generating functions of these NCSFs. The main
result that we will need later is Theorem 2.6 which was proved in [28]. For some
general discussions on the NCS systems, see [28]. For more studies on NCSFs, see
[6, 16–18, 25] and [5].

Let K be any unital commutative Q-algebra2 and A any unital associative but
not necessarily commutative K-algebra. Let t be a formal central parameter, i.e. it
commutes with all elements of A, and A[[t]] the K-algebra of formal power series in
t with coefficients in A. First let us recall the following main notion of this paper.

Definition 2.1 ([28]) For any unital associative K-algebra A, a 5-tuple � = (f (t),
g(t), d(t), h(t), m(t)) ∈ A[[t]]×5 is said to be a NCS (noncommutative symmetric)
system over A if the following equations are satisfied.

f (0) = 1, (2.1)

f (−t)g(t) = g(t)f (−t) = 1, (2.2)

ed(t) = g(t), (2.3)

dg(t)

dt
= g(t)h(t), (2.4)

dg(t)

dt
= m(t)g(t). (2.5)

When the base algebra K is clear in the context, we also call the ordered pair
(A,�) a NCS system. Since NCS systems often come from generating functions of
certain elements of A that are under the consideration, the components of � will also
be refereed as the generating functions of their coefficients.

All K-algebras A that we are going to work on in this paper are K-Hopf algebras.
We will freely use some standard notions and results from the theory of bialgebras
and Hopf algebras, which can be found in the standard text books [1, 14] and [21].
For example, by a sequence of divided powers of a bialgebra or Hopf algebra A we
mean a sequence {cn | n ≥ 0} of elements of A such that, for any n ≥ 0, we have

�cn =
∑

k≥0

ck ⊗ cn−k.

The following result proved in [28] later will be useful to us.

Proposition 2.2 Let (A,�) be a NCS system as above. Suppose A is further a
K-bialgebra. Then the following statements are equivalent.

(a) The coefficients of f (t) form a sequence of divided powers of A.
(b) The coefficients of g(t) form a sequence of divided powers of A.

2For the reader who is mainly interested in the combinatorial aspects of the main results of this paper, the
base field K throughout this paper can be safely chosen to be the field Q of rational numbers.
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(c) One (hence also all) of d(t), h(t) and m(t) has all its coefficients primitive in A.

In the following remark, we would like to point out a connection of the notion
of NCS systems with the notion of combinatorial Hopf algebras, which was first
introduced by M. Aguiar, N. Bergeron and F. Sottile in [2].

Remark 2.3 First, as pointed out in Remark 2.17 in [28], when A is a graded and con-
nected Hopf algebra, and one of the statements of Proposition 2.2 holds, say statement
(b). Furthermore assume in this case that the coefficients of tm (m ≥ 0) of g(t) are
homogeneous with grading m. Then the data (A,g(t)) is equivalent to a combinator-
ial Hopf algebra structure on the graded dual Hopf algebra A∗ of A. For more details
of the equivalence above, see Remark 2.17 in [28].

Since all other components of � are completely determined by g(t) (see
Lemma 2.5 of [28] or Theorem 2.6 below), the notion of NCS systems under the
conditions above is also equivalent to the notion of combinatorial Hopf algebras.
Therefore, from this point of view, the notion of NCS systems generalizes the notion
of combinatorial Hopf algebras to associative K-algebras A, since, for NCS sys-
tems over A, A does not have to be a bialgebra nor Hopf algebra and the equivalent
conditions in Proposition 2.2 do not have to hold either.

On the other hand, we would also like to point out that the notion of NCS empha-
sizes the whole package of five generating functions of elements of A instead of just
one. In other words, it emphasizes solutions of the system of equations Eq. (2.1)–
(2.5). Even though, once one of the components of �, say g(t) again, is fixed, the
other four will be given by the corresponding universal polynomials of NCSFs in
coefficients of g(t) (see Theorem 2.6 below), it is very often not trivial at all what
values of these universal polynomials are, or in other words, it is still far away from
clear how to write down directly and explicitly the other four components of �.

The main aim of this paper is to construct explicitly a NCS system �W
T

over the
Grossman-Larson Hopf algebra HW

GL of W -labeled trees without using any universal
polynomials of NCSFs. Once we get the NCS system �W

T
explicitly, then, by The-

orem 2.6, these universal polynomials of NCSFs will be transformed into identities
of coefficients of the corresponding components of �W

T
(see Remark 4.8). Another

immediate consequence is that we also get a very “visualizable representation”, or
more formally, a specialization of NCSFs by W -labeled rooted trees, which in return
could be useful for studying and understanding certain properties of NCSFs.

Next, let us recall some of the NCSFs first introduced and studied in [10].
Let � = {�m | m ≥ 1} be a sequence of noncommutative free variables and

NSym or K〈�〉 the free associative algebra generated by � over K . For conve-
nience, we also set �0 = 1. We denote by λ(t) the generating function of �m (m ≥ 0),
i.e. we set

λ(t) :=
∑

m≥0

tm�m = 1 +
∑

k≥1

tm�m. (2.6)

In the theory of NCSFs [10], �m (m ≥ 0) is the noncommutative analog of the
mth classical (commutative) elementary symmetric function and is called the mth

(noncommutative) elementary symmetric function.
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To define some other NCSFs, we consider Eqs. (2.2)–(2.5) over the free K-algebra
NSym with f (t) = λ(t). The solutions for g(t), d(t), h(t), m(t) exist and are unique,
whose coefficients will be the NCSFs that we are going to define. Following the
notation in [10] and [28], we denote the resulted 5-tuple by

� := (λ(t), σ (t),	(t),ψ(t), ξ(t)) (2.7)

and write the last four generating functions of � explicitly as follows.

σ(t) =
∑

m≥0

tmSm, (2.8)

	(t) =
∑

m≥1

tm
	m

m
, (2.9)

ψ(t) =
∑

m≥1

tm−1�m, (2.10)

ξ(t) =
∑

m≥1

tm−1
m. (2.11)

Now, for any m ≥ 1, we define Sm to be the mth (noncommutative) complete
homogeneous symmetric function and 	m (resp. �m) the mth power sum symmetric
function of the second (resp. first) kind. Note that, 
m (m ≥ 1) were denoted by
�∗

m in [10]. Due to Proposition 2.5 below, the NCSFs 
m (m ≥ 1) do not play an
important role in the NCSF theory (see the comments in page 234 in [10]). But, in
the context of some other problems, relations of 
m’s with other NCSFs, especially,
with �m’s, are also important (see [30], for example). So here, following [28], we
call 
m ∈ NSym (m ≥ 1) the mth (noncommutative) power sum symmetric function
of the third kind.

The following two propositions proved in [10] and [16] will be very useful for our
later arguments.

Proposition 2.4 For any unital commutative Q-algebra K , the free algebra NSym

is freely generated by any one of the families of the NCSFs defined above.

Proposition 2.5 Let ω� be the anti-involution of NSym which fixes �m (m ≥ 1).
Then, for any m ≥ 1, we have

ω�(Sm) = Sm, (2.12)

ω�(	m) = 	m, (2.13)

ω�(�m) = 
m. (2.14)

Next, let us recall the following graded K-Hopf algebra structure of NSym. It has
been shown in [10] that NSym is the universal enveloping algebra of the free Lie
algebra generated by �m (m ≥ 1). Hence, it has a K-Hopf algebra structure as all
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other universal enveloping algebras of Lie algebras do. Its co-unit ε : NSym → K ,
co-product � and antipode S are uniquely determined by

ε(�m) = 0, (2.15)

�(�m) = 1 ⊗ �m + �m ⊗ 1, (2.16)

S(�m) = −�m, (2.17)

for any m ≥ 1.
Next, we introduce the weight of NCSFs by setting the weight of any monomial

�
i1
m1�

i2
m2 · · ·�ik

mk
to be

∑k
j=1 ijmj . For any m ≥ 0, we denote by NSym[m] the vector

subspace of NSym spanned by the monomials of � of weight m. Then it is easy to
see that

NSym =
⊕

m≥0

NSym[m], (2.18)

which provides a grading for NSym.
Note that, it has been shown in [10], for any m ≥ 1, the NCSFs Sm,	m,�m ∈

NSym[m]. By Proposition 2.5, this is also true for the NCSFs 
m’s. By the facts
above and Eqs. (2.15)–(2.17), it is also easy to check that, with the grading given in
Eq. (2.18), NSym forms a graded K-Hopf algebra. Its graded dual is given by the
space QSym of quasi-symmetric functions, which were first introduced by I. Gessel
[11] (see [20] and [24] for more discussions).

Now we come back to our discussions on the NCS systems. From the definitions
of the NCSFs above, we see that (NSym,�) obviously forms a NCS system. More
importantly, as shown in Theorem 2.1 in [28], we have the following important theo-
rem on the NCS system (NSym,�).

Theorem 2.6 Let A be a K-algebra and � a NCS system over A. Then,

(a) There exists a unique K-algebra homomorphism S : NSym → A such that
S×5(�) = �.

(b) If A is further a K-bialgebra (resp. K-Hopf algebra) and one of the equivalent
statements in Proposition 2.2 holds for the NCS system �, then S : NSym → A

is also a homomorphism of K-bialgebras (resp. K-Hopf algebras).

Remark 2.7 By applying the similar arguments as in the proof of Theorem 2.6, or
simply taking the quotient over the two-sided ideal generated by the commutators
of �m’s, it is easy to see that, over the category of commutative K-algebras, the
universal NCS system is given by the generating functions of the corresponding
classical (commutative) symmetric functions ([19]).

3 The Grossman-Larson Hopf algebra and the Connes-Kreimer Hopf algebra

Let K be any unital commutative Q-algebra and W a non-empty subset of positive
integers. In this section, we first fix some notations for unlabeled rooted trees and
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W -labeled rooted trees that will be used throughout this paper. We then recall the
Connes-Kreimer Hopf algebra and the Grossman-Larson Hopf algebra of W -labeled
forests and W -labeled rooted trees, respectively. Finally, by using the duality between
the Grossman-Larson Hopf algebra and the Connes-Kreimer Hopf algebra (see The-
orem 3.2), we prove a technic lemma, Lemma 3.4, that will play an important role in
our later arguments.

First, let us fix the following notation which will be used throughout the rest of
this paper.

Notation By a rooted tree we mean a finite 1-connected graph with one vertex des-
ignated as its root. For convenience, we also view the empty set ∅ as a rooted tree
and call it the emptyset rooted tree. The rooted tree with a single vertex is called the
singleton and denoted by ◦. There are natural ancestral relations between vertices.
We say a vertex w is a child of vertex v if the two are connected by an edge and w

lies further from the root than v. In the same situation, we say v is the parent of w.
A vertex is called a leaf if it has no children.

Let W ⊆ N+ be any non-empty subset of positive integers. A W -labeled rooted
tree is a rooted tree with each vertex labeled by an element of W . If an element
m ∈ W is assigned to a vertex v, then m is called the weight of the vertex v. When
we speak of isomorphisms between unlabeled (resp. W -labeled) rooted trees, we will
always mean isomorphisms which also preserve the root (resp. the root and also the
labels of vertices). We will denote by T (resp. TW ) the set of isomorphism classes
of all unlabeled (resp. W -labeled) rooted trees. A disjoint union of any finitely many
rooted trees (resp. W -labeled rooted trees) is called a rooted forest (resp. W -labeled
rooted forest). We denote by F (resp. FW ) the set of unlabeled (resp. W -labeled)
rooted forests.

With these notions in mind, we establish the following notation.

(1) For any rooted tree T ∈ TW , we set the following notation:

• rtT denotes the root vertex of T and O(T ) the set of all the children of rtT . We
set o(T ) = |O(T )| (the cardinal number of the set O(T )).

• E(T ) denotes the set of edges of T .
• V (T ) denotes the set of vertices of T and v(T ) = |V (T )|.
• L(T ) denotes the set of leaves of T and l(T ) = |L(T )|.
• For any v ∈ V (T ), we define the height of v to be the number of edges in the

(unique) geodesic connecting v to rtT . The height of T is defined to be the
maximum of the heights of its vertices.

• For any T ∈ TW and T �= ∅, |T | denotes the sum of the weights of all vertices
of T . When T = ∅, we set |T | = 0.

• For any T ∈ TW , we denote by Aut(T ) the automorphism group of T and
α(T ) the cardinal number of Aut(T ).

(2) Any subset of E(T ) is called a cut of T . A cut C ⊆ E(T ) is said to be admissible
if no two different edges of C lie in the path connecting the root and a leaf. We
denote by C(T ) the set of all admissible cuts of T . Note that, the empty subset
∅ of E(T ) and C = {e} for any e ∈ E(T ) are always admissible cuts. We will



J Algebr Comb (2008) 28: 235–260 243

identify any edge e ∈ E(T ) with the admissible cut C := {e} and simply say the
edge e itself is an admissible cut of T .

(3) For any T ∈ TW with T �= ◦, let C ∈ C(T ) be an admissible cut of T with |C| =
m ≥ 1. Note that, after deleting the edges in C from T , we get a disjoint union of
m + 1 rooted trees, say T0, T1, . . . , Tm with rt(T ) ∈ V (T0). We define RC(T ) =
T0 ∈ TW and PC(T ) ∈ FW the rooted forest formed by T1, . . . , Tm.

(4) For any disjoint admissible cuts C1 and C2, we say “C1 lies above C2”, and write
C1 
 C2, if C2 ⊆ E(RC1(T )). This merely says that all edges of C2 remain when
we remove all edges of C1 and PC1(T ). Note that this relation is not transitive.
When we write C1 
 · · · 
 Cr for C1, . . . ,Cr ∈ C(T ), we will mean that Ci 
 Cj

whenever i < j .
(5) For any T ∈ TW , we say T is a chain if its underlying rooted tree is a rooted tree

with a single leaf. We say T is a shrub if its underlying rooted tree is a rooted tree
of height 1. We say T is primitive if its root has only one child. For any m ≥ 1,
we set Hm, Sm and Pm to be the sets of the chains, shrubs and primitive rooted
trees T of weight |T | = m, respectively. H, S and P are set to be the unions of
Hm, Sm and Pm, respectively, for all m ≥ 1.

For example, in the case where W = {1}, which allows not to write the labels, we
have

H =

⎧
⎪⎪⎨

⎪⎪⎩
� , �
�

, �
�

�

, �
�

�

�

, �
�

�

�

�

. . .

⎫
⎪⎪⎬

⎪⎪⎭
,

S =
{
�

�

, �∨�� , �∨�� � , �∨����� � . . .
}

,

P =

⎧
⎪⎪⎨

⎪⎪⎩
�

�

, �
�

�

,
�∨��
� , �
�

�

�

,
�∨��
�

�

,
�∨��
�

�

,
�∨��
�

�

, �
�

�∨� �
, �
�

�

�

�

. . .

⎫
⎪⎪⎬

⎪⎪⎭
.

For any non-empty W ⊆ N+, we define the following operations for W -labeled
rooted forests. For any F ∈ FW which is disjoint union of W -labeled rooted trees Ti

(1 ≤ i ≤ m), we set B+(T1, T2, · · · , Tm) the rooted tree obtained by connecting roots
of Ti (1 ≤ i ≤ m) to a newly added root. We will keep the labels for the vertices of
B+(T1, T2, · · · , Tm) from Ti ’s, but for the root, we label it by 0. For convenience, we
also fix the following short convention for the operation B+. For the empty rooted
tree ∅, we set B+(∅) to be the singleton labeled by 0. For any Ti ∈ TW (1 ≤ i ≤ m)

and ji ≥ 1, the notation B+(T
j1
1 , T

j2
2 , · · · , T

jm
m ) denotes the rooted tree obtained by

applying the operation B+ to j1-copies of T1; j2-copies of T2; and so on. Later, for
any unital Q-algebra K and m ≥ 1, we will also extend the operation B+ multi-
linearly to a linear map B+ from

(
HW

CK

)×m
to HW

GL, where HW
CK and HW

GL at this
moment are the vector spaces spanned over K by the elements of TW and B+(TW),
respectively.

Now, we set T̄W := {B+(F ) | F ∈ FW }. Then, B+ : FW → T̄W becomes a bijec-
tion. We denote by B− : T̄W → FW the inverse map of B+. More precisely, for any
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T ∈ T̄W , B−(T ) is the W -labeled rooted forest obtained by cutting off the root of T

as well as all edges connecting to the root in T .
Note that, precisely speaking, elements of T̄W are not W -labeled trees for 0 �∈ W .

But, if we set W̄ = W ∪ {0}, then we can view T̄W as a subset of W̄ -labeled rooted
trees T with the root rtT labeled by 0 and all other vertices labeled by non-zero
elements of W̄ . We extend the definition of the weight for elements of FW to elements
of T̄W by simply counting the weight of roots by zero. We set S̄W

m := B+(SW
m ) (m ≥

1) and S̄W := B+(SW). We also define H̄W
m , P̄W

m , H̄W and P̄W in the similar way.
Next we fix a unital commutative Q-algebra K and a non-empty subset of positive

integers W , and first recall the Connes-Kreimer Hopf algebras HW
CK of W -labeled

rooted forests.
As a K-algebra, the Connes-Kreimer Hopf algebra HW

CK is the free commutative
algebra generated by formal variables {XT | T ∈ TW }. Here, for convenience, we
will still use T to denote the variable XT in HW

CK . The K-algebra product is given
by the disjoint union. The identity element of this algebra, denoted by 1, is the free
variable X∅ corresponding to the emptyset rooted tree ∅. The coproduct � :HW

CK →
HW

CK ⊗HW
CK is uniquely determined by setting

�(1) = 1 ⊗ 1, (3.1)

�(T ) = T ⊗ 1 +
∑

C∈C(T )

PC(T ) ⊗ RC(T ). (3.2)

The co-unit ε : HW
CK → K is the K-algebra homomorphism which sends 1 ∈ HW

CK

to 1 ∈ K and T to 0 for any T ∈ TW with T �= ∅. With the operations defined above
and the grading given by the weight, the vector space HW

CK forms a connected graded
commutative bialgebra. Since any connected graded bialgebra is a Hopf algebra, there
is a unique antipode S :HW

CK → HW
CK that makes HW

CK a connected graded commu-
tative K-Hopf algebra. For a formula for the antipode, see [8, 9].

Next we recall the Grossman-Larson Hopf algebra of labeled rooted trees. As a
vector space, the Grossman-Larson Hopf algebra HW

GL is the vector space spanned
by elements of T̄W over K . For any T ∈ T̄W , we will still denote by T the vector in
HW

GL that is corresponding to T . The algebra product is defined as follows.
For any T ,S ∈ T̄W with T = B+(T1, T2, · · · , Tm), we set T · S to be the sum of

the rooted trees obtained by connecting the roots of Ti (1 ≤ i ≤ m) to vertices of S in
all possible mv(S) different ways. Note that, the identity element with respect to this
algebra product is given by the singleton ◦ = B+(∅). But we will denote it by 1.

To define the co-product � :HW
GL →HW

GL ⊗HW
GL, we first set

�(◦) = ◦ ⊗ ◦. (3.3)

Now let T ∈ T̄W with T �= ◦, say T = B+(T1, T2, · · · , Tm) with m ≥ 1 and Ti ∈
TW (1 ≤ i ≤ m). For any non-empty subset I ⊆ {1,2, · · · ,m}, we denote by B+(TI )

the rooted tree obtained by applying the B+ operation to the rooted trees Ti with
i ∈ I . For convenience, when I = ∅, we set B+(TI ) = 1. With this notation fixed, the
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co-product for T is given by

�(T ) =
∑

I�J={1,2,··· ,m}
B+(TI ) ⊗ B+(TJ ). (3.4)

The co-unit ε :HW
GL → K is the K-algebra homomorphism which sends 1 ∈HW

GL

to 1 ∈ K and T to 0 for any T ∈ T̄W with T �= ∅. With the operations defined above
and the grading given by the weight, the vector space HW

GL forms a graded commu-
tative bialgebra. Therefore, there is a unique antipode S : HW

CK → HW
CK that makes

HW
CK a graded K-Hopf algebra. Actually, by the general recurrent formula, we can

write down the antipode of HW
GL as follows.

Note that the singleton ◦ is a group-like element and S(◦) = ◦−1 = ◦. Now
assume T �= ◦ and write T = B+(T1, T2, · · · , Tm) with m ≥ 1 and Ti ∈ TW . Let
I := {1,2, · · · ,m}. For 1 ≤ r ≤ m, let Pr be the set of r-tuples (I1, I2, · · · , Ir ) of
disjoint non-empty subsets of I whose union is I . In other words, Pr is the set of all
ordered partitions of I into r non-empty subsets of I .

Lemma 3.1 Let S denote the antipode of the Grossman-Larson Hopf algebra HW
GL

of W -labeled rooted trees. Then, for any T ∈ T̄W with T �= ◦ as above, we have

S(T ) =
m∑

r=1

(−1)r
∑

(I1,··· ,Ir )∈Pr

B+(TI1)B+(TI2) · · ·B+(TIr ). (3.5)

Proof By the general recurrent formula for the antipode of connected cocommutative
graded Hopf algebras, we know that the antipode S of HW

GL satisfies the following
equation:

S(T ) = −T −
∑

(I,J )∈P2

S(B+(TI ))B+(TJ ). (3.6)

Then it is easy to check directly that, for any T ∈ T̄W , S(T ) given by Eq. (3.5) does
satisfy Eq. (3.6). Since the solution to Eq. (3.6) is unique, the antipode S of HW

GL is
actually given by Eq. (3.5). �

Note that, from Eq. (3.4), it is easy to see that, a rooted tree T ∈ T̄W is a primitive
element of the Hopf algebra HW

GL iff it is a primitive rooted tree in the sense that
we defined before, namely the root of T has one and only one child. It is noticeable
that the set of primitive W -labeled rooted trees is a basis of the space Prim(HW

GL)

of primitive elements of HW
GL. Moreover, by the Milnor-Moore theorem, HW

GL is
isomorphic to U(Prim(HW

GL)).
The relation between the Grossman-Larson Hopf algebra HW

GL and the Connes-
Kreimer Hopf algebra HW

CK is given by the following important theorem, which was
proved in [13] and [8, 9].
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Theorem 3.2 The Hopf algebras HW
GL and HW

CK are graded dual to each other. The
pairing is given by, for any T ∈ T̄W and S ∈ FW ,

〈T ,F 〉 =
{

0, if T �� B+(F ),

α(T ), if T � B+(F ).
(3.7)

Furthermore, the following theorem on the algebra structure constants of HW
GL

was also proved in [13] and [8, 9].

Theorem 3.3 For any T ′, S ∈ T̄W , We have

T ′ · S =
∑

T ∈T̄W

∑

C∈C(T )
B+(PC(T ))∼T ′,

RC(T )∼S.

α(T ′)α(S)

α(T )
T . (3.8)

Note that, Eq. (3.8) suggests that it is much more convenient to work with the
basis {VT := T/α(T ) | T ∈ T̄W } than the basis {T | T ∈ T̄W }. For example, in terms
of VT , Eq. (3.8) becomes

VT ′ · VS =
∑

T ∈T̄W

∑

C∈C(T )
B+(PC(T ))∼T ′,

RC(T )∼S.

VT . (3.9)

Finally, we extend Theorem 3.3 to a more general setting (see Lemma 3.4 below).
It can be viewed as a generalization of Lemma 2.8 in [26] which essentially is the
case of Lemma 3.4 when only primitive rooted trees are involved. First, let us fix the
following notation.

Let �C = (C1, . . . ,Cr) ∈ C(T )×r be a sequence of admissible cuts with C1 

· · · 
 Cr . We define a sequence of T �C,1, . . . , T �C,r+1 ∈ T̄W as follows: we first set
T �C,1 = B+(PC1(T )) and let S1 = RC1(T ). Note that C2, . . . ,Cr ∈ C(S1). We then
set T �C,2 = B+(PC2(S1)) and S2 = RC2(S1) and repeat this procedure until we get
Sr = RCr (Sr−1) and then set T �C,r+1 = Sr . In the case that, each Ci (1 ≤ i ≤ r) con-
sists of a single edge, say ei ∈ E(T ), we simply denote T �C,i

by Tei
.

Now we fix a positive integer r and let y = {y(i)
T | 1 ≤ i ≤ r ; T ∈ T̄W } be a collec-

tion of commutative formal variables.

Lemma 3.4 For any r ≥ 1, we have,

∑

(T1,...,Tr )∈(T̄W )r

[
y

(1)
T1

VT1

]
· · ·

[
y

(r)
Tr

VTr

]

=
∑

T ∈T̄W

∑

�C=(C1,...,Cr−1)∈C(T )r−1

C1
···
Cr−1

y
(1)
T �C,1

· · ·y(r)
T �C,r

VT . (3.10)
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Proof We denote the LHS of Eq. (3.10) by Q and write it as

Q =
∑

T ∈T̄W

yT VT .

Then, by Eq. (3.7) yT = 〈Q,B−(T )〉 for any T ∈ T̄W , where B−(T ) is the forest
obtained by deleting the root of T . So:

yT =
∑

(T1,...,Tr )

y
(1)
T1

· · ·y(r)
Tr

〈VT1 . . .VTr ,B−(T )〉

=
∑

(T1,...,Tr )

y
(1)
T1

· · ·y(r)
Tr

〈VT1 ⊗ (VT2 · · ·VTr ),�(B−(T ))〉

=
∑

(T1,...,Tr )

y
(1)
T1

· · ·y(r)
Tr

〈VT1 ⊗ VT2 ⊗ (VT3 · · ·VTr ), (I ⊗ �) ◦ �(B−(T ))〉,

where I is the identity map of HW
CK . Repeating the process above:

=
∑

(T1,...,Tr )

y
(1)
T1

· · ·y(r)
Tr

〈VT1 ⊗ · · · ⊗ VTr , (I
⊗(r−2) ⊗ �) ◦ · · · ◦ �(B−(T ))〉.

One the other hand, by definition of the coproduct of HW
CK and definition of 
, we

have

(I⊗(r−2) ⊗ �) ◦ · · · ◦ (I ⊗ �) ◦ �(B−(T ))

=
∑

�C=(C1,...,Cr−1)∈C(T )r−1

C1
···
Cr−1

B−(T �C,1) ⊗ . . . ⊗ B−(T �C,r
).

Therefore, we get

yT =
∑

�C=(C1,...,Cr−1)∈C(T )r−1

C1
···
Cr−1

y
(1)
T �C,1

· · ·y(r)
T �C,r

.

�

4 A N CS system over the Grossman-Larson Hopf algebra HW
GL of W -labeled

rooted trees

In this section, for any non-empty W ⊆ N+, we construct a NCS system �W
T

over the
Grossman-Larson Hopf algebra HW

GL. First, let us introduce the following generating
functions of certain elements of HW

GL, which will be the components of the NCS
system �W

T
corresponding to f (t), g(t), h(t) and m(t) according the notation in
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Definition 2.1.

f̃ (t) : =
∑

T ∈S̄W

(−1)o(T )+|T |t |T |VT = 1 +
∑

T ∈S̄
W

T �=◦

(−1)o(T )+|T |t |T |VT , (4.1)

g̃(t) : =
∑

T ∈T̄W

t |T |VT = 1 +
∑

T ∈T̄
W

T �=◦

t |T |VT , (4.2)

h̃(t) : =
∑

T ∈H̄W

t |T |−1βT VT , (4.3)

m̃(t) : =
∑

T ∈P̄W

t |T |−1γT VT , (4.4)

where, for any T ∈ H̄W (resp. T ∈ P̄W ), βT (resp. γT ) is the weight of the unique leaf
(resp. the unique child of the root) of T . Note that, for the singleton T = ◦, we have
βT = γT = 0. So h̃(0) = m̃(0) = 0.

For example, when W = {1,2}, we have

f̃ (t) = 1 + V �� 1 t +
(
V
�∨�� 11 − V �� 2

)
t2 +

(
V
�∨�� � 1

1
1 − V
�∨�� 21

)
t3 + · · · ,

g̃(t) = 1 + V �� 1 t +
(
V �� 2 + V
�∨�� 11 + V
�

�

�

1
1

)
t2

+
⎛

⎝V
�∨�� 21 + V
�

�

�

1
2 + V
�

�

�

2
1 + V
�∨�� � 1

1
1 + V
�∨��
�

11
1 + V
�∨��
�

1
11 + V
�

�

�

�

1
1
1

⎞

⎠ t3 + · · · ,

h̃(t) = V �� 1 +
(
V
�

�

�

1
1 + 2V �� 2

)
t +

⎛

⎝V
�

�

�

�

1
1
1 + 2V
�

�

�

1
2 + V
�

�

�

2
1

⎞

⎠ t2 + · · · ,

m̃(t) = V �� 1 +
(
V
�

�

�

1
1 + 2V �� 2

)
t +

⎛

⎝V
�

�

�

1
2 + 2V
�

�

�

2
1 + V
�∨��
�

1
11 + V
�

�

�

�

1
1
1

⎞

⎠ t2 + · · · .

Note that, from Eq. (4.1), we have

f̃ (−t) =
∑

T ∈S̄W

(−1)o(T )t |T |VT = 1 +
∑

T ∈S̄
W

T �=◦

(−1)o(T )t |T |VT . (4.5)

A different way to look at the generating function f̃ (−t) is as follows.
For any m ∈ W , let κm denote the singleton labeled by m and set

κ(t) :=
∑

m∈W

tmκm. (4.6)
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Lemma 4.1

f̃ (−t) = 1 +
∑

d≥1

(−1)d

d! B+(κ(t)d), (4.7)

where B+(κ(t)d) denotes the element obtained by applying B+ to d-copies of κ(t).

Proof First, it is easy to see that, the only terms that can appear in the expansion
of the RHS of Eq. (4.7) are shrubs. Secondly, from the definition of the operation
B+, we see that B+ is symmetric and multi-linear in its components. Therefore, we
can expand the term B+(κ(t)d) into a linear combination of rooted trees S ∈ T̄W in
a similar way as we expand the power (

∑
m∈W tmum)d for some free commutative

variables um (m ∈ W).
Now, for any shrub S ∈ S̄W with S �= ◦, let {mj ∈ W | 1 ≤ j ≤ N} be the set of

all labels of the leaves of S. Let ij ≥ 1 (1 ≤ j ≤ N) be the number of the mj -labeled
leaves of S. Then we have

o(S) =
∑

1≤j≤N

ij , (4.8)

|S| =
∑

1≤j≤N

ijmj , (4.9)

α(S) =
∏

1≤j≤N

(ij )!. (4.10)

Now let us consider the coefficient cS of S in the linear expansion of the RHS of
Eq. (4.7). By the observations in the first paragraph of the proof and Eqs. (4.8)-(4.10),
it is easy to see that we have

cS = (−1)o(S)t |S|

o(S)!
(

o(S)

i1, · · · , iN

)

= (−1)o(S) t |S|
∏

1≤j≤N(ij )!

= (−1)o(S) t |S|

α(S)
,

which is same as the coefficient of S in f̃ (−t) since VS = 1
α(S)

S. Hence we are
done. �

To define the generating function d̃(t) for the third component of the under-
construction NCS system �W

T
, we first need the following definition.

Definition 4.2

(a) We define a constant θT ∈ Q for each unlabeled rooted tree T as follows.
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(1) For the singleton ◦ and any non-primitive rooted tree T ∈ T, i.e. o(T ) > 1,
we set θ◦ = θT = 0.

(2) For T = B+(◦), we set θT = 1.
(3) For any primitive T ∈ P with v(T ) ≥ 3, we define θT inductively by

θT = 1 −
∑

m≥2

1

m!
∑

�e=(e1,...,em−1)∈E(T )m−1

e1
···
em−1

θTe1
θTe2

· · · θTem
, (4.11)

where Tei
’s in the equation above have been defined before Lemma 3.4.

(b) For any W ⊆ N and W -labeled rooted tree T , we set θT := θT̄ , where T̄ is the
underlying unlabeled rooted tree of T .

Remark 4.3 As we will show later in Sect. 5, the constant θT (T ∈ T) has a natural
combinatorial interpretations as follows. If we write T = B+(F ) for some rooted
forest F ∈ F and let �(F, s) be the order polynomial (see [23]) of F , then θT will
be the coefficient of s of �(F, s) (see Proposition 5.8 in Sect. 5). Furthermore, if
we denote by ∇ : K[s] → K[s] the linear operator which maps any f (s) ∈ K[s] to
f (s) − f (s − 1), then θT is also the coefficient of s of the polynomial ∇�(T , s)

(see Corollary 5.9). In order to keep our on-going arguments more focus, we will
postpone to Sect. 5 a detailed discussion on these combinatorial interpretations of θT

(T ∈ T).

Example 4.4 By Eqs. (5.3), (5.5), (5.10) and (5.13) in Sect. 5, it is easy to check
that, for the chains Cm’s and B+(Sm) of the shrubs Sm’s, we have

θCm = 1

m − 1
for any m ≥ 2. (4.12)

θB+(Sm) = (−1)mbm for any m ≥ 0, (4.13)

where bm (m ≥ 0) are the Bernoulli numbers which are defined by the generating
function

x

ex − 1
=

∞∑

m=0

bm

xm

m! . (4.14)

Now, we introduce the following generating function:

d̃(t) :=
∑

T ∈P̄W

t |T |θT VT . (4.15)

For example, when W = {1,2}, we have

d̃(t) = V �� 1 t +
(

1

2
V
�

�

�

1
1 + V �� 2

)
t2

+
⎛

⎝1

2
V
�

�

�

1
2 + 1

2
V
�

�

�

2
1 + 1

6
V
�∨��
�

1
11 + 1

3
V
�

�

�

�

1
1
1

⎞

⎠ t3 + · · · .
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Set

�W
T

:= (f̃ (t), g̃(t), d̃(t), h̃(t), m̃(t)). (4.16)

Then, the main result of this section is the following theorem.

Theorem 4.5 For any non-empty set W ⊆ N, �W
T

forms a NCS system over the
Grossman-Larson Hopf algebra HW

GL.

Proof Note that, by Eqs. (4.1) and (4.2), we have f̃ (0) = g̃(0) = 1, hence it will
be enough to show Eqs. (2.2)–(2.5) in Definition 2.1 are satisfied by the generating
functions in �W

T
.

Let us start with Eq. (2.2). First, note that, since g̃(0) = 1, g̃(t) as an element of
HW

GL[[t]] does have both left and right inverses. So we only need show f̃ (−t)g̃(t) = 1
for g̃(t)f̃ (−t) = 1 will follow automatically. Secondly, by Eq. (4.5) and Lemma 3.4
with y

(1)
T = (−1)o(T )t |T | if T ∈ S̄W and 0 otherwise, and y

(2)
T = t |T | for any T ∈ T̄W ,

we have

f̃ (−t)g̃(t) =
⎛

⎝
∑

T ′∈S̄W

(−1)o(T ′)t |T ′|VT ′

⎞

⎠

⎛

⎝
∑

T ′′∈T̄W

t |T ′′|VT ′′

⎞

⎠

=
∑

T ∈T̄W

t |T |

⎛

⎜⎜⎜⎝
∑

C∈C(T )

B+(PC(T ))∈S̄
W

(−1)o(B+(PC(T )))

⎞

⎟⎟⎟⎠VT . (4.17)

First, note that, for any rooted tree T and an admissible cut C of T , B+(PC(T )) is
a shrub iff each edge in C is the unique edge connecting with a leaf of T . Therefore,
the set of all admissible cuts C such that B+(PC(T )) ∈ S̄W is in 1-1 correspondence
with the set of subsets of leaves of T . Secondly, when B+(PC(T )) ∈ S̄W for an ad-
missible cut C, o(B+(PC(T ))) is same as the cardinal number |C| of the cut C. With
these observations, for any T ∈ T̄W with l(T ) := |L(T )| > 0, we have

∑

C∈C(T )

B+(PC(T ))∈S̄
W

(−1)|C| =
l(T )∑

k=0

(−1)k
(

l(T )

k

)
= 0. (4.18)

Combining Eqs. (4.17) and (4.18), we get f̃ (−t)g̃(t) = 1 and hence Eq. (2.2) for the
system �W

T
.

Now, let us prove Eq. (2.3) as follows.

ed̃(t) =
∑

k≥0

1

k! d̃(t)k

= 1 +
∑

k≥1

1

k!
( ∑

T ∈P̄W

t |T |θT VT

)k

.
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Applying Lemma 3.4:

= 1 +
∑

T ∈P̄W

t |T |θT VT

+
∑

k≥2

1

k!
∑

T ∈T̄W

t |T |

⎛

⎜⎜⎝
∑

�e=(e1,...,ek−1)∈E(T )k−1

e1
···
ek−1

θT�e,1 · · · θT�e,k

⎞

⎟⎟⎠VT

= 1 +
∑

T ∈T̄W

t |T |

⎛

⎜⎜⎝θT +
∑

k≥2

1

k!
∑

�e=(e1,...,ek−1)∈E(T )k−1

e1
···
ek−1

θT�e,1 · · · θT�e,k

⎞

⎟⎟⎠VT .

Applying Eq. (4.11):

= 1 +
∑

T ∈T̄W

t |T |VT

= g̃(t).

Therefore, we get ed̃(t) = g̃(t), which is Eq. (2.3) for the system �W
T

.
To prove Eq. (2.4), first, by Lemma 3.4, we have

m̃(t)g̃(t) =
⎛

⎝
∑

T ′∈P̄W

γ (T ′)t |T ′|−1VT ′

⎞

⎠

⎛

⎝
∑

T ′′∈T̄W

t |T ′′|VT ′′

⎞

⎠

=
∑

T ∈T̄W

t |T |−1

⎛

⎜⎜⎜⎝
∑

C∈C(T )

B+(PC(T ))∈P̄
W

γ (B+(PC(T )))

⎞

⎟⎟⎟⎠VT

=
∑

T ∈T̄W

t |T |−1

⎛

⎝
∑

e∈E(T )

γ (B+(Pe(T )))

⎞

⎠VT , (4.19)

where the last equality follows from the fact that, for any C ∈ C(T ), o (B+(PC(T ))) =
1 iff C consists of a single edge.

Note that, for any e ∈ E(T ), γ (B+(Pe(T ))) = wt(v′
e), where v′

e is the vertex of
e which is further away from the root of T . Therefore, continuing with the equation
above, we have

m̃(t)g̃(t) =
∑

T ∈T̄W

|T |t |T |−1VT = dg̃(t)

dt
.
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Hence, we get Eq. (2.4) for the system �W
T

.
Finally, we show Eq. (2.5). First, by Lemma 3.4, we have

g̃(t)h̃(t) =
⎛

⎝
∑

T ′∈T̄W

t |T ′|VT ′

⎞

⎠

⎛

⎝
∑

T ′′∈H̄W

β(T ′′)t |T ′′|−1VT ′′

⎞

⎠

=
∑

T ∈T̄W

t |T |−1

⎛

⎜⎜⎜⎝
∑

C∈C(T )

RC(T )∈H̄
W

β(RC(T ))

⎞

⎟⎟⎟⎠VT .

Note that, the set of all admissible cuts C such that RC(T ) ∈ H̄W is in 1-1 corre-
spondence with the set of rooted subtrees S of T with S ∈ H̄W . But any subtree S of
T with S ∈ H̄W is completely determined by the unique leaf of S. Therefore, the set
of all admissible cuts C such that RC(T ) ∈ H̄W is in 1-1 correspondence with the set
of non-root vertices of T . With this observation, we have, for any T ∈ T̄W ,

∑

C∈C(T )

RC(T )∈H̄
W

β(RC(T )) = |T |. (4.20)

Hence, combining the two equations above, we get

g̃(t)h̃(t) =
∑

T ∈T̄W

t |T |−1|T |VT = dg̃(t)

dt
,

which is Eq. (2.5) for the system �W
T

. �

Now, by the universal property of the NCS system (NSym, �) from NCSFs in
Theorem 2.6, we have the following correspondence between NCSFs and W -labeled
rooted trees.

Theorem 4.6 For any nonempty W ⊆ N+, there exists a unique homomorphism TW :
NSym →HW

GL of graded K-Hopf algebras such that T ×5
W (�) = �W

T
.

In particular, we have the following correspondence from the NCSFs in � to the
elements in �W

T
:

TW(�m) =
∑

T ∈S̄W
m

(−1)o(T )+|T |VT , (4.21)

TW(Sm) =
∑

T ∈T̄W
m

VT , (4.22)

TW(�m) =
∑

T ∈H̄W
m

βT VT , (4.23)
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TW(	m) = m
∑

T ∈P̄m

θT VT , (4.24)

TW(
m) =
∑

T ∈P̄m

γT VT , (4.25)

for any m ≥ 1.

Proof Note that the coefficients of tm (m ≥ 1) of the generating function h̃(t) (see
Eq. (4.3)) are all primitive elements of the Hopf algebra HW

GL, since they are linear
combinations of chains. Then, by Theorem 2.6, (b), we have a unique homomorphism
TW :NSym → HW

GL of K-Hopf algebras such that T ×5
W (�) = �W

T
. In particular, we

have TW(λ(t)) = f̃ (t) which is same as Eq. (4.21) for any m ≥ 1. Note that, both
sides of Eq. (4.21) have weight m in NSym and HW

GL, respectively. Also note that
the gradings of NSym and HW

GL are given by the weights of NCSFs and W -labeled
rooted trees, respectively, and NSym is the free algebra generated by �m (m ≥ 1).
By the facts above, it is easy to check that TW also preserves the gradings. �

Note that the graded duals of NSym and HW
GL are the graded K-Hopf algebras

QSym of quasi-symmetric functions and the Connes-Kreimer Hopf algebra HW
CK , re-

spectively. Since the K-Hopf algebra homomorphism TW :NSym → HW
GL preserves

the gradings, we can take the graded duals and get the following correspondence.

Corollary 4.7 For any non-empty W ⊆ N+, T ∗
W : HW

CK → QSym is a homomor-
phism of graded K-Hopf algebras.

Finally, let us end this section with the following two remarks.

Remark 4.8 As we mentioned earlier in Remark 2.3, by applying the specialization
TW :NSym → HW

GL in Theorem 4.6, we will get a host of identities for the W -rooted
trees on the right hand sides of Eqs. (4.21)–(4.25) from the identities of the NCSFs
on the left hands. We believe some of these identities are also interesting from the
aspect of combinatorics of rooted trees. For example, it is not obvious at all that the
invariants of rooted trees given by coefficients of the generating functions f̃ (t), d̃(t),
h̃(t) and m̃(t) can be obtained by evaluating the corresponding (noncommutative)
polynomials of NCSFs at coefficients of g̃(t) which is just the trivial invariant of
rooted trees whose value at any rooted tree is always 1.

Note that the same problem has been studied in detail in [30] for the differential
operators in the NCS over the differential operator algebras constructed in [29]. But,
in order to keep this paper in a certain size, we will skip the discussions on these
identities and refer the interested reader to [30] for similar discussions.

Remark 4.9 In the followed paper [31], by using some relations of the NCS system
(HW

GL,�W
T

) with the NCS systems constructed in [29] over differential operator al-
gebras, it will be shown that, when W = N+, the K-Hopf algebra homomorphism
TW : NSym → HW

GL in Theorem 4.6 is actually an embedding. So, in this case,
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T ∗
W : HW

CK → QSym in Corollary 4.7 is a surjective graded K-Hopf algebra homo-
morphism.

It seems that, the K-Hopf algebra homomorphism TW : NSym → HW
GL is injec-

tive for any non-empty label set W . But we will leave this for future investigations.

5 A combinatorial interpretation of the constants θT

In this section, we give a combinatorial interpretation for the constants θT (T ∈ T) in
Definition 4.2 which have been used in the construction of d̃(t) for the NCS system
�W

T
over HW

GL. We first recall the strict order polynomials and the order polynomials
of finite posets (partially ordered sets) (see [23]). Then, by applying some of results
proved in [26] for the strict order polynomials of rooted forests and the well-known
Reciprocity Relation (see Proposition 5.1) between the strict order polynomials and
the order polynomials of finite posets, we show in Proposition 5.8 that, for any T ∈ T̄,
θT is same as the coefficient of s of the order polynomial of the rooted forest B−(T ).

First, recall that, a poset is a set P with a partial order defined for its elements.
Note that, for any unlabeled rooted forest F ∈ F, the set of the vertices of F has a
natural partial order, namely, u ≤ v if u = v or u and v are connected by a path with
v being further away for the root of the connected component. With this partial order,
the set of the vertices of F forms a finite poset, which we will still denote by F .

For any n ≥ 1, let [n] denote the totally ordered set {1,2, . . . , n}. For any fi-
nite poset P , a map f : P → [n] is said to be strictly order-preserving (resp.
order-preserving) if, for any a, b ∈ P with a < b in P , then f (a) < f (b) (resp.
f (a) ≤ f (b)). It is well-known that, for each finite poset P , there exists a unique
polynomial �̄(P, s) (resp. �(P, s)) in formal variable s such that, for any n ≥ 1,
�̄(P,n) (resp. �(P,n)) equals to the number of strict order-preserving (resp. order-
preserving) from P to [n]. The strict order polynomial and the order polynomial of
finite posets are related by the so-called reciprocity relation.

Proposition 5.1 (Reciprocity Relation) For any fixed finite poset, we have

�(P, s) = (−1)|P |�̄(P,−s), (5.1)

where |P | denotes the cardinal number of the finite set P .

For a proof of this remarkable result, see Corollary 4.5.15 in [23].
By Corollary 3.15 in [26] (also see Example 4.4 there) and Eq. (5.1) above, we

get the (strict) order polynomials of chains and shrubs as follows.

Example 5.2 For any m ≥ 1, let Cm be the chain of hight m − 1 and Sm the shrub
with m leaves. Then we have

�̄(Cm, s) =
(

s

m

)
= s(s − 1) · · · (s − m + 1)

m! , (5.2)

�(Cm, s) = (−1)m
(−s

m

)
=

(
s + m − 1

m

)
, (5.3)
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�̄(Sm, s) =
∫ s

0
Bm(u)du = Bm+1(s) − Bm+1(0)

m + 1
, (5.4)

�(Sm, s) = (−1)m+1
∫ −s

0
Bm(u)du, (5.5)

where Bm(u) (m ≥ 1) are the Bernoulli polynomials which are defined by the gener-
ating function

xeux

ex − 1
= 1 +

∞∑

m=1

Bm(u)
xm

m! .

Proposition 5.3

(a) For any finite poset P , �̄(P,0) = 0.
(b) For any rooted forest F = T1T2 · · ·Tm with Ti ∈ T (1 ≤ i ≤ m), we have

�̄(F, s) = �̄(T1, s)�̄(T2, s) · · · �̄(Tm, s). (5.6)

(c) For any unlabeled rooted tree T with T = B+(F ), we have

��̄(T , s) = �̄(F, s), (5.7)

∇�(T , s) = �(F, s), (5.8)

where � and ∇ are the linear operators from K[s] → K[s] defined by, for any
f (s) ∈ K[s], �f (s) = f (s + 1) − f (s) and ∇f (s) = f (s) − f (s − 1), respec-
tively.

(a) is well-known, for example, it can be easily proved by the recurrent formulas
in [22] for the (strict) order polynomials. (b) follows directly from the definition of
the strict order polynomials. (c) was first proved by J. Shareshian (unpublished). For
a proof of Eq. (5.7), see Theorem 4.5 in [26]. Eq. (5.8) can be proved similarly as
Eq. (5.7). For more studies on these properties of the (strict) order polynomials, see
[27] and [22].

Now, for any finite poset P , we define

φP := d

ds
�̄(P, s)

∣∣∣∣
s=0

, (5.9)

ϕP := d

ds
�(P, s)

∣∣∣∣
s=0

. (5.10)

By Proposition 5.1 and 5.3, it is easy to see that we have the following corollary.

Corollary 5.4

(a) For any finite poset P , we have φP = (−1)|P |−1ϕP .
(b) For any rooted forest F ∈ F with more than one connected component, we have

φF = ϕF = 0.
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The following proposition have been proved in [26]. But note that the definition
of T�e,k we adapt here is different form the one used in [26]. So the equations in the
proposition below have been modified accordingly.

Proposition 5.5

(a) The constants {φT | T ∈ T} satisfy, and are uniquely determined by

φT =◦ = 1,

φT = −
v(T )∑

k=2

1

k!
∑

�e=(e1,...,ek−1)∈E(T )k−1

e1
···
ek−1

φB−(T�e,1) · · ·φB−(T�e,k−1)φT�e,k ,

when v(T ) ≥ 2.
(b) For any T ∈ T, we have

�̄(T , s) = φT s +
v(T )∑

k=2

sk

k!
∑

�e=(e1,...,ek−1)∈E(T )k−1

e1
···
ek−1

φB−(T�e,1) · · ·φB−(T�e,k−1)φT�e,k .

By Proposition 5.5, Corollary 5.4, (a) and Proposition 5.1, it is easy to check that
the order polynomials �(T , s) of rooted trees T can be obtained as follows.

Corollary 5.6

(a) The constants {ϕT |T ∈ T} satisfy and are uniquely determined by

ϕT =◦ = 1,

ϕT =
v(T )∑

k=2

(−1)k

k!
∑

�e=(e1,...,ek−1)∈E(T )k−1

e1
···
ek−1

ϕB−(T�e,1) · · ·ϕB−(T�e,k−1)ϕT�e,k

when v(T ) ≥ 2.
(b) For any T ∈ T, we have

�(T , s) = ϕT s +
v(T )∑

k=2

sk

k!
∑

�e=(e1,...,ek−1)∈E(T )k−1

e1
···
ek−1

ϕB−(T�e,1) · · ·ϕB−(T�e,k−1)ϕT�e,k .

(5.11)

Note that, from the definition of the order polynomials, we have �(P,1) = 1 for
any finite poset P . Using this fact and evaluating �(T , s) in Eq. (5.11) at s = 1, we
get another recurrent formula for the constants ϕT of rooted trees.
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Corollary 5.7 The constants {ϕT |T ∈ T} satisfy and are uniquely determined by

ϕT =◦ = 1,

ϕT = 1 −
v(T )∑

k=2

1

k!
∑

�e=(e1,...,ek−1)∈E(T )k−1

e1
···
ek−1

ϕB−(T�e,1) · · ·ϕB−(T�e,k−1)ϕT�e,k .
(5.12)

Now, we consider the constants θT (T ∈ T) defined in Definition 4.2 in Sect. 4
and prove the following main result of this section.

Proposition 5.8 For any T ∈ T with T = B+(F ), we have

θT = ϕF . (5.13)

Proof For any T ∈ T with T = B+(F ), we set θ̃T := ϕF . For convenience, we also
set θ̃◦ = 0. We need show that θ̃T = θT for any T ∈ T.

Note first that, if T the singleton ◦ or a non-primitive rooted tree, i.e. F is the
empty or has at least two connected components, by the definition of θT in Defini-
tion 4.2 and Corollary 5.4, (b), we have θT = θ̃T = 0. To show that θ̃T = θT for all
primitive rooted trees T , it will be enough to show that, θ̃T (T ∈ P) also satisfies the
recurrent relations in Definition 4.2.

We use the mathematical induction on v(T ). First, for the case v(T ), i.e. T =
B+(◦) = C2. Since �(◦, s) = s, θ̃T = ϕ◦ = 1. While θT is defined to be 1 in Defini-
tion 4.2. Hence, θT = θ̃T in this case.

Now, assume T = B+(T ′) with T ′ ∈ T and v(T ′) ≥ 2. Applying Eq. (5.12) to T ′,
we have

ϕT ′ = 1 −
v(T ′)∑

k=2

1

k!
∑

�e=(e1,...,ek−1)∈E(T ′)k−1

e1
···
ek−1

ϕB−(T�e,1) · · ·ϕB−(T�e,k−1)ϕT�e,k .

Note that, we can identify the set of �e = (e1, . . . , ek−1) ∈ E(T ′)k−1 with the set of
�e = (e1, . . . , ek−1) ∈ E(T )k−1 such that T�e,k �= ◦. With these observations, by replac-
ing the constants ϕ’s by θ̃ ’s in the summation of the equation above, we have

θ̃T = 1 −
v(T )∑

k=2

1

k!
∑

�e=(e1,...,ek−1)∈E(T )k−1

e1
···
ek−1
T�e,k �=◦

θ̃T�e,1 θ̃T�e,2 · · · θ̃T�e,k .
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Applying the induction assumption to T�e,j ’s and using the fact that θ̃◦ = 0:

= 1 −
v(T )∑

k=2

1

k!
∑

�e=(e1,...,ek−1)∈E(T )k−1

e1
···
ek−1

θ̃T�e,1 θ̃T�e,2 · · · θ̃T�e,k .

Therefore, the constants {θ̃T | T ∈ P} also satisfy the recurrent relations of {θT |
T ∈ P} in Definition 4.2. Hence, we have θT = θ̃T = ϕT for any T ∈ T. �

For an interpretation of the constant φT , which we have shown is same as
(−1)v(T )−1ϕT = (−1)v(T )−1θB+(T ), in terms of the numbers of chains with fixed
lengths in the lattice of the ideals of the poset T , see Lemma 2.8 in [22].

Corollary 5.9 For any T ∈ P, we have

∇�(T , s) = θT s +
v(T )∑

k=2

sk

k!
∑

�e=(e1,...,ek−1)∈E(T )k−1

e1
···
ek−1

θB−(T�e,1) · · · θB−(T�e,k−1)θT�e,k . (5.14)

In particular, θT is also the coefficient of s of the polynomial ∇�(T , s).

Proof First, we write T = B+(T ′) with T ′ ∈ T. By Eq. (5.8) and Proposition 5.5,
(b), we have

∇�(T , s) = �(T ′, s)

= ϕT ′s +
v(T ′)∑

k=2

sk

k!
∑

�e=(e1,...,ek−1)∈E(T ′)k−1

e1
···
ek−1

ϕB−(T�e,1) · · ·ϕB−(T�e,k−1)ϕT ′
�e,k .

Then, applying Eq. (5.13) and replacing the constants ϕ’s in the sum above by the
constant θ ’s, we get Eq. (5.14). �
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