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Abstract Hans Cuypers (Preprint) describes a characterisation of the geometry on
singular points and hyperbolic lines of a finite unitary space—the hyperbolic unitary
geometry—using information about the planes. In the present article we describe an
alternative local characterisation based on Cuypers’ work and on a local recognition
of the graph of hyperbolic lines with perpendicularity as adjacency. This paper can be
viewed as the unitary analogue of the second author’s article (J. Comb. Theory Ser.
A 105:97–110, 2004) on the hyperbolic symplectic geometry.

Keywords Hyperbolic unitary geometry · Root group geometry · Local recognition
graphs · Centralisers of involutions

1 Introduction

The geometry on the points and hyperbolic lines of a non-degenerate finite unitary
polar space (or, short, hyperbolic unitary geometry) is interesting for a number of
reasons.
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One reason is the fact that it belongs to the family of (partially) linear geometries
that are characterised by their planes (Cuypers [6]; restated in part as Theorem 4.6
of the present article). The most famous of such geometries is the projective space,
which by a classical result is characterised as a linear geometry each of whose planes
are projective (Veblen and Young [14], [15]). Another geometry characterised by its
planes is the hyperbolic symplectic geometry (Cuypers [4], Hall [9]). It is closely
related to the hyperbolic unitary geometry: while each plane of the former is dual
affine (also called symplectic), a plane of the latter is either dual affine or linear. (The
linear ones are, in fact, related to classical unitals, cf. [10], [11].)

A second reason why the hyperbolic unitary geometry is an interesting object
to study is the 1-1 correspondence between the set of long root subgroups, resp.
fundamental SL2’s of SUn(q

2) on one hand and the points, resp. hyperbolic lines of
the corresponding unitary geometry on the other hand via the map that assigns the
respective groups to their commutator in the module. This correspondence is well-
known, see e.g. [13, Chapter 2]. Cuypers’ article [5] underscores that root group
geometries are highly interesting objects.

This paper can be viewed as a sister paper of [8] (where the root group geometry
of Sp2n(F) is studied for arbitrary fields) and of [1] (where the authors study the
line graph of a complex vector space endowed with an anisotropic unitary form).
However, the situations covered by the sister papers [1], [8] of this paper are much
more behaved and a lot easier to handle than the situation in this paper. The increased
difficulty compared to [8] originates from the fact that we prove Theorem 1 for n ≥ 7
instead of n ≥ 8 (odd-dimensional non-degenerate symplectic forms do not exist),
while the increased difficulty compared to [1] comes from the fact that subspaces
of non-degenerate subspaces can be very far from being non-degenerate, whereas
subspaces of anisotropic subspaces are anisotropic.

The first result of this paper focuses on the hyperbolic lines and their relative posi-
tions. More precisely, let Un denote an n-dimensional vector space over Fq2 endowed
with a non-degenerate hermitian form. The hyperbolic line graph G(Un) is the graph
on the hyperbolic lines, i.e., the non-degenerate two-dimensional subspaces of Un, in
which hyperbolic lines l and m are adjacent (in symbols l ⊥ m) if and only if l is
perpendicular to m with respect to the unitary form. Equivalently, l ⊥ m if and only
if the corresponding fundamental SL2’s commute.

A graph � is locally homogeneous if and only if for any pair x, y of vertices
of �, the induced subgraphs �(x) and �(y) on the set of neighbours of x, resp. y

are isomorphic. Such a locally homogeneous graph � is called locally �, for some
graph �, if �(x) ∼= � for some, whence all, vertices x of �. It is easily seen (cf.
Proposition 3.3) that the graph G(Un) is locally G(Un−2). Conversely, this property
is characteristic for this graph for sufficiently large n:

Theorem 1 Let n ≥ 7, let q be a prime power, and let � be a connected graph that
is locally G(Un). Then � is isomorphic to G(Un+2), unless (n, q) = (7,2).

The requirement in the preceding theorem that � be connected comes from the fact
that a graph is locally � if and only if each of its connected components is locally �.
So its primary role is to provide irreducibility. We do not know whether the case
(n, q) = (7,2) provides an actual counter example.
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For n ≥ 8 this result has been stated without proof in the second author’s PhD
thesis [7, Theorem 4.5.3]. Since counter examples to the local recognition are only
known for n = 6—they come from the exceptional groups of type 2E6(q

2), see
[13]—publication of this result was deferred until the case n = 7 could be proved.
This has finally been achieved during the preparation of the first author’s PhD thesis.
Comparing the proofs of Lemmata 5.5, 5.6 and 5.7 with the proof of Lemma 5.8, the
reader will understand why the case n = 7 is so much more difficult than the case
n ≥ 8.

As mentioned before, the motivation of our research was of group-theoretic na-
ture. If the field F has characteristic distinct from 2, translating Theorem 1 into the
language of group theory yields the following.

Theorem 2 Let n ≥ 7 and let q be an odd prime power. Let G be a group with
subgroups A and B isomorphic to SL2(q), and denote the central involution of A by
x and the central involution of B by y. Furthermore, assume the following holds:

• CG(x) = A × K with K ∼= SUn(q
2);

• CG(y) = B × J with J ∼= SUn(q
2);

• A is a fundamental SL2 of J ;
• B is a fundamental SL2 of K ;
• there exists an involution in J ∩ K that is the central involution of a fundamental

SL2 of both J and K .

If G = 〈J,K〉, then G/Z(G) ∼= PSUn+2(q
2).

This article is organised as follows: In Sections 2 and 3 we study properties of
the hyperbolic line graph G(Un) for n ≥ 5. Section 4 deals with the relation of the
graph G(Un) with the hyperbolic unitary geometry. In that section we also study em-
beddings of G(Un−2) in G(Un), which provides us with valuable information for the
proof of Theorem 1 that we give in Section 5. Most of our arguments are based on
counting in subspaces of Un of various dimensions and ranks. For the convenience
of the reader we include a collection of results on the number of subspaces of var-
ious types in Appendix A. For quick reference we also give some tables containing
the necessary information in Table 1. A proof of Theorem 2 is not included in this
article, because the problem of how to deduce a result like Theorem 2 from a re-
sult like Theorem 1 has been thoroughly studied in [3, Section 6], [7] and, thus, is
well-understood.

Acknowledgement The authors would like to express their gratitude to Hans Cuypers for helpful dis-
cussions on the topic. They also thank two anonymous referees for a wealth of extremely helpful remarks,
comments, and suggestions.

2 The hyperbolic line graph of U5

Let q ≥ 3 be a prime power and let U5 be a five-dimensional non-degenerate uni-
tary vector space over Fq2 with polarity π . Define the graph G(U5) with the set of
non-degenerate two-dimensional subspaces of U5 as the set of vertices in which two
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vertices l and m are adjacent if and only if l ⊂ mπ . The aim of this section is to recon-
struct the unitary vector space U5 from the graph G(U5). To this end we will define
a point-line geometry G = (I, L,⊃) using intrinsic properties of the graph G(U5)

and establish an isomorphism between G and the geometry on arbitrary points and
hyperbolic lines of U5. From there U5 is easily recovered.

We first determine the diameter of G(U5).

Lemma 2.1 Let l and m be distinct hyperbolic lines of U5. Then l and m have dis-
tance two in G(U5) if and only if the subspace 〈l,m〉 is a non-degenerate plane in
U5.

Proof Let l and m be two hyperbolic lines of U5 which have distance two in G(U5).
That is, the graph G(U5) contains a vertex z, which is a hyperbolic line in U5, adjacent
to the vertices l and m. Its perpendicular space zπ , a non-degenerate plane of U5,
contains the distinct hyperbolic lines l and m. Hence the hyperbolic lines l and m

span the non-degenerate plane zπ .
Conversely, suppose that 〈l,m〉 is a non-degenerate three-dimensional subspace of

U5. Since U5 is a five-dimensional non-degenerate unitary vector space, the pole of
〈l,m〉 is a hyperbolic line h = 〈l,m〉π of U5. By definition the vertex h is adjacent to
the vertices l and m in G(U5). Since the hyperbolic lines l and m intersect in U5, it
follows that l 
⊥ m. Therefore the vertices l and m have distance two in G(U5). �

Lemma 2.2 Let l and m be distinct hyperbolic lines of U5. Then l and m have dis-
tance three in G(U5) if and only if l and m are two non-intersecting hyperbolic lines
such that lπ ∩ m is a one-dimensional subspace of U5.

Proof Suppose the vertices l and m have distance three in the graph G(U5). Then by
Lemma 2.1 we find a vertex z in the graph G(U5) adjacent to l such that 〈z,m〉 is
a non-degenerate plane of U5. The intersection p := m ∩ z is a one-dimensional. As
z ⊆ lπ , the hyperbolic line m intersects the subspace lπ in at least the point p. Since
the vertices l and m are not adjacent in G(U5), we have m 
⊆ lπ , so m ∩ lπ = p.

In order to prove the first implication of the statement it is left to show that the
hyperbolic lines l and m do not intersect in U5. By way of contradiction we as-
sume that 〈m, l〉 is a three-dimensional subspace. The plane 〈l,m〉 is degenerate by
Lemma 2.1, thus lπ ∩ mπ is a singular two-dimensional subspace of U5. Since p,
the intersection point of m and lπ , is incident to the hyperbolic line m, we have
p 
∈ rad(〈m, l〉) and mπ ⊆ pπ , whence mπ ∩ lπ ⊆ pπ ∩ lπ . Of course, p is either
singular or non-degenerate. Furthermore dim(mπ ∩ lπ ) = 2 = dim(pπ ∩ lπ ). Conse-
quently mπ ∩ lπ = pπ ∩ lπ .

If p is a non-degenerate point, then pπ ∩ lπ is a non-degenerate line, contradicting
the fact that mπ ∩ lπ is degenerate. If p is a singular point, then of course pπ ∩ lπ is a
singular two-dimensional subspace s of rank one containing the point p itself and the
radical of pπ ∩ lπ . Therefore p = rad(pπ ∩ lπ ) = rad(mπ ∩ lπ ) = rad(〈m, l〉) 
= p, a
contradiction. Thus 〈m, l〉 has to be a four-dimensional space and the two hyperbolic
lines l and m have a trivial intersection in U5.

Now for the other implication. If l and m are two non-intersecting hyperbolic
lines in U5 such that lπ ∩ m is a one-dimensional subspace p, then, by Lemma 2.1,
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the vertices l and m have not distance one or two in the graph G(U5). To prove the
statement, we construct a hyperbolic line z in the subspace lπ with the property that
the subspace 〈m,z〉 is a non-degenerate plane in U5, implying that l ⊥ z and that the
distance between the vertices z and m in G(U5) is two, by Lemma 2.1.

Consider the subspace lπ perpendicular to l and two points p ∈ lπ ∩ m and x ∈
lπ ∩mπ . Note that p and x are uniquely determined by the assumptions that dim(lπ ∩
m) = 1 and dim(〈l,m〉) = 4 in U5. Moreover p ∈ xπ since p ∈ m and x ∈ mπ .

If both the point p and the point x are non-degenerate, then z = 〈p,x〉 is a hyper-
bolic line contained in lπ , since p and x are perpendicular to each other as noted be-
fore. Furthermore 〈m,x〉 is a non-degenerate plane of U5 due to the fact that x ∈ mπ ,
proving the statement in this special case.

If p is singular and x is non-degenerate, then 〈p,x〉 is a singular line of rank one,
because p ∈ xπ as mentioned above. We consider the q2 − q hyperbolic lines hi ,
1 ≤ i ≤ q2 − q , in lπ incident to x, cf. Table 1, entry n + l = 2, n = 2, r = 1. Any
two different hyperbolic lines hi and hj span the plane lπ and each subspace hπ

i is
a non-degenerate plane in xπ for 1 ≤ i < j ≤ q2 − q . Moreover, the intersection of
hπ

i with the hyperbolic line m is a point ri = hπ
i ∩ m in xπ with ri 
= rj for 1 ≤

i < j ≤ q2 − q . Indeed, m 
⊆ hπ
i , because hi ∩ mπ is the one-dimensional subspace

x for each hyperbolic line hi . If ri = rj for i 
= j , then we obtain ri = hπ
i ∩ m =

rj = hπ
j ∩ m = hπ

i ∩ hπ
j ∩ m = 〈hi, hj 〉π ∩ m = l ∩ m = {0}, a contradiction. Thus

we have q2 − q different one-dimensional subspaces ri on the hyperbolic line m.
Hence the line m contains a non-degenerate point r = rk for some k ∈ {1, . . . , q2 −q},
because q2 − q > q + 1 for q ≥ 3, where q + 1 is the number of singular points on a
hyperbolic line (cf. Table 1 on page 581). Note that the points r and p span together
the hyperbolic line m. Note also that rπ ∩ lπ = hk . For, rπ

i = (hπ
i ∩ m)π = 〈hi,m

π 〉,
so rπ contains hk ; since lπ contains hk as well and since rπ ∩ lπ is two-dimensional,
we have rπ ∩ lπ = hk . As follows from Table 1 all points on the hyperbolic line hk

different from the point x generate together with the point p a non-degenerate two-
dimensional subspace of lπ . Therefore the hyperbolic line hk contains q2 − q − 1
different non-degenerate points yi such that 〈yi,p〉 is a hyperbolic line. Furthermore
the span of the two hyperbolic lines m and hk is a four-dimensional space of rank at
least three, since 〈r, hk〉 ⊆ 〈m,hk〉 and rk(〈r, hk〉) = rk(〈r, rπ ∩ lπ 〉) = 3.

If the four-dimensional space 〈m,hk〉 is non-degenerate, Table 1 implies that the
hyperbolic line hk contains at least q2 − 2q − 2 > 0 (recall that q ≥ 3) different non-
degenerate points zi such that 〈zi,p〉 = z is a hyperbolic line and 〈m,z〉 = 〈r,p, zi〉
is a non-degenerate plane. Alternatively, if the rank of the four-dimensional space
〈m,hk〉 is three then, by the information from Table 1, the hyperbolic line hk contains
at least q2 −q −2 > 0 different non-degenerate points zi , which satisfy the conditions
that 〈zi,p〉 = z is a hyperbolic line and 〈m,z〉 = 〈r,p, zi〉 is a non-degenerate plane
and we are done in this case.

Next we assume the point p to be non-degenerate and the point x to be singular.
Then the hyperbolic line h = lπ ∩ pπ is incident to the singular point x = lπ ∩ mπ ,
because p is incident to m. Moreover the non-degenerate point r = pπ ∩ m and the
hyperbolic line h span a plane P of rank two or three. As follows from the information
from Table 1 the plane P contains at least q2 − q different hyperbolic lines incident
to the point r . Certainly, the intersections of these q2 − q hyperbolic lines with h
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are pairwise distinct as follows by arguments similar to the ones used above. At least
q2 − 2q − 1 of those intersection points are non-degenerate. Choosing one of those,
say a, the line z = 〈a,p〉 ⊂ lπ is a hyperbolic line, as a ∈ pπ . The plane 〈m,z〉 =
〈r,p, a〉 has a Gram matrix (with respect to some suitably chosen basis in r , p, and

a) of the form

(
1 0 0
0 1 γ

0 γ 1

)
. This matrix has a non-zero determinant as follows from the

fact that z is a hyperbolic line, so 〈m,z〉 is non-degenerate. Again, by Lemma 2.1 we
are finished in this case.

The case that both points x and p are singular does not occur, as otherwise the non-
degenerate plane lπ would contain the totally singular line 〈x,p〉, a contradiction. �

Lemma 2.3 Let l and m be two different hyperbolic lines of U5. Then l and m have
distance four in G(U5) if and only if either

• l and m are two non-intersecting lines such that lπ ∩ m is trivial in U5, or
• l and m are two intersecting lines spanning a degenerate plane in U5.

Proof Let l and m be two vertices in the graph G(U5) at mutual distance four. If
the subspace 〈l,m〉 is a non-degenerate plane, then l and m have distance two by
Lemma 2.1. Therefore, if 〈l,m〉 is a plane, then 〈l,m〉 is a degenerate subspace of
U5. Alternatively, if 〈l,m〉 is a four-dimensional subspace in U5 and lπ ∩ m 
= {0},
then l and m have distance one in G(U5) by definition or distance three in G(U5)

by Lemma 2.2, a contradiction again. It follows that, if the subspace 〈l,m〉 is of
dimension four, then lπ ∩ m is trivial.

In order to show the converse implication of the statement, let 〈l,m〉 be either
a degenerate plane or a four-dimensional subspace such that lπ ∩ m = {0}. By the
Lemma 2.1 and Lemma 2.2 the vertices l and m do not have distance one, two, or
three in G(U5). Therefore it is enough to find a path of length four in G(U5) between
the vertices l and m to finish the proof of this lemma.

We choose a hyperbolic line z in lπ intersecting the space mπ in a point. Such a
choice is possible, because lπ is non-degenerate and the intersection lπ ∩ mπ is non-
trivial and properly contained in lπ . By construction the vertices l and z are adjacent
in G(U5). By the above m ∩ lπ is trivial. Hence m and z do not intersect, but satisfy
the condition dim(z ∩mπ) = 1. So m and z have distance three in the hyperbolic line
graph G(U5) by Lemma 2.2 and, thus, the distance between the vertices l and m is
four in G(U5). �

Proposition 2.4 The graph G(U5) is a connected locally G(U3) graph of diameter
four.

Proof For any singular point p in the orthogonal space lπ of a hyperbolic line l in U5,
the subspace 〈l, p〉 is of dimension three and rank two. As follows from Lemma A.1
it is possible to choose a hyperbolic line m different from l in the plane 〈l, p〉. Thus l

and m span the degenerate plane 〈l, p〉 and hence the vertices l and m have distance
four in G(U5) by Lemma 2.3. The statement about the diameter follows now from
the fact that two hyperbolic lines cannot form a configuration other than adjacency
and the ones described in 2.1 to 2.3. The local property is obvious. �
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Remark 2.5 Let l and m be two arbitrary vertices of the hyperbolic line graph G(U5).
An important induced subgraph of G(U5) is the common perp of the vertices l and m.
If the induced subgraph {l,m}⊥ is not empty, then the subspace 〈l,m〉π of U5 contains
some hyperbolic line. We observe that {l,m}⊥ 
= {0} in G(U5) if and only if l and
m have distance two in G(U5). Indeed if l and m are at distance two in G(U5),
then the hyperbolic lines l and m span a non-degenerate plane in U5 and 〈l,m〉π
is a hyperbolic line, by Lemma 2.1. In all other cases 〈l,m〉 is a four-dimensional
subspace (and therefore 〈l,m〉π is a single point of U5) or the hyperbolic lines l and
m span a degenerate planes (which implies that 〈l,m〉π is a rank one line). Thus in
these cases the subgraph {l,m}⊥ is the empty graph. Of course, if the vertices l and m

have distance one in G(U5), then 〈l,m〉 is a four dimensional non-degenerate space
in the unitary vector space U5 and lπ ∩ mπ = 〈l,m〉π is a non-degenerate point of
U5.

Definition 2.6 Let W be a subspace of U5. The set of all hyperbolic lines of W is
denoted by L(W).

Lemma 2.7 Let l and m be two distinct vertices of G(U5) with {l,m}⊥ 
= ∅. Then
{l,m}⊥⊥ = L(〈l,m〉).

Proof Let l and m be two distinct vertices in G(U5) such that {l,m}⊥ is not
empty. Due to Remark 2.5 the vertices l and m have distance two in G(U5) and
it follows that the graph {l,m}⊥ is the single vertex 〈l,m〉π . Thus we obtain the
equalities {l,m}⊥⊥ = ({l,m}⊥)⊥ = ⋂

z∈{m,l}⊥ z⊥ = (〈l,m〉π )⊥ = L((〈l,m〉π )π ) =
L(〈l,m〉). �

It will prove useful to know whether two hyperbolic lines intersect in the projective
space (i.e., the two hyperbolic lines span a plane in the projective space) or not (i.e.,
they span a four-dimensional space in the projective space). Lemmas 2.1 to 2.3 show
that in order to distinguish the above two cases, we have to study vertices of G(U5)

at mutual distance three or four more thoroughly.

Lemma 2.8 If l and m are two non-intersecting hyperbolic lines of U5 such that
lπ ∩ m is a point p, then in the graph G(U5) the number of different paths of length
three between l and m is at most q2. On the other hand, this number is at least
q2 − q − 1 if p is a singular point and at least q2 − 2q − 1 if p is a non-degenerate
point.

Proof Let h be an arbitrary neighbor of l in G(U5), i.e., h ⊂ lπ . By Lemma 2.1 there
exists a common neighbor k of h and m (and, thus, a path of length three from l to
m through h) if and only if 〈h,m〉 is a non-degenerate plane. In fact, if 〈h,m〉 is a
non-degenerate plane, then k is uniquely determined as 〈h,m〉π . Therefore it suffices
to study all non-degenerate planes E with m ⊆ E ⊆ 〈m, lπ 〉 such that E ∩ lπ is a
non-degenerate line.

Let us first deduce the upper bound in the statement of the lemma from the ob-
servations made in the above paragraph. If p = lπ ∩ m is a singular point, then q2
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different hyperbolic lines and exactly one singular line of the orthogonal space lπ run
through the point p by Table 1, entry n+ l = 2, n = 1, r = 1 and r = 0. If p = lπ ∩m

is a non-degenerate point, then q2 − q different hyperbolic lines and q + 1 distinct
singular lines are incident to the point p in the subspace lπ . Hence there are at most
q2 paths from l to m.

Next we want to establish the respective lower bounds. Regard the four-
dimensional subspace W = 〈m, lπ 〉, which is of rank three or four. In the subspace W

the hyperbolic line m is contained in q2 + 1 different planes Ei by Lemma A.1. Each
plane Ei of W intersects the non-degenerate plane lπ in a line, by the dimension
formula and because m 
⊆ lπ . Since p ∈ lπ is incident to each plane Ei , every line
hi = Ei ∩ lπ runs through p. Moreover the lines hi are mutually distinct, because the
identity hi = hj implies Ei = 〈hi,m〉 = 〈hj ,m〉 = Ej .

If the subspace W is of rank four, then the hyperbolic line m lies on q2 −q different
non-degenerate planes Em

i by Table 1. Therefore we obtain q2 − q different lines
Em

i ∩ lπ = hm
i incident to the point p in the subspace lπ . At least q2 − q − 1 lines of

the q2 −q lines hm
i are hyperbolic lines, if p is a singular point, due to Table 1. On the

other hand, if p is a non-degenerate point, then at least q2 −q − (q +1) = q2 −2q −1
lines of the q2 −q lines hm

i are hyperbolic lines by Table 1 again. Alternatively if W is
of rank three, then exactly q2 different non-degenerate planes Em

i are incident to the
hyperbolic line m by Table 1. Hence we obtain q2 different lines Em

i ∩ lπ = hm
i in the

non-degenerate plane lπ containing the point p. By Table 1, at least q2 − 1 of these
q2 lines hm

i are non-degenerate, if p is a singular point and at least q2 − (q + 1) =
q2 − q − 1 lines are non-degenerate, if p is a non-degenerate point. �

Lemma 2.9 If l and m are two non-intersecting hyperbolic lines of U5 which are at
distance four in the graph G(U5), then there are at most q4 different paths of length
four from l to m.

Proof By Lemma 2.3 we have dim(〈l,m〉) = 4 with lπ ∩ m = {0}. A neighbor h of
l in G(U5) is at distance three from the vertex m if and only if dim(〈h,m〉) = 4 and
dim(h ∩ mπ) = 1 by Lemma 2.2. Thus h is a hyperbolic line in lπ passing through
the point x := 〈l,m〉π . If the one-dimensional subspace x is singular, then lπ contains
q2 different hyperbolic lines hl

i incident with x by Table 1. If x is non-degenerate
point, then, by Table 1 again, there are q2 − q hyperbolic lines through x in lπ . By
Lemma 2.2 the vertices m and hl

i are at distance three in G(U5). Combining the above
numbers with Lemma 2.8 we obtain at most q2 · q2 = q4 paths from l to m. �

Lemma 2.10 If l and m are two intersecting hyperbolic lines spanning a degenerate
plane, then the hyperbolic line graph G(U5) contains at least q6 − 3q5 + 2q4 − q2

different paths of length four from l to m.

Proof If h is a neighbor of l, then the vertex h is at distance three from m in G(U5)

if and only if dim(〈h,m〉) = 4 and dim(h ∩ mπ) = 1 in U5 by Lemma 2.2. Conse-
quently h is a hyperbolic line in the polar space lπ of l such that 〈l,m〉π ∩ h is a
one-dimensional subspace. Since the rank one line 〈l,m〉π contains exactly one sin-
gular point x and q2 non-degenerate points pi (see Table 1), the non-degenerate plane



J Algebr Comb (2010) 31: 547–583 555

lπ contains q2 hyperbolic lines hxi
incident to the point x. Each non-degenerate point

pi admits q2 − q incident hyperbolic lines hpi,j of lπ . Certainly, all those hyperbolic
lines hxi

and hpi,j are pairwise distinct as otherwise they would coincide with the line
〈l,m〉π . By Lemma 2.8 we have at least q2 − q − 1 different paths of length three in
G(U5) between each vertex hxi

and the vertex m and not less than q2 − 2q − 1
different paths of length three in G(U5) from each vertex hpi,j to the vertex m,
again. Accordingly we obtain at least q2(q2 − q − 1) + q2(q2 − q)(q2 − 2q − 1) =
q6 −3q5 +2q4 −q2 different paths of length four from l and m in the graph G(U5). �

Lemma 2.11 Two different vertices l and m of distance four in G(U5) intersect in a
point in the vector space U5 if and only if the number of different paths of length four
between l and m in G(U5) is greater than q4.

Proof Since q ≥ 3, we have q6 − 3q5 + 2q4 − q2 > q4, so the claim follows from
Lemma 2.9 and Lemma 2.10. �

Lemma 2.12 Two distinct vertices l and m of the hyperbolic line graph G(U5) in-
tersect in a common point in U5 if and only if either

• the subgraph {l,m}⊥ is not empty, or
• the vertices l and m have distance four in G(U5) and there are more than q4

different paths of length four from l to m.

Proof This is an immediate consequence of Lemma 2.1 to Lemma 2.3 together with
statements of Lemma 2.11, Lemma 2.7 and Remark 2.5. �

In the next step we want to recover all points of the space U5 as pencils of hyper-
bolic lines. Therefore we need a construction to check in the graph G(U5) whether
three distinct lines of U5 intersect in one point or not. Therefore take the following
characterisation: three different hyperbolic lines k1, k2 and k3 of U5 intersect in one
point if we can find a hyperbolic line s in U5 such that

• the plane 〈s, ki〉 is non-degenerate for 1 ≤ i ≤ 3 and s 
= ki ,
• 〈s, k1, k2〉 is a four-dimensional space in U5.

The same statement in terms of graph language is that three different vertices k1,
k2 and k3 of G(U5) intersect in one point if we can find a vertex s of G(U5) with the
following properties:

• the induced subgraph {s, ki}⊥ is not empty for i ∈ {1,2,3} and s 
= ki ,
• {s, k1, k2}⊥ is the empty graph.

To verify the claim that every one-dimensional subspace of the U5 can be detected
by three pairwise intersecting distinct vertices k1, k2 and k3 of G(U5) as stated above,
we have to show that we can find a vertex s in G(U5) such that {s, k1, k2}⊥ = ∅ and
{s, ki}⊥ 
= ∅ for i = 1,2,3 and s 
= ki . This will be proved in the next lemma.

Lemma 2.13 Let k1, k2 and k3 be three distinct hyperbolic lines of U5, which inter-
sect in a one-dimensional subspace p. Then the unitary polar space U5 contains a



556 J Algebr Comb (2010) 31: 547–583

hyperbolic line l with the properties that 〈k1, k2, l〉 is a four-dimensional space and
that 〈l, ki〉 is a non-degenerate plane for i = 1,2,3 and l 
= ki .

Proof In the unitary polar space U5 every hyperbolic line k is incident to q4 −q3 +q2

different non-degenerate planes Ek
j and to q3 + 1 different singular planes Sk

i in U5

as follows from Lemma A.1. For the hyperbolic line k1 we obtain the q4 − q3 + q2

different non-degenerate planes E
k1
j and consider in each of these the hyperbolic lines

h
E

k1
j

r containing the point p. If p is a singular point then in each plane E
k1
j there are

q2 − 1 different hyperbolic lines h
E

k1
j

r incident to p and different from the hyperbolic
line k1 by Table 1. Alternatively, if p is a non-degenerate point, then in each plane

E
k1
j we find q2 − q − 1 different hyperbolic lines h

E
k1
j

r passing through the point
p, which are different from the hyperbolic line k1, using Table 1 again. Recall that
E

k1
i ∩ E

k1
j = k1 if and only if the planes are different, which leads to the fact that a

hyperbolic lines h
E

k1
j

r is not incident to the non-degenerate plane E
k1
i if and only if

i 
= j . Therefore, if p is non-degenerate point, then in the unitary vector space U5
there are (q4 − q3 + q2 − 1)(q2 − q − 1) = q6 − 2q5 + q4 − 2q2 + q + 1 different

hyperbolic lines h
E

k1
j

r incident to the point p, different from the hyperbolic line k1 and
not lines of the plane 〈k1, k2〉. Alternatively, if p is a singular point, then the polar
space U5 contains (q4 − q3 + q2 − 1)(q2 − 1) = q6 − q5 + q3 − 2q2 − 1 different

hyperbolic lines h
E

k1
j

r with the same properties as above.
Next we consider the singular planes S

k2
j and S

k3
i in U5. The point p is not con-

tained in the radicals of the planes S
ki

j , because the hyperbolic lines k2 and k3 are

passing through the point p, and thus in each rank two plane S
ki

j are q2 − 1 dif-

ferent hyperbolic lines l
S

ki
j

r incident to p and different from the hyperbolic line ki .
Therefore in the planes Sk2,j and Sk3,j are together at most 2(q2 − 1)(q3 + 1) =
2q5 − 2q3 + 2q2 − 2 different hyperbolic lines l

S
ki
j

r with the assumed properties.
If p is a non-degenerate point, then q6 − 2q5 + q4 − 2q2 + q + 1 − (2q5 − 2q3 +

2q2 −2) = q6 −4q5 +q4 +2q3 −4q2 +3 > 0. This implies that U5 contains a hyper-
bolic line s which intersects each hyperbolic line ki for i = 1,2,3 and such that the
planes 〈s, ki〉 are non-degenerate for i = 1,2,3 and 〈s, k1, k2〉 is a four-dimensional
space.In the other case, if p is singular, then q6 − q5 + q3 − 2q2 − 1 − (2q5 − 2q3 +
2q2 − 2) = q6 − 3q5 + 3q3 − 4q2 + 1 > 0, and such a hyperbolic line s exists as
well. �

Definition 2.14 Let � be graph isomorphic to G(U5). Two different vertices k and l

of � are defined to intersect if

• either the induced subgraph {k, l}⊥ is not empty, or
• the vertices k and l have distance four in � and the number of different paths of

length four between l and m in G(U5) is greater than q4.
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Three distinct pairwise intersecting vertices k1, k2 and k3 of � are defined to intersect
in one point if there is a vertex s of � with the following properties:

• the induced subgraph {s, ki}⊥ is not empty for i ∈ {1,2,3} and s 
= ki ,
• {s, k1, k2}⊥ is the empty graph.

An interior point of the graph � is a maximal set p of distinct pairwise intersect-
ing vertices of � such that any three elements of p intersect in one point. We denote
the set of all interior points of � by I . Moreover, an interior line of the graph � is a
vertex of the graph �. The set of all interior lines of � is denoted by L.

The discussions in this section imply the following result.

Proposition 2.15 Let � be a graph isomorphic to G(U5). Then the geometry
(I, L,⊃) is isomorphic to the geometry on arbitrary one-dimensional subspaces and
non-degenerate two-dimensional subspaces of the unitary polar space U5.

3 The hyperbolic line graph of Un, n ≥ 6

Let q be a prime power, let n ≥ 6, and let Un be an n-dimensional non-degenerate
unitary vector space over Fq2 with polarity π . Let G(Un) be the graph with the set
of non-degenerate two-dimensional subspaces of Un as set of vertices in which two
vertices l and m are adjacent if and only if l ⊂ mπ . In anology to the preceding
section, the aim of this section is to reconstruct the unitary vector space Un from the
hyperbolic line graph G(Un).

Proposition 3.1 Let n ≥ 8. Then G(Un) is a connected graph of diameter two.

Proof Let l and k be two distinct vertices of the graph G(Un). The space H = 〈l, k〉
has dimension three or four. Since it contains the hyperbolic lines l and m, the rank of
H is at least two. Hence the radical of H has dimension at most two. The space Hπ

has dimension at least four and rank at least two, since rad(Hπ) = rad(H). Therefore
Hπ = 〈k, l〉π = kπ ∩ lπ contains a hyperbolic line h, so that the distance between the
vertices l and k is at most two. As G(Un) obviously admits non-adjacent vertices, the
diameter of G(Un) is two. �

Proposition 3.2 The graphs G(U6) and G(U7) are connected of diameter three.

Proof We first study the graph G(U6). Let l and m be distinct vertices of G(U6).
Then P = 〈l,m〉 is a three- or four-dimensional subspace of U6.

Assume first that P = 〈l,m〉 is a plane. Then the planes P and P π have rank two
or three, because the hyperbolic line l and m are proper subspaces of P . Therefore
the plane P π contains a hyperbolic line h and thus the vertices l and m have distance
two in G(U6).

If P = 〈l,m〉 is a four-dimensional subspace of U6, then P is of rank two, three,
or four. In the case that P is a non-degenerate subspace, then of course P π is a
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hyperbolic line and the vertices l and m have distance two. Finally, we assume that
the four-dimensional space P is a singular subspace of U6. We fix a point x in the
radical of P . Then x is incident to the perpendicular space lπ of the hyperbolic line l,
which is a non-degenerate four-dimensional subspace of U6. We choose a hyperbolic
line h in lπ passing through the point x in lπ and certainly the vertex h is adjacent to
l in the hyperbolic line graph G(U6). If 〈h,m〉 is a plane, then there exists a common
neighbor of h and m by the above, yielding a path of length three from l to m in
G(U6). Hence we can assume that subspace of 〈h,m〉 is of dimension four. The rank

of this space is four as well. Indeed, the Gram matrix of 〈m,h〉 is G =
( 0 1 0 α

1 0 0 β

0 0 0 δ

α β δ γ

)
with

respect to a basis vm
1 , vm

2 , xh, vh
2 of 〈m,h〉 such that the pair of vectors vm

1 , vm
2 is a

hyperbolic pair of is line m, the vector xh is some non-trivial vector of the point x and
vh

2 is a non-trivial vector of a non-degenerate point of the line h. So (xh, vh
2 ) = δ 
= 0.

But that implies that the Gram matrix has determinant δδ 
= 0 and, hence, 〈m,h〉 is of
dimension four. By the above h and m have distance two, so the vertices l and m are
at mutual distance at most three in G(U6).

We now turn our attention to the graph G(U7). Let l and m be distinct vertices of
G(U7). Since the subspace 〈l,m〉 has dimension at most four and rank at least two,
there exists a non-degenerate six-dimensional subspace W of U7 containing l and m.
By the above, the vertices l and m have distance at most three in the hyperbolic line
graph G(W), which is a subgraph of G(U7). Whence the diameter of G(U7) is at
most three.

In order to establish that the diameter of the graphs G(U6) and G(U7) is three,
we have to find vertices that are not at mutual distance one or two. Choose a four-
dimensional rank two subspace H of U6 respectively of U7. By Table 1 the subspace
H contains q8 hyperbolic lines and any point of this space is incident to q4 + q2 + 1
different lines. Since q8 ≥ (q2 + 1) · (q4 + q2 + 1) = q6 + q4 + q2 + 1 we find two
non-intersecting hyperbolic lines l and m of U6 resp. U7 spanning the subspace H .
The pole 〈l,m〉π = Hπ has dimension two or three, respectively, and rank zero or
one, respectively. Hence G(U6) resp. G(U7) do not contain a common neighbor of l

and m. Therefore the diameter of G(Un) with 6 ≤ n ≤ 7 is three. �

The next proposition describes two key properties of the hyperbolic line graph
G(Un) which will turn out to characterise G(Un) for n ≥ 9 (cf. Theorem 1).

Proposition 3.3 Let n ≥ 5. The hyperbolic line graph G(Un) is connected, unless
(n, q) = (5,2), and locally G(Un−2).

Proof See Propositions 2.4, 3.1, 3.2. The local property is obvious. �

Definition 3.4 Let W be a subspace of Un. The set of all hyperbolic lines of W is
denoted by L(W).

Lemma 3.5 Let n ≥ 6 and let l and m be two distinct vertices of the graph G(Un)

such that {l,m}⊥ 
= ∅. Then {l,m}⊥⊥ = L(〈l,m〉).
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Proof Since {l,m}⊥⊥ = ({l,m}⊥)⊥ = ⋂
z∈{l,m}⊥ z⊥ = ⋂

z∈{l,m}⊥ L(zπ ), obviously

L(〈l,m〉) ⊆ {l,m}⊥⊥.
Conversely, let k be a hyperbolic line of Un not incident to the subspace 〈l,m〉.

Then, of course, 〈l,m〉π 
⊆ kπ . The statement is proved, if we can find a hy-
perbolic line h ⊆ 〈l,m〉π , which is not incident to the perpendicular space kπ .
From the assumption that the induced subgraph {l,m}⊥ is not empty it follows
that rad(〈l,m〉π ) is properly contained in the subspace 〈l,m〉π . We claim that the
unitary space Un contains some point y in the set 〈l,m〉π\(kπ ∪ rad(〈l,m〉π )).
If rad(〈l,m〉π ) ⊆ kπ then by De Morgan’s laws 〈l,m〉π\(kπ ∪ rad(〈l,m〉π )) =
〈l,m〉π\kπ ∩ 〈l,m〉π\ rad(〈l,m〉π ) = 〈l,m〉π\ rad(〈l,m〉π ) and, of course, the set
〈l,m〉π\ rad(〈l,m〉π ) contains some point y. On the other hand, if rad(〈l,m〉π ) 
⊆ kπ ,
then rad(〈l,m〉π ) ∪ kπ is not a subspace of the vector space Un and 〈l,m〉π is nei-
ther a subspace of rad(〈l,m〉π ) nor a subspace of kπ , thus the set 〈l,m〉π\(kπ ∪
rad(〈l,m〉π )) contains a point y.

An arbitrary two-dimensional subspace g of Un containing the point y intersects
the set kπ ∪ rad(〈l,m〉π ) in at most two points by the fact that dim(kπ ∩ g) as well as
dim(rad(〈l,m〉π ) ∩ g) is at most one. Therefore, we choose a hyperbolic line passing
through y in 〈l,m〉π and find a singular point x ∈ 〈l,m〉π\(kπ ∪ rad(〈l,m〉π )). Using
x 
⊆ rad(〈l,m〉π ) we obtain a hyperbolic line h in 〈l,m〉π incident to the point x

which is not contained in the subspace kπ . The lemma is now proved. �

A similar conclusion can be shown for three different vertices in the graph G(Un).

Lemma 3.6 Let n ≥ 6 and k, l and m be three distinct vertices in G(Un). Suppose the
hyperbolic lines k, l, m intersect in a common point of Un and satisfy {k, l,m}⊥ 
= ∅.
Then L(〈k, l,m〉) = {k, l,m}⊥⊥.

Proof By assumption the subspace spanned by the hyperbolic lines k, l, m is of
dimension three or four. Denote the common intersection of the three hyperbolic
lines by p.

Suppose 〈l, k,m〉 is a plane. Then m is a hyperbolic line of 〈l, k〉 and, thus,
〈l, k,m〉 = 〈l, k〉. Using Lemma 3.5 we obtain that L(〈l, k,m〉) = L(〈l, k〉) =
{l, k}⊥⊥.

If 〈l, k,m〉 is a four-dimensional subspace, we want to find a hyperbolic line h such
that 〈l, k,m〉 = 〈l, h〉. In case 〈l, k,m〉 has rank four, we choose h = lπ ∩ 〈l, k,m〉.
If the subspace 〈l, k,m〉 has rank two, take as h an arbitrary line in the complement
of both l and rad(〈l, k,m〉). Indeed, we can find such a line h in 〈l, k,m〉 by the
fact that at most 2q6 + 4q4 + 4q2 + 2 of the q8 + q6 + 2q4 + q2 + 1 different lines
of 〈l, k,m〉 intersect l or rad(〈l, k,m〉). Certainly, h is a hyperbolic line since every
complement of the radical of 〈l, k,m〉 is non-degenerate. Finally, if 〈l, k,m〉 has rank
three, then consider the rank two plane P = 〈k, rad(〈l, k,m〉). Since the hyperbolic
lines k and l are distinct and intersect in a common point we have dim(l ∩ P) = 1.
Moreover the radical of P coincides with the point rad(〈l, k,m〉). In the plane P we
choose the line h in the complement of both rad(〈l, k,m〉) and l ∩ P . Certainly the
subspace h is non-degenerate. It follows from the construction that 〈l, h〉 = 〈l,P 〉 =
〈l, k, rad(〈l, k,m〉)〉 = 〈k, l,m〉 and, by Lemma 3.5, that L(〈l, k,m〉) = L(〈l, h〉) =
{l, h}⊥⊥.
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For suitable g ∈ {h, k}, the equality between {l, k,m}⊥⊥ and {l, g}⊥⊥ follows from
the fact that {l, k,m}⊥⊥ = ({l, k,m}⊥)⊥ = ⋂

z∈{l,k,m}⊥ z⊥ = ⋂
z∈l⊥∩k⊥∩m⊥ z⊥ =⋂

z∈L(lπ )∩L(kπ )∩L(mπ ) z
⊥ = ⋂

z∈L(〈l,k,m〉π ) z
⊥ = ⋂

z∈L(〈l,g〉π ) z
⊥ = ⋂

z∈{l,g}⊥ z⊥ =
{l, g}⊥⊥. �

Our main goal in this section is to construct a point-line geometry from the graph
G(Un) which is isomorphic to the geometry on arbitrary one-dimensional subspaces
and non-degenerate two-dimensional subspaces of Un. We use the vertices of G(Un)

as lines. The points are going to be defined as pencils of lines. Therefore we now
study properties of vertices of G(Un) that allow us to characterise the situation when
they correspond to intersecting hyperbolic lines of G(Un).

Lemma 3.7 Let n ≥ 6. Two hyperbolic lines l and m intersect in a common point
in the unitary polar space Un if and only if {l,m}⊥ is non-empty and {l,m}⊥⊥ is
minimal in G(Un) with respect to inclusion (i.e. for any pair of distinct hyperbolic
lines s1, s2 ∈ {l,m}⊥⊥ we have {s1, s2}⊥⊥ = {l,m}⊥⊥).

Proof Assume that two distinct hyperbolic lines l and m intersect in the point p in
Un, so that 〈l,m〉 is a plane of rank two or three. Since n ≥ 6, the pole 〈l,m〉π of
the plane 〈l,m〉 is a subspace of dimension at least three, which contains a hyper-
bolic line, since dim(rad(〈l,m〉π ) = dim(rad(〈l,m〉) ≤ 1. Hence {l,m}⊥ 
= ∅. Using
Lemma 3.5, we have {l,m}⊥⊥ = L(〈l,m〉). It follows immediately that {l,m}⊥⊥ is
minimal in G(Un) with respect to inclusion.

Conversely, assume l and m do not intersect. Therefore 〈l,m〉 is four-dimensional
of rank two, three, or four. There exists a plane P of rank two in 〈l,m〉 contain-
ing distinct hyperbolic lines s1 and s2 spanning P . Lemma 3.5 yields {s1, s2}⊥⊥ =
L(〈s1, s2〉) � L(〈l,m〉), thus {l,m}⊥⊥ is not minimal in G(Un) with respect to inclu-
sion. �

We now generalise Lemma 3.7 to the situation of three lines. Three distinct pair-
wise intersecting hyperbolic lines k1, k2, k3 intersect in one point in Un, if we can
find a hyperbolic line s such that:

• the hyperbolic line s intersects each hyperbolic line ki with s 
= ki for 1 ≤ i ≤ 3,
and

• the space 〈s, k1, k2〉 is of dimension four.

Translated into graph language the above conditions say that three different mutually
intersecting vertices k1, k2, k3 intersect in one point if there exists a vertex s of G(Un)

such that:

• {s, ki}⊥ 
= ∅ and {s, ki}⊥⊥ is minimal in G(Un) with respect to inclusion, if ki 
= s,
for 1 ≤ i ≤ 3 (cf. Lemma 3.7), and

• {k1, k2}⊥⊥ = L(〈k1, k2〉) � L(〈k1, k1, s〉) = {k1, k2, s}⊥⊥.

Observe that for any two intersecting hyperbolic lines l and m, there indeed exists
a hyperbolic line s in the vector space Un such that 〈l,m, s〉 is a four-dimensional
space and {l,m, s}⊥ 
= ∅.
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Definition 3.8 Let n ≥ 6 and let � be graph isomorphic to G(Un). Two vertices k

and l of � are defined to intersect if both {k, l}⊥ 
= ∅ and {k, l}⊥⊥ is minimal in
� with respect to inclusion. Three mutually intersecting vertices k1, k2, k3 of � are
defined to intersect in one point if there exists a vertex s in � with the following
properties:

• the vertex s intersect with each vertex ki , if s 
= ki , for 1 ≤ i ≤ 3,
• {k1, k2, s}⊥ 
= ∅ and {k1, k2}⊥⊥ = L(〈k1, k2〉) � L(〈k1, k1, s〉) = {k1, k2, s}⊥⊥.

An interior point of the graph � is a maximal set p of distinct pairwise intersecting
vertices of � such that any three elements of p intersect in one point. We denote the
set of all interior points of � by I . Moreover, an interior line of the graph � is a
vertex of the graph �. The set of all interior lines of � is denoted by L.

The discussions in this section yield the following.

Proposition 3.9 Let n ≥ 6 and let � be a graph isomorphic to G(Un). Then the point-
line geometry (I, L,⊃) is isomorphic to the geometry on arbitrary one-dimensional
subspaces and non-degenerate two-dimensional subspaces of Un.

4 The hyperbolic geometry and its subspaces

We still have to distinguish singular one-dimensional subspaces from non-degenerate
one-dimensional subspaces in the geometry (I, L) from Propositions 2.15 and 3.9.

Definition 4.1 Let p be an interior point of �. By Lemma A.1 the number Np of

hyperbolic lines incident to p is either equal to q2(n−2) or equal to qn−2·(qn−1−(−1)n−1)
q+1 .

We call p an interior singular point of �, if Np = q2(n−2), and an interior non-
singular point otherwise.

Notation We denote by H(Un) the geometry of singular points and hyperbolic lines
of an n-dimensional non-degenerate unitary polar space Un over the field Fq2 .

Proposition 4.2 Let G = (P , L) be the point-line geometry on interior singular
points and on interior lines of �. Then G = (P , L) ∼= H(Un).

Proof This is obvious by Propositions 2.15 and 3.9. �

Corollary 4.3 The automorphism group of G(Un) is isomorphic to the automor-
phism group of the unitary space Un.

Proof Obviously, each automorphism of Un induces an automorphism of G(Un). �

Definition 4.4 Let n ≥ 5 and let � be a graph isomorphic to G(Un). Then the point-
line geometry G = (P , L) from Proposition 4.2 is called the interior hyperbolic
space on �.
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In Section 5 we will define geometry similar to the one in Proposition 4.2 on an
arbitrary connected locally G(Un) graph for n ≥ 7. It is far from obvious how to
determine the isomorphism type of that geometry, and accomplishing this task will
take most of Section 5. The key tool will be [6, Theorem 1.2], which we restate below
as Theorem 4.6 for the reader’s convenience. Before doing so some explanation of
notation and terminology in the context of point-line geometries is due.

Definition 4.5 Let G = (P,L) be a point-line geometry. A subspace X of G is a
subset of the point set P such that any line of L intersecting the set X in at least
two points is completely contained in X. Using the observation that the intersection
of subspaces again is a subspace, we define for each subset Y of the point set P the
subspace 〈Y 〉 generated by Y to be the intersection of all subspaces of G containing
the set Y . Hence 〈Y 〉 denotes the smallest subspace of G containing Y . A plane is
a subspace of G generated by two intersecting lines. The point-line geometry G is
called planar if any pair of intersecting lines are contained in a unique plane.

The order of a geometry G equals k ∈ N, if all lines of G are incident with exactly
k + 1 points.

A partially linear space is a point-line geometry G = (P,L) with the property
that each line contains at least two different points and two different points are in
at most one common line. We call two different points contained in a common line
are collinear. A partial linear space is called thick, if all lines contain at least three
points.

The point graph of G is the graph with vertex set P in which two different points
are adjacent if and only if a, b are collinear. G is connected, if the point graph of G

is a connected graph.
Moreover, in this paper non-collinearity is denoted by the symbol ∼. By conven-

tion, a point is non-collinear to itself.

Theorem 4.6 (Cuypers [6], Theorem 1.2) Let G = (P,L) be a non-linear, planar
connected partially linear space of finite order q ≥ 3. Suppose the following holds in
G:

1. all planes are finite and either isomorphic to a dual affine plane or linear plane;
2. in a linear plane no four lines intersect in six points;
3. for all points x and y the inclusion x∼ ⊆ y∼ implies x = y;
4. if E is a linear plane and x a point, then x∼ ∩ E 
= ∅.

Then q is a prime power and G is isomorphic to the geometry of singular points and
hyperbolic lines of a non-degenerate symplectic or unitary polar space over the field
Fq , respectively Fq2 .

Recall that the geometries described in the conclusion of the preceding theorem
are called the hyperbolic symplectic and hyperbolic unitary geometries.

Remark 4.7 As mentioned in the introduction, the hyperbolic unitary geometry of
an n-dimensional finite hermitian space V is isomorphic to the geometry of long
root subgroups (as points) and fundamental SL2’s (as lines) of the group SUn(q

2).
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The long root subgroups of SUn(q
2) are abelian, conjugate in SUn(q

2) (as SUn(q
2)

acts transitively on the set of isotropic one-dimensional subspaces of V ), and gen-
erate SUn(q

2) (see, e.g., [2]). Moreover, depending on whether two isotropic one-
dimensional subspaces a, b of V are perpendicular or not, the corresponding long
root subgroups Ua and Ub commute or generate a (fundamental) SL2. Hence the hy-
perbolic unitary geometry, and therefore also the geometry G studied in Proposition
4.2, is a geometry of transvection subgroups of SUn(q

2) in the sense of [5]. It follows
from [5, Proposition 1.1] that G is a partially linear space satisfying assertions 1 and
3 of Theorem 4.6 (as PSUn(q

2) is a simple group). Since any linear plane of the
geometry G in fact is isomorphic to a connected component of the geometry on the
singular points and the hyperbolic lines of a classical hermitian unital, [10] implies
that G also satisfies assertion 2. Assertion 4 is easily established and non-linearity of
G is obvious. Finally, planarity of G follows from the fact that any two fundamental
SL2’s of SUn(q

2) generate a unique subgroup of SUn(q
2).

It is clear from Theorem 4.6 that planes play a crucial role. Since in Section 5 we
will prove and use that ‘global’ planes can seen ‘locally’, we require a concept of
interior planes.

Definition 4.8 Distinct intersecting vertices k and l of � ∼= G(Un) are defined to
intersect in a singular point, if their intersection is an interior singular point in the
sense of Definitions 2.14 and 3.8. The interior geometric plane spanned by k and
l is the smallest subspace of G containing k and l; this interior geometric plane is
denoted by 〈k, l〉gG .

Notation We always add the superscript g to each geometric plane of G in order to
distinguish it from the projective span of k and l, i.e., the projective plane 〈k, l〉, in
the ambient projective space P(Un).

In the remainder of this section we will study subspaces of the interior hyperbolic
space G = (P , L) on G(Un) which are induced by the embedding G(Un−2) ∼= x⊥ ⊂
G(Un) for x ∈ G(Un). By Proposition 4.2 we can construct the interior hyperbolic
space Gx = (Px, Lx) of the graph x⊥ ∼= G(Un−2), which is isomorphic to the geome-
try of singular points and hyperbolic lines of the non-degenerate unitary space Un−2.
The corresponding non-degenerate unitary form (·, ·)x of Gx can be identified with
the restriction (·, ·)|xπ of the unitary form (·, ·) on Un. In this context the elements of
the geometry Gx are called local.

Notation We index every local object of the interior hyperbolic space Gx with the
vertex x. In particular, for vertices l, k,m of x⊥ we use the notations {k, l,m}⊥x =
{k,m, l}⊥ ∩x⊥ and {k, l,m}⊥⊥

x = ({k, l,m}⊥x )⊥x = ({k, l,m}⊥x )⊥ ∩x⊥ = ({k,m, l}⊥ ∩
x⊥)⊥ ∩ x⊥. With 〈l, k〉x we denote the vector subspace of xπ ∼= Un−2 generated by
the two interior lines l and k of Gx .

We show that the interior hyperbolic space Gx is isomorphic to a subspace of
codimension two of the interior hyperbolic space G . We also prove that each singu-
lar interior point px ∈ Gx is contained in a unique singular interior point of G and,
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conversely, that for any singular interior point p of the geometry G either p ∩ Lx is
empty or a singular interior point of Gx .

We concentrate on the case n = 7, the general case being left as an exercise for the
reader.

Lemma 4.9 Let p be a singular interior point in G . If l,m ∈ p ∩ Lx are distinct
elements, then the interior lines l and m intersect in a singular interior point of Gx.

Proof We need to establish the defining properties from Definition 2.14 for l and m.
Therefore we have to verify that either {l,m}⊥x 
= ∅ or the vertices l and m have
distance four in x⊥ with more than q4 different paths of length four between these
two vertices in x⊥. In G(U7) both vertices l and m are adjacent to x as l,m ∈ Lx .
Furthermore 〈l,m〉 is a three-dimensional subspace and contained in xπ . If the plane
〈l,m〉 is non-degenerate, then {l,m}⊥x 
= ∅ by Remark 2.5. If on the other hand the
subspace 〈l,m〉 is degenerate, then by Lemma 2.3 the vertices l and m have distance
four in the induced subgraph x⊥. By Lemma 2.11, the graph x⊥ contains more than
q4 different paths of length four between l and m. Hence the interior lines l and m

intersect in the interior hyperbolic space Gx . �

Lemma 4.10 Let p be a singular interior point of G and k1, k2, and k3 be pairwise
distinct elements of p ∩ Lx . Then the interior lines k1, k2, and k3 intersect in one
interior singular point of Gx.

Proof In order to prove the claim we show that k1, k2, k3 satisfy the properties of
Definition 2.14. By Lemma 4.9 the interior lines k1, k2, k3 intersect pairwise in a
singular interior point of Gx . Furthermore the vector subspace of U7 spanned by the
hyperbolic lines k1, k2 and k3 is a subspace of xπ and since the vertices k1, k2, k3 are
elements of p, the one-dimensional subspace d = k1 ∩ k2 ∩ k3 is contained in xπ as
well. This setup satisfies the hypothesis of Lemma 2.13 implying that the subspace
xπ contains a hyperbolic line s such that

• {s, ki}⊥x 
= ∅, if s 
= ki , for i = 1,2,3,
• {s, k1, k2}⊥x = ∅.

Hence by Definition 2.14 the three vertices k1, k2 and k3 of p ∩ Lx intersect in one
interior point of Gx , which is singular, cf. Definition 4.1. �

Proposition 4.11 Let p be an interior singular point in G . The interior line set p∩ Lx

is either an interior singular point px in Gx or the empty set.

Proof Suppose p∩ Lx 
= ∅, then let l be some element of p∩ Lx and m be an interior
line of the point p different from l. Since l ⊥ x, it follows that the hyperbolic line l

is a subspace of xπ in G which intersects the hyperbolic line m in a one-dimensional
singular subspace d . Hence the singular point d is also a subspace of xπ . Let px be
the interior point of Gx containing all hyperbolic lines of xπ incident to the point d .

Let k be an arbitrary hyperbolic line of the interior point px . The proposition is
proved, if the vertex k is an element of p ∩ Lx . Since k ⊆ xπ it suffices to prove
k ∈ p.
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Any element n of the interior point p is a hyperbolic line of U7 incident to the
point d . Thus we choose a vertex n ∈ p distinct from k and intend to prove that
{k,n}⊥ 
= ∅ and that {k,n}⊥⊥ is minimal in G(U7) with respect to inclusion, cf.
Definition 3.8. Since both hyperbolic lines k and n contain the point d in U7, the
vector space spanned by both is a plane of rank at least two. Hence 〈k,n〉π is four-
dimensional subspace of rank at least three, thus 〈k,n〉π contains a hyperbolic line.
In particular, {k,n}⊥ 
= ∅ and due to Lemma 3.5 we have {k,n}⊥⊥ = L(〈k,n〉). By
Lemma 3.5 again and the fact that the span of two different hyperbolic lines s1, s2
of the three-dimensional subspace 〈k,n〉 again is this plane, we obtain the equality
{k,n}⊥⊥ = L(〈k,n〉) = L(〈s1, s2〉) = {s1, s2}⊥⊥. Therefore {k,n}⊥⊥ is minimal in
G(U7) with respect to inclusion.

Next, we choose two different elements n and m of p. By the argumentation
above n, m and k are three mutually intersecting interior lines of G and the sub-
space 〈n,m,k〉 of U7 is of dimension three or four. If 〈n,m,k〉 is a non-degenerate
four-dimensional subspace, then 〈n,m,k〉π is a non-degenerate plane in G containing
some hyperbolic line. Hence the subgraph {k,m,n}⊥ is not empty and by Lemma
3.5 and Lemma 3.6 it follows directly that {k,n}⊥⊥ = L(〈k,n〉) � L(〈k,n,m〉) =
{k,m,n}⊥⊥. If otherwise the subspace 〈n,m,k〉 is of dimension three or degenerate
and of dimension four, then there exists a hyperbolic line s in the unitary vector space
G intersecting the lines m and n (and consequently k) in d such that 〈s, n,m〉 is four-
dimensional non-degenerate subspace. This implies that {s, n,m}⊥ 
= ∅ and again we
get the inequality {m,n}⊥⊥ = L(〈m,n〉) � L(〈s, n,m〉) = {s,m,n}⊥⊥, thus k ∈ p by
Definition 3.8. �

Lemma 4.12 Let px be a singular interior point of Gx for some vertex x in G(U7)

and l and m be distinct elements of px . Then l and m intersect in a singular interior
point of G .

Proof By Definition 3.8 the vertices l,m ∈ px intersect in G(U7), if {l,m}⊥ 
= ∅ and
{l,m}⊥⊥ is minimal in G(U7) with respect to inclusion. Since l and m are vertices of
the induced subgraph x⊥ of G(U7), we conclude that x ∈ {l,m}⊥. By Lemma 3.5 we
have {l,m}⊥⊥ = L(〈l,m〉). The plane 〈l,m〉 is a subspace of xπ , since l and m are
incident to xπ . This implies 〈l,m〉 = 〈l,m〉x and L(〈l,m〉) = L(〈l,m〉x).

Next, let s and t be two different vertices of {l,m}⊥⊥, by the identities above
s, t ∈ {l,m}⊥⊥ = L(〈l,m〉) = L(〈l,m〉x) = 〈l,m〉x . In fact the interior lines s and t

span the plane 〈l,m〉 in G . Moreover {l,m}⊥⊥ = ⋂
z∈{k,l}⊥ z⊥, so {l,m}⊥⊥ ⊆ x⊥,

which implies that s and t are vertices of the subgraph x⊥. Again, 〈s, t〉 = 〈s, t〉x
and {s, t}⊥⊥ = L(〈s, t〉) = L(〈s, t〉x). Therefore {s, t}⊥⊥ = L(〈s, t〉) = L(〈l,m〉) =
{l,m}⊥⊥, which shows that the double perp {l,m}⊥⊥ is minimal in the graph G(U7)

with respect to inclusion. �

Lemma 4.13 Let px be an interior point of Gx . Any three distinct vertices k1, k2 and
k3 of px intersect in one point in G .

Proof By the previous Lemma 4.12 any three distinct lines k1, k2 and k3 of an inte-
rior point px ∈ Px are mutually intersecting interior lines in the interior hyperbolic
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space G . Moreover the induced subgraph x⊥ contains a vertex s with the properties
that {s, ki}⊥x 
= ∅ in x⊥ if ki 
= s for i ∈ {1,2,3} and {s, k1, k2}⊥x = ∅. Thus the plane
〈k1, k2〉x is properly contained in the four-dimensional subspace 〈k1, k2, s〉x of xπ

in G , so 〈k1, k2〉 = 〈k1, k2〉x � 〈k1, k2, s〉x = 〈k1, k2, s〉.
Furthermore the vertex s is also an interior line of the space G and by Lemma 4.12

the interior line s intersects each interior line ki different from s in G for i ∈ {1,2,3}.
The proof of the statement is finished if we can show that {k1, k2}⊥⊥

� {k1, k2, s}⊥⊥
in G(U7). The interior lines k1, k2 and s are vertices of x⊥ thus {k1, k2, s}⊥⊥ =
L(〈k1, k2, s〉) = L(〈k1, k2, s〉x) by Lemma 3.6 and the fact that x ∈ {k1, k2, s}⊥. Us-
ing Lemma 3.5 we get equality between the vertex set of the induced subgraph
{k1, k2}⊥⊥ and the hyperbolic lines set L(〈k1, k2〉) = L(〈k1, k2〉x). Finally we ob-
tain the equalities {k1, k2}⊥⊥ = L(〈k1, k2, 〉x) � L(〈k1, k2, s〉x) = {k1, k2, s}⊥⊥, and
we are done. �

Proposition 4.14 Let px be an interior point of Gx . There is an unique interior point
p in the interior hyperbolic space of G(U7) such that px ⊆ p.

Proof Suppose the interior hyperbolic space G contains two different interior points
p and g such that px ⊆ p and px ⊆ g. Then let k be an interior line of p which is
not incident to g and let l1 and l2 be two different interior lines of px . In the unitary
polar space G the two different hyperbolic lines l1 and l2 intersect in the point p, but
on the other hand p = k ∩ l1 = l2 ∩ k = l1 ∩ l2 = g, contradiction. �

The lines set Lx of the interior hyperbolic space G is a subset of the interior line
set L, also every interior point px of Px is contained in an unique point p of the
interior hyperbolic space G , thus the interior hyperbolic space Gx is a subspace of the
interior hyperbolic space G . In the next proposition we also determine the dimension
of the subspace Gx in the interior hyperbolic space G .

Proposition 4.15 Let n ≥ 7 and let x be a vertex of the graph G(Un). The inte-
rior hyperbolic space Gx on x⊥ is isomorphic to a codimension two subspace of the
interior hyperbolic space G on G(Un).

Proof Since Gx
∼= H(U5) and G ∼= H(U7), the claim follows for n = 7. The proof for

general n ≥ 7 is similar. The details are left to the reader as an exercise. �

5 The global space

In this section we analyse the following situation. Let n ≥ 7 and let � be a connected
graph which is locally isomorphic to the hyperbolic line graph G(Un). At the end of
this section we prove Theorem 1, i.e., we prove that � is isomorphic to the hyperbolic
line graph G(Un+2).

Due to the property that for every vertex x of � the induced subgraph x⊥ is iso-
morphic to G(Un), we can construct the interior hyperbolic spaces Gx on x⊥, see
Proposition 3.9 and Proposition 4.2. We use this family (Gx)x∈� of local interior hy-
perbolic spaces to construct a global geometry G� on �, which via Theorem 4.6 will
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turn out to be isomorphic to the geometry on the singular points and the hyperbolic
lines of some unitary polar space. This enables us to identify G� with H(Un+2) and
� with G(Un+2).

Interior objects are a priori only defined in some interior hyperbolic space Gx ,
x ∈ �. They are called local objects. Therefore one problem we have to tackle in
this section is to introduce well-defined global points and lines for our point-line
geometry G� . After that we will establish the validity of the hypotheses of Theorem
4.6 for G� .

Notation To avoid confusion, we will index every local object by the vertex x whose
interior hyperbolic space it belongs to. For example, if x ⊥ y in the graph �, then y is
a vertex of the subgraph x⊥ corresponding to the local object yx, an interior line, in
the space Gx. By yx we denote the vertex y considered as a vertex of the subgraph x⊥.
With the symbol y⊥

x we denote the subgraph {x,y}⊥ which is of course an induced
subgraph of x⊥. The interior hyperbolic space obtained from the graph y⊥

x will be
denoted with Gyx . Furthermore, by 〈yx, zx〉 we denote the projective space of the two
interior lines yx and zx in Gx.

Definition 5.1 A global line of � is a vertex of the graph �. The set of all global
lines of � is denoted by L� .

Lemma 5.2 Let n ≥ 7 and let w, x, y, z be vertices of � with the property that
z⊥x⊥w⊥y⊥z. Assume that the vertices w and z are connected by a path in the
induced subgraph {x,y}⊥ of �. Then {xw,yw}⊥⊥

w = {xz,yz}⊥⊥
z . In particular, the

spaces 〈xw, yw〉 and 〈xz, yz〉 have equal global line sets and can be identified.

Proof By assumption there exist vertices c1, . . . , cn of the graph � such that z ⊥
c1 ⊥ c2 ⊥ . . . ⊥ cn ⊥ w is a path from z to w in {x,y}⊥. Since c1 ∈ {x,y, z}⊥ the
hyperbolic lines xz and yz are perpendicular to the line c1

z in the interior hyperbolic
space Gz. Hence the projective span of xz and yz is perpendicular to the hyperbolic
line c1

z in Gz. In particular, all hyperbolic lines contained in 〈xz, yz〉 are adjacent to
c1

z and 〈xz, yz〉 can be identified with a subspace of Gc1
z
, whence with a subspace of

Gc1 , cf. Propositions 2.15, 3.9, 4.15. Hence, by Lemma 3.5, we have {xz,yz}⊥⊥
z =

{xc1,yc1}⊥⊥
c1 . Repeating the above argument along the path z ⊥ c1 ⊥ . . . ⊥ cn ⊥ w,

we obtain {xw,yw}⊥⊥
w = {xz,yz}⊥⊥

z . �

Notation Let z ⊥ x ⊥ y ⊥ w be a chain of vertices of �. Consider the projective span
〈zx, yx〉 and its pole H x

zx,yx
= zπ

x ∩ yπ
x = 〈zx, yx〉π in Gx. Since this subspace H x

zx,yx
is perpendicular to the hyperbolic line yx in Gx, it can be identified with a unique
subspace of Gy, denoted by H

y
zx,yx . We emphasise that this identification requires an

application of Proposition 2.15 or 3.9 to the graph {x,y}⊥ ∼= G(Un−2).

Lemma 5.3 Let n ≥ 7 and z ⊥ x ⊥ y ⊥ w be a chain in � such that rank of the
subspace 〈H y

zx,yx , xy〉 of Gy is at least max{n − 4,6}. Then there is a vertex h ∈
{z,y,w}⊥ in the same connected component as x in {y, z}⊥.
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Proof By hypothesis the rank of Wy := 〈xy,H
y
zx,yx〉 ⊆ Gy is at least six. Thus Wy con-

tains a six-dimensional non-degenerate space Vy. It follows that the space Vy ∩H
y
zx,yx

contains a four-dimensional subspace of rank at least two, as H
y
zx,yx has codimension

two in Wy. Hence there exists a hyperbolic line ky in Vy ∩ H
y
zx,yx . Also, the intersec-

tion Vy ∩ wπ
y contains a four-dimensional subspace of rank at least two, so there also

exists a hyperbolic line hy in Vy ∩wπ
y . The local line hy leads to a vertex h ∈ {y,w}⊥

and the local line ky corresponds to a vertex k ∈ {y,x}⊥. Local analysis of x⊥ and Gx
shows k ⊥ z. Indeed ky is a hyperbolic line of Vy ∩ H

y
zx,yx ⊆ H

y
zx,yx and k ⊥ x in � it

follows that the hyperbolic line kx is contained in H x
zx,yx

⊆ zπ
x , thus k and z are two

adjacent vertices of �. By Proposition 3.3 we can find a path from k to h in the graph
G(Vy) ⊆ y⊥. In particular, the vertex h lies in the same connected component of y⊥
as the vertex x.

Let s0 ⊥ s1 ⊥ · · · ⊥ sm be a path from k = s0 to h = sm in G(Vy). To finish the
proof it suffices to prove that s0 ⊥ s1 ⊥ · · · ⊥ sm is a path in the induced subgraph
z⊥. We proceed by induction. The vertex k is adjacent to z by construction. We
have My := kπ

y ∩ Wy = kπ
y ∩ 〈xy,H

y
zx,yx〉 = 〈xy, k

π
y ∩ H

y
zx,yx〉, because x ⊥ k. No-

tice that My = 〈xy, k
π
y ∩ H

y
zx,yx〉 is a dim(H

y
zx,yx)-dimensional subspace of kπ

y ⊆ Gy.
Considering this space inside the interior hyperbolic space Gk, denoted by Mk, we
obtain dim(Mk) = dim(My) = dim(H

y
zx,yx) = dim(H x

zx,yx
) = dim(H k

zk,yk
) by Lemma

5.2, where H k
zk,yk

= zπ
k ∩ yπ

k = 〈zk, yk〉π . Furthermore, Mk = 〈xk, (kπ
y ∩ H

y
zx,yx)

k〉 ⊆
H k

zk,yk
, whence Mk = H k

zk,yk
. Here (kπ

y ∩ H
y
zx,yx)

k denotes the subspace of Gk corre-

sponding to the subspace kπ
y ∩ H

y
zx,yx of Gy. Consequently, kπ

y ∩ Wy = Mk = H
y
zk,yk

and in particular, Wy = 〈ky,H
y
zk,yk〉.

By induction we assume that the vertices si with i ≤ n, n ∈ N, are adjacent to
z. Then a similar argument as in the paragraph above yields Wy = 〈si

y,H
y
zsi ,ysi

〉 and

(si
y)

π ∩ Wy = H
y
zsi ,ysi

, whence Wy = 〈si
y,H

y
zsi ,ysi

〉 for i = 1, · · · , n. The vertex sn+1

is adjacent to y and sn in the graph �. Moreover, sn+1
y is a hyperbolic line of the

subspace Vy in the interior hyperbolic space Gy. Thus sn+1
y is a hyperbolic line of the

(dim(Vy)−2)-dimensional subspace (sn
y )π ∩Vy in Gy. Since (sn

y )π ∩Vy is a subspace

of (sn
y )π ∩ Wy = H

y
zsn ,ysn it follows that sn+1

y ⊆ (sn
y )π ∩ Wy = H

y
zsn ,ysn . Therefore the

vertex sn+1 is adjacent to z. �

Lemma 5.4 Let n ∈ {7,8} and let z ⊥ x ⊥ y ⊥ w be a path in � such that

• the subspace 〈H y
zx,yx , xy〉 of Gy is of dimension six and of rank five, or

• the subspace 〈H y
zx,yx , xy〉 of Gy is a non-degenerate subspace of dimension five and

〈zπ
x ∩ yπ

x , xy〉 ∩ wπ
y of rank at least two.

Then there is a vertex h ∈ {z,y,w}⊥ in the same connected component as x in {y, z}⊥.

Proof We will prove this statement in a way similar to the proof of Lemma 5.3, using
the same notation.

First we assume that the subspace Wy = 〈H y
zx,yx , xy〉 is of dimension six and of

rank five, which implies that H
y
zx,yx is a four-dimensional subspace in Gy of rank

three. The radical of H
y
zx,yx coincides with the radical of Wy. Furthermore Wy ∩ wπ

y
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is at least four-dimensional of rank at least two as wπ
y is a (n − 2)-dimensional non-

degenerate subspace of Gy. Thus we can fix a hyperbolic line hy in Wy ∩ wπ
y . In the

case that hy can be chosen to lie inside the subspace H
y
zx,yx , then there is nothing

else to prove, so we may assume for the rest of this proof that hy 
⊆ H
y
zx,yx . Next we

choose a non-radical point sy of H
y
zx,yx in the subspace hπ

y ∩ H
y
zx,yx , which is at least

of dimension two. If possible, we choose sy to be singular and fix a hyperbolic line ly
in H

y
zx,yx going through sy. This construction implies immediately that the hyperbolic

lines hy and ly span a non-degenerate four-dimensional space inside the subspace Wy,
which is contained in some five-dimensional non-degenerate subspace Vy of Wy.

If sy has to be chosen non-degenerate, then we pick a hyperbolic line ly inci-
dent to sy and not intersecting the line hy in H

y
zx,yx in such a way that the radical

of 〈ly, hy〉 is different from the radical of Wy. We can satisfy this requirement by
the following argument. Let ly and l̃y be distinct hyperbolic lines in H

y
zx,yx contain-

ing the point sy such that 〈hy, ly〉 
= 〈hy, l̃y〉. Since the non-degenerate plane 〈hy, sy〉
is contained in both, we have rad(〈hy, ly〉) 
= rad(〈hy, l̃y〉). Now, hπ

y ∩ lπy ∩ Wy =
〈rad(Wy), rad(〈hy, ly〉)〉, whence there is a point ry ∈ Wy not contained in 〈hy, ly〉
and not contained in 〈rad(Wy), rad(〈hy, ly〉)〉. Hence Vy = 〈ry, hy, ly〉 is a five-
dimensional non-degenerate space of Wy containing both hyperbolic lines hy and
ly.

The local hyperbolic line hy yields a vertex h ∈ {x,y, z}⊥ and the local line ly a
vertex l ∈ {y,w}⊥. By Proposition 3.3 there exists a path from h to l inside G(Vy),
so that h lies in the same connected component of y⊥ as the vertex x. The vertex h is
also adjacent to the vertex z by the same argument as in the proof of Lemma 5.3.

Alternatively, let Wy = 〈H y
zx,yxxy〉 be a non-degenerate five-dimensional subspace

of Gy and Wy ∩wπ
y be a subspace of rank at least two. Then H

y
zx,yx is a non-degenerate

plane and n = 7. We choose a hyperbolic line hy ∈ H
y
zxyx and a non-degenerate two-

dimensional subspace ly in the plane Wy ∩wπ
y . Again, the local line hy yields a vertex

h ∈ {x,y, z}⊥ and the local line ly belongs to a vertex l ∈ {y,w}⊥. Now the proof is
identical to the first part with Vy replaced by Wy. �

For the next few lemmata let z, x, y, w be vertices of � with z ⊥ x ⊥ y ⊥ w. In
the interior hyperbolic space Gx the vertices z and y belong to hyperbolic lines zx
and yx and xy and wy are the unique non-degenerate lines in Gy of the vertices x and
w. Moreover, H x

zx,yx
= zπ

x ∩ yπ
x is a subspace of dimension n − 4 or n − 3 in Gx.

Since H x
zx,yx

is contained in yπ
x , this subspace can also be identified with a unique

subspace of Gy, denoted by H
y
zx,yx . Similarly, H

y
xy,wy = xπ

y ∩ wπ
y is an (n − 4)- or

(n − 3)-dimensional subspace of Gy, corresponding to the subspace H x
xy,wy

in Gx.

Lemma 5.5 Let n ≥ 10. Then the graph � has diameter two.

Proof The space Wy = 〈xy,H
y
zx,yx〉 is of dimension at least n − 2 and of rank at least

n − 4 ≥ 6. Thus, by Lemma 5.3, the space Wy contains a hyperbolic line hy, which
corresponds to a vertex h ∈ {z,y,w}⊥. It follows that z and w have distance two.
Hence by induction each connected component of � has diameter two, and the claim
results from the connectedness of �. �
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Lemma 5.6 Let n = 9. Then the graph � has diameter two.

Proof If the subspace H
y
zx,yx is either of dimension six and of rank at least five

or of dimension five and of rank at least four, then Wy = 〈H y
zx,yx , xy〉 is an eight-

dimensional subspace of rank at least seven or a seven-dimensional subspace of rank
at least six. In both cases by Lemma 5.3 the subspace Wy contains a hyperbolic line
hy, such that the corresponding vertex h is an element of {z,y,w}⊥, yielding diameter
two by induction.

The remaining possibility is that H
y
zx,yx is a five-dimensional subspace of rank

three in Gy. In this case we choose a hyperbolic line hy in H
y
xy,wy intersecting H

y
zx,yx

in a one-dimensional subspace. This choice is possible, because the subspaces H
y
zx,yx

and H
y
xy,wy are both contained in xπ

y , which implies that H
y
xy,wy ∩ H

y
zx,yx has dimen-

sion at least three and so this intersection subspace contains an one-dimensional space
which is not contained in the radical of H

y
xy,wy . This hyperbolic line hy yields a ver-

tex h ∈ {x,y,w}⊥. Furthermore the subspace 〈hx, zx〉 in Gx is four-dimensional and
of rank at least three. Hence H

y
zx,hx

is a five-dimensional subspace of rank five or four.
Applying the argumentation from above to the path z ⊥ x ⊥ h ⊥ w, it follows that the
vertices z and w have distance two in �, again yielding diameter two by induction. �

Lemma 5.7 Let n = 8. Then the graph � has diameter two.

Proof We will prove the statement by induction, therefore let z,x,y and w be four
different vertices of � such that z ⊥ x ⊥ y ⊥ w. The subspaces H x

zx,yx
and H

y
xy,wy are

four- or five-dimensional and of rank at least four, so we can distinguish the following
cases:

case dim(H
y
zx,yx) dim(H

y
xy,wy) dim(H

y
zx,yx ∩ H

y
xy,wy)

one 5 5 ≥ 4
two 5 4 ≥ 3

three 4 5 ≥ 3
four 4 4 ≥ 2

Suppose we are in case one or two, i.e., H
y
zx,yx is a five-dimensional subspace of

rank at least four and the subspace Wy = 〈H y
zx,yx , xy〉 is of dimension seven and of

rank at least six. Using Lemma 5.3 we obtain a vertex h in � adjacent to the vertices
z, y, w, whence the distance between the vertices z and w are at most two in �.
Symmetry handles case three.

Assume we are in the final case, i.e., dim(H
y
zx,yx) = dim(H

y
xy,wy) = 4. We will

proceed by another case distinction depending on the rank of H
y
zx,yx and the rank

H
y
xy,wy .

case 4 − 4 4 − 3 4 − 2 3 − 3 3 − 2 2 − 2
rank(H

y
zx,yx) 4 4 4 3 3 2

rank(H
y
xy,wy) 4 3 2 3 2 2

cases 4-*: If rank(H
y
zx,yx) = 4 then Wy = 〈xy,H

y
yx,zx〉 is a non-degenerate subspace

of dimension six. By Lemma 5.3 the subspace Wy contains a hyperbolic line hy
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yielding a unique vertex h ∈ {z,y,w}⊥, so the vertices z and w are at distance
most two in �.

cases 3-*: In these two cases the subspace Wy = 〈xy,H
y
yx,zx〉 has dimension six and

rank five. By Lemma 5.4 there exists again vertex h ∈ {z,y,w}⊥. Thus z and
w are at distance most two in �.

case 2-2: In the last case we assume that the subspaces H
y
zx,yx and H

y
xy,wy are of

dimension four and of rank two. Note that in this case the hyperbolic line wy
does not intersect the subspace xπ

y . The intersection H
y
zx,yx ∩ H

y
xy,wy may have

rank zero, one, or two.
If H

y
zx,yx ∩ H

y
xy,wy has rank two, then H

y
zx,yx ∩ H

y
xy,wy equals some hyperbolic

line hy and we are done, because the corresponding vertex h is adjacent to the
vertices z, x, y, and w in � implying that the distance between z and w is at
most two in �.
Suppose H

y
zx,yx ∩H

y
xy,wy has rank one. Then we can find a hyperbolic line ly in

H
y
zx,yx , which intersects the subspace H

y
xy,wy in an one-dimensional subspace.

The four-dimensional space 〈ly,wy〉 has rank three or four, thus the path z ⊥
l ⊥ y ⊥ w from z to w in � belongs either to case 4 − 2 or to case 3 − 2, and
we are done.
If H

y
zx,yx ∩ H

y
xy,wy is a totally singular subspace then we define the two set of

points

S
y
zx,yx := {py ∈ H

y
zx,yx ∩ H

y
xy,wy | py /∈ rad(H

y
zx,yx),py a singular point}

and

S
y
xy,wy := {py ∈ H

y
zx,yx ∩ H

y
xy,wy | py 
∈ rad(H

y
xy,wy),py a singular point}.

If either of S
y
zx,yx and S

y
xy,wy is not empty, then with out loss of generality

we assume (after relabeling) that S
y
zx,yx 
= ∅ and choose a point py ∈ S

y
zx,yx

as well as a hyperbolic line ly in H
y
zx,yx containing the point py. The subspace

〈wy, ly〉 is non-degenerate and of dimension four, moreover the hyperbolic line
ly corresponds to a vertex l ∈ {x,y, z}⊥. The resulting path z ⊥ l ⊥ y ⊥ w
belongs either to the case 4 − 3 or to the case 4 − 2, and again we are done.
In the final step we assume S

y
zx,yx = ∅ = S

y
xy,wy , which implies rad(H x

zx,yx
) =

H
y
zx,yx ∩H

y
xy,wy = rad(H

y
xy,wy). In other words the intersection H

y
zx,yx ∩H

y
xy,wy

is a totally singular radical two-dimensional subspace of H x
zx,yx

and of H
y
xy,wy .

For an arbitrary hyperbolic line ly in H
y
xy,wy the subspace lπy ∩H

y
xy,wy concides

with rad(H
y
xy,wy) and, thus, rad(H x

xy,wy
) = rad(H x

zx,yx
) ⊆ lπx ∩zπ

x = H x
zx,lx

. Fur-
thermore 〈xl,wl〉 = 〈xy,wy〉 by Lemma 5.2, which implies that rad(H x

xy,wy
) =

rad(H x
xl,wl

) and so every point of rad(H x
zx,yx

) is contained in H x
xl,wl

∩H x
zx,lx

. As
〈zx, yx〉∩〈zx, lx〉 = zx it follows that rad(〈zx, yx〉) 
= rad(〈zx, lx〉) and therefore
not every point of rad(H x

zx,yx
) is a point of rad(H x

zx,lx
). Consequently the path

z ⊥ x ⊥ l ⊥ w belongs to some case already dealt with, because Sl
zx,lx

is not
empty.

Since the vertices z and w have at most distance two in �, as before by induction the
graph � has diameter two. �
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Lemma 5.8 Let n = 7. Then the graph � has diameter two.

Proof As before we will use induction to prove the claim, therefore let z,x,y and w
be four different vertices of � forming the path z ⊥ x ⊥ y ⊥ w. The subspaces H x

zx,yx

and H
y
xy,wy of Gx resp. of Gy have dimension three or four. We will distinguish the

following four cases:

case dim(H x
zx,yx

) dim(H
y
xy,wy) dim(H x

zx,yx
∩ H x

xy,wy
)

one 4 4 ≥ 3
two 3 4 ≥ 2

three 4 3 ≥ 2
four 3 3 ≥ 1

First we consider case one and two, and also case three by symmetry. Since n = 7
and the dimension of H x

zx,yx
is four, the hyperbolic lines yx and zx span a three-

dimensional space, whence H x
zx,yx

has a radical of dimension at most one. Thus the

subspace Wy = 〈H y
zx,yx, xy〉 is of dimension six and rank at least five. By Lemma 5.3

and Lemma 5.4 there exists a vertex h ∈ {w,y, z}⊥, yielding distance two between z
and w in �.

It remains to prove the claim in the case that H
y
zx,yx and H

y
xy,wy are planes. We

split up this setting into six different cases depending on the rank of the planes H
y
zx,yx

and H
y
xy,wy :

case 3 − 3 3 − 2 3 − 1 2 − 2 2 − 1 1 − 1
rank(H

y
zx,yx) 3 3 3 2 2 1

rank(H
y
xy,wy) 3 2 1 2 1 1

case 3-3: If H
y
zx,yx ∩ H

y
xy,wy is a three-dimensional subspace of Gy, then H

y
zx,yx ∩

H
y
xy,wy = H

y
zx,yx . Thus H

y
zx,yx ∩ H

y
xy,wy is a non-degenerate plane, which of

course contains some hyperbolic line hy. The hyperbolic line corresponds to
a vertex h in the subgraph {x,y, z,w}⊥, finishing the proof.

Therefore we assume that the intersection H
y
zx,yx ∩ H

y
xy,wy is of dimension

one or two. Under this condition we regard the five-dimensional non-degenerate
space Wy = 〈xy,H

y
zx,yx〉, which intersects wπ

y in a three-dimensional space of
rank at least one. Moreover, for each hyperbolic line ly in the non-degenerate
plane H

y
zx,yx , the non-degenerate plane H

y
zl,yl = 〈xy, l

π
y ∩H

y
zx,yx〉 is a subspace of

Wy and intersects wπ
y in a one- or two-dimensional subspace. As xy ∩ H

y
zx,yx =

∅, for different hyperbolic lines hy and ly in H
y
zx,yx , the subspaces H

y
zl,yl ∩ wπ

y

and H
y
zh,yh ∩ wπ

y are different.

By Lemma A.1 the non-degenerate plane H
y
zx,yx contains q4 − q3 + q2 hy-

perbolic lines, while the plane Wy ∩ wπ
y contains at most q3 + q2 + 1 different

singular points. Hence we find a hyperbolic line ly in the plane H
y
zx,yx such that

H
y
zl,yl ∩ wπ

y contains some non-degenerate point py. The hyperbolic line ly de-
termines a vertex l in � adjacent to the vertices x,y, z. Furthermore, we choose
a hyperbolic line ny in the non-degenerate plane H

y
zl,yl incident to the non-

degenerate point py. The hyperbolic line ny yields a vertex n of {z,x, l}⊥. If the
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subspace H n
ny,wy

is of dimension four, then the path z ⊥ n ⊥ y ⊥ z of � belongs
to one of the cases one, two, or three, so we may assume that H n

ny,wy
is a three-

dimensional subspace. Since the non-degenerate point py is perpendicular to
wy, the four-dimensional subspace 〈ny,wy〉 has rank at least three and we con-
clude that H n

ny,wy
has rank at least two. Thus, there exists a hyperbolic line hy in

the plane H n
ny,wy

in such a way that H n
nh,wh

∩zπ
n contains a non-degenerate point

dn, which is possible by the argumentation above; certainly if H n
ny,wy

happens to

have rank two instead of rank three, then this subspace contains q4 hyperbolic
lines by Lemma A.1, and the above argument is still applicable. Moreover the
vertex h corresponding to hy is contained in the induced subgraph {w,n,y}⊥.
The interior hyperbolic space Gh contains the non-degenerate point dh and the
hyperbolic line nh, which in turn contains the non-degenerate point ph. Since
the point dh is contained in the subspace nπ

h , the two non-degenerate points ph
and dh span a hyperbolic line kh in the space Gh, in particular kh is a hyperbolic
line of subspace wπ

h . Indeed the hyperbolic line nh intersects the subspace wπ
h

in the non-degenerate point ph, while the non-degenerate point dh is a point of
wπ

h by construction. Thus we have determine a vertex k adjacent to w and h.
Furthermore, the two hyperbolic lines nh and kh generate a plane in Gh imply-
ing that dim(H h

nh,kh
) = 4. By these facts the path z ⊥ n ⊥ h ⊥ k of � belongs

to case two or three of this proof, so there exists a vertex m ∈ {n,k, z}⊥ in
the same connected component of the subgraph {n,k}⊥ as the vertex h. Local
analysis of the interior hyperbolic space Gm shows that the perpendicular space
zπ

m of zm contains the two points pm and dm, whence the hyperbolic line km
spanned by pm and dm. Consequently, the vertex k is adjacent to the vertices z
and w, so z and w have distance at most two in �.

case 3-2 and case 3-1: As before we study the intersection H
y
zx,yx ∩ H

y
wy,xy . If the

subspace H
y
zx,yx ∩ H

y
wy,xy has rank at least two, then it contains a hyperbolic

line and we are done. Otherwise define S
y
zx,yx,wy,xy to be the set of all singu-

lar points incident to the subspace H
y
zx,yx ∩ H

y
wy,xy . If S

y
zx,yx,wy,xy 
= ∅, then

let py be a point of S
y
zx,yx,wy,xy and we choose a hyperbolic line ly in the

non-degenerate plane H
y
zx,yx going through the singular point py. The vertex

l corresponding to ly is contained in {z,x,y}⊥. Since the hyperbolic lines ly
and wy span either a three-dimensional or a non-degenerate four-dimensional
space, the path z ⊥ l ⊥ y ⊥ w belongs to case four (3-3) or to case two. On
the other hand, if S

y
zx,yx,wy,xy = ∅, then we choose a non-degenerate point ry

in H
y
zx,yx ∩ H

y
wy,xy and a hyperbolic line ly incident to the point ry in the non-

degenerate plane H
y
zx,yx , yielding the path γ = (z ⊥ l ⊥ y ⊥ w) in � between

z and w. The subspace 〈ly,wy〉 is either of dimension three, in which case the
path γ belongs to case two, or of dimension four. If this four-dimensional sub-
space is of rank four, then the path γ belongs to case 3-3. If the rank of 〈ly,wy〉
is strictly less than four, then we obtain the point set S

y
zl,yl,wy,ly

= {sy | sy ∈
H

y
zl,yl ∩ H

y
wy,ly

, sy a singular point}. If S
y
zl,yl,wy,ly


= ∅, then the path γ satis-
fies the conditions of the previous paragraph, which leads to the fact that the
path γ can be transformed to a path between the vertices z and w of length
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three belonging to case two or case four (3-3). If S
y
zl,yl,wy,ly

is also empty, then

we choose a non-degenerate point dy in H
y
zl,yl ∩ H

y
wy,ly

and consider the two-
dimensional space hy spanned by the two different point ry and dy. Since dy is
a non-degenerate point in lπy ⊆ rπ

y , the space hy is a hyperbolic line, contained
in wπ

y . Thus the corresponding vertex h is adjacent to the vertices y and w. The

hyperbolic lines ly and hy span a plane implying dim(H
y
ly,hy

) = 4. Hence there

exists a vertex m ∈ {z, l,h}⊥ in the same connected component of {l,h}⊥ as y,
because the path z ⊥ l ⊥ y ⊥ h in � belongs to case two or three. Hence, by
local analysis of the space Gm, the vertex h is also adjacent to z, as the hyper-
bolic line hm is contained in the subspace zπ

m by construction. Therefore w and
z have a common neighbor h and therefore have mutual distance at most two
in �.

case 2-2 and case 2-1: Again we will analyse the subspace H
y
zx,yx ∩ H

y
wy,xy and

the set of singular points S
y
zx,yx,wy,xy = {sy | sy ∈ H

y
zx,yx ∩ H

y
wy,xy , sy a singular

point}. Suppose py is an element of S
y
zx,yx,wy,xy not contained in the radical of

H
y
zx,yx . In this case we choose a hyperbolic line ly in H

y
zx,yx incident to the point

py and obtain the subspace 〈wy, ly〉, which is of dimension three or four and of
rank at least three. As before the path z ⊥ l ⊥ y ⊥ w belongs to case two or to
case four (3-2).

If on the other hand S
y
zx,yx,wy,xy = ∅, then every point of H

y
zx,yx ∩ H

y
wy,xy

is non-degenerate. Note that dy = H
y
zx,yx ∩ H

y
wy,xy is a unique point, because

anisotropic two-dimensional unitary spaces over a finite field do not exist. Re-
call also that the non-degenerate point dy is contained in q2 hyperbolic lines
and one singular line of H

y
zx,yx . Therefore the hyperbolic line wy contains a

singular point sy such that sπ
y ∩ H

y
zx,yx is a hyperbolic line ly, containing dy.

The subspace 〈wy, ly〉 is non-degenerate of dimension three or four, so the path
z ⊥ l ⊥ y ⊥ w belongs either to case two or to case four (3-2).

It remains to deal with the case that each point of S
y
zx,yx,wy,xy is contained in

the radical of H
y
zx,yx . Since H

y
zx,yx is a rank two plane, the point set S

y
zx,yx,wy,xy

consists of a unique singular point. If the intersection H
y
zx,yx ∩ H

y
xy,wy is a

one-dimensional subspace, then it equals the radical of H
y
zx,yx . In this situa-

tion xπ
y = 〈H y

xy,wy ,H
y
zx,yx〉, so that Syzx, yx,wy, xy cannot be contained in the

radical of H
y
xy,wy , as otherwise S

y
zx,yx,wy,xy is contained in the radical of xπ

y , a
contradiction. Since every singular point of a rank one plane is contained in the
radical of that plane, the plane H

y
xy,wy necessarily has rank two. By symme-

try, working with the singular points S
y
zx,yx,wy,xy not in the radical of H

y
wy,xy ,

we are done. Now we assume that the intersection H
y
zx,yx ∩ H

y
xy,wy is a two-

dimensional subspace. Any hyperbolic line ly of H
y
zx,yx has the property that

lπy ∩ H
y
zx,yx equals the radical of H

y
zx,yx . Hence the subspace 〈ly,wy〉π ∩ H

y
zx,yx

is of dimension one. Since l ⊥ x, the path z ⊥ l ⊥ y ⊥ w by Lemma 5.2 belongs
to the situation that H

y
zl,yl ∩ H

y
ly,wy

is of dimension one, that we have just dealt
with.

case 1-1: In this final case we assume that H x
zx,yx

and H
y
xy,wy are planes of rank one.

Let px be some point in H x
zx,yx

∩ H x
xy,wy

. Since zπ
x is a five-dimensional non-
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degenerate subspace, there exists a hyperbolic line mx in zπ
x incident to px. The

hyperbolic line mx corresponds to a vertex m ∈ {z,x}⊥. Moreover, the subspace
〈mx, yx〉 is either three-dimensional or four-dimensional and of rank at least
three. Hence the path m ⊥ x ⊥ y ⊥ w belongs to one of the above cases. Thus
the graph � contains a vertex n ∈ {m,w}⊥. The resulting path z ⊥ m ⊥ n ⊥ w
from z to w has the property that 〈mn,wn〉 is a plane or a four-dimensional
subspace of rank at least three, because the hyperbolic line mn intersects wπ

n
the point in pn. Thus this path belongs to one of the cases above.

As the vertices z and w have at most distance two in �, the claim follows by induc-
tion. �

Altogether, we have proved the following.

Proposition 5.9 The graph � has diameter two.

In fact, the proofs of Lemma 5.5 to Lemma 5.8 also imply that � is simply con-
nected.

Next we want to construct a global point-line geometry on the graph � that will
allow us to determine the isomorphism type of �. Recall the notation introduced for
local objects in the beginning of this section. The following observation will play an
important role by the definition of global points.

Lemma 5.10 Let x, y, z be distinct vertices of � satisfying x ⊥ y ⊥ z ⊥ x and let
px be a local point of Gx such that yx, zx ∈ pπ

x . Then the unique local point py ∈ Gy
induced by the point pyx ∈ Gyx and the unique local point pz ∈ Gz induced by the
point pzx ∈ Gzx satisfy zy ∈ pπ

y and yz ∈ pπ
z . Moreover, the unique local point in Gz

induced by pzy is equal to the local point pz.

Proof This lemma is proved using the results from Section 4. As by assumption
yx, zx ∈ pπ

x , the local point px ∈ Gx gives rise to a point px ∩ y⊥ = pyx = pxy of
Gyx = Gxy and to a point px ∩ z⊥ = pzx = pxz of Gzx = Gxz . Consider the unique local
point py of Gy which contains the point pyx and the unique local point pz of Gz which
contains the point pzx . Since yπ

x ∩ zπ
x is a non-degenerate subspace of dimension at

least n − 4 incident to the point px, it also contains two hyperbolic lines g1
x and g2

x ,
which are elements of px. By construction the vertices g1, g2 belong to unique interior
lines of the local points px, py, pz, pxy = pyx , pxz = pzx , pyz = pzy . Hence zy ∈ pπ

y
and yz ∈ pπ

z and, by partial linearity of Gz the unique local point in Gz induced by
pzy is equal to the local point pz. �

For the construction of global points let px be a local singular point in the interior
hyperbolic space Gx for some vertex x of the graph � and consider the set of vertices
p0 = px ∪ ⋃

l∈L(pπ
x ){pl | pxl ⊆ pl} in �. Furthermore we define inductively the set of

vertices pi = ⋃
pl∈pi−1

(
⋃

k∈L(pπ
l ){pk | plk ⊆ pk}) for i ∈ N. Certainly p0 ⊆ p1 using

the fact that for each local point pl of p0, which is different from the local point px ,
the local hyperbolic line xl is an element of L(pπ

l ). Thus px ⊆ p1. Moreover, since
px ⊆ p0, so by construction

⋃
l∈L(pπ

x ){pl | pxl ⊆ pl} ⊆ p1.
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Suppose there exists a vertex k in p1\p0. Then again by construction of the set
p1 there is a path x ⊥ y ⊥ w ⊥ k in � from x to k such that yx is a hyperbolic line
contained in pπ

x and wy is a hyperbolic line in the subspace pπ
y and kw is a hyperbolic

line going through the local point pw. Without loss of generality we may assume that
wy is a hyperbolic line of the subspace pπ

y which is not contained in xπ
y and that kw

is a hyperbolic line of the local point pw but not of the local point pyw , as otherwise
k is a vertex of p0. Because of these assumptions kw is not a hyperbolic line of
the perpendicular subspace yπ

w , but intersects the yπ
w in the singular point pw. We

conclude that 〈kw, yw〉 is a four-dimensional non-degenerate space.
By Lemmata 5.3 and 5.4 there exists a vertex z ∈ {x,y,k}⊥ and a path w ⊥ c1 ⊥

· · · ⊥ cn ⊥ z in {y,k}⊥. Since the local hyperbolic line c1
w is incident to the subspace

kπ
w , it is also contained in pπ

w, whence there is a local point pc1 ⊇ pwc1 containing the

local hyperbolic line kc1 . By Lemma 5.10 we have pyc1 ⊆ pc1 and c1
y ∈ pπ

y . Repeating

this argument along the path w ⊥ c1 ⊥ . . . ⊥ cn ⊥ z, we end up with pyz ⊆ pz, that kz
is a hyperbolic line of the local point pz and also that zy is contained in the subspace
pπ

y . This implies that the hyperbolic line zy is incident to the subspace pπ
xy

, and, thus,
a subspace of pπ

x , in particular pxz ⊆ pz. Whence the global line k is an element of
the vertex set p0, implying that p0 = pi for each i ∈ N. This construction leads to
a well-behaved set of vertices p := p0 = px ∪ ⋃

l∈L(pπ
x ){pl : pxl ⊆ pl} such that the

local singular point px ⊆ p.

Definition 5.11 A global point p of � equals px ∪⋃
l∈L(pπ

x ){pl | pxl ⊆ pl} for some
vertex x ∈ � and some local singular point px of the interior hyperbolic space Gx.
The set of all global points of � is denoted by P� .

Notice that the definition of a global point p does not depend on the starting local
point px ⊆ p because p = p0 = pi for all i ∈ N. The next proposition follows imme-
diately from the construction of a global point p.

Proposition 5.12 Let p be a global point and x be vertex of �. Then p ∩ Lx is either
empty or a local singular point of Gx.

The pair G� = (P�, L�) with symmetrized inclusion as incidence is a point-line
geometry called the global space on �.

Lemma 5.13 The point-line geometry G� is a connected partially linear space.

Proof Let p and d be two different global points of P� and suppose the vertex set
p ∩ d contains two distinct vertices x and y. Since the graph � has diameter two by
Proposition 5.9, there exists a vertex z in the induced subgraph {x,y}⊥. It follows that
the two different local points pz = p ∩ Lz and dz = d ∩ Lz are incident to the two
local lines xz and yz in Gz, thus pz = dz by the partial linearity of Gz, whence p = d .
Hence G� is partially linear.

In order to prove connectedness of G� let again p and d be two different global
points. Choose l ∈ p and m ∈ d . Using once again that the diameter of � is two,
there is a vertex k ∈ {m, l}⊥. The interior hyperbolic space Gk contains the interior
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points pk = p ∩ Lk and dk = d ∩ Lk. Hence connectedness of G� follows from the
connectedness of Gk. �

We intend to use Theorem 4.6 to identify the geometry G� . Therefore we need to
define and study planes of G� .

Definition 5.14 Two global lines k and l are defined to span a global plane 〈k, l〉g
with respect to z ∈ {k, l}⊥, if 〈kz, lz〉gGz

is a local geometric plane of Gz. The global

plane 〈k, l〉g consists of all global lines m such that m ∈ z⊥ and mz is an interior
line of the local geometric plane 〈xz, yz〉gGz

and contains all global points p with the
property that pz = p ∩ Lz is an interior singular point of the local geometric plane
〈xz, yz〉gGz

.

The next step is to prove that the definition of a global plane is independent of the
vertex z used in the definition. To this end let x, y, z, w be vertices of � such that
z⊥x⊥w⊥y⊥z. Since xz and yz are interior lines of the space Gz, the span of xz and yz
is either a three-dimensional or a four-dimensional subspace in Gz. We want to prove
that x and y span a global plane with respect to z if and only if they span a global
plane with respect to w. In view of Lemma 5.2 it suffices to show that w and z can be
connected via a path in {x,y}⊥.

Lemma 5.15 Let n ≥ 7 and let x, y, z, w be four vertices of � satisfying
z⊥x⊥w⊥y⊥z. If dim(〈xz, yz〉) = 3, then there exists a path from z to w in {x,y}⊥.
In particular, if x, y span a global plane with respect to z if and only if they span a
global plane with respect to w and those two global planes are equal.

Proof The subspace H z
xz,yz

= xπ
z ∩ yπ

z has dimension n − 3 and rank at least n −
4 implying that the subspace Wy := 〈H y

xz,yz , zy〉 has dimension n − 1 and rank at
least n − 2. This setting satisfies the assumption of Lemma 5.3, if n ≥ 8, and the
assumption of Lemma 5.4, if n = 7, thus the graph � contains a vertex h ∈ {x,y,w}⊥
in the same connected component of {x,y}⊥ as the vertex z. The claim follows now
from Lemma 5.2. �

Proposition 5.16 Any global plane of G� is finite and isomorphic to a linear plane
or a symplectic plane.

Proof Let Eg be a global plane of G� , i.e., Eg = 〈x,y〉g for some global lines x,y
of �. By Definition 5.14, the global plane Eg consists of all global lines m and all
global points p such that the interior lines mz and the interior points pz = p ∩ Lz
are incident to the geometric plane 〈xz, yz〉gGz

for some z ∈ {x,y}⊥. Since the interior
space Gz is isomorphic to a subspace of G� and since the global plane Eg = 〈x,y〉g
is isomorphic to the local geometric plane 〈xz, yz〉gGz

, the claim follows from the fact
that each plane of Gz is linear or symplectic. �

Corollary 5.17 The point-line geometry G� is a non-linear space, i.e., the geometry
G� contains two distinct global points not incident to a common global line.
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Proof As every interior hyperbolic space Gz for z be a vertex of � contains some local
geometric plane isomorphic to a symplectic plane, which is a non-linear subspace of
Gz, it follows that the geometry G yields some global plane, which are isomorphic to
a symplectic plane by Proposition 5.16. �

Lemma 5.18 The point-line geometry G� = (P�, L�) is a planar space, i.e., any two
distinct intersecting global lines are contained in a unique plane.

Proof Let k and l be two global lines contained in the global planes Pg and Eg . By
Definition 5.14 we obtain that Pg = 〈m,n〉g = 〈mz, nz〉gGz

for some vertices m, z,n

satisfying m ⊥ z ⊥ n and that Eg = 〈s, t〉g = 〈sx, tx〉gGx
for some vertices s,x, t of

� such that s ⊥ x ⊥ t. As the global line k and l are elements of Pg as well as
elements of Eg it follows that kz and lz are two different interior lines of the geometric
plane 〈mz, nz〉gGz

thus 〈kz, lz〉gGz
= 〈mz, nz〉gGz

as well as kx and lx are different interior

line of 〈sx, tx〉gGx
implying 〈kx, lx〉gGx

= 〈sx, tz〉gGx
. We conclude that Pg = 〈m,n〉g =

〈mz, nz〉gGz
= 〈kz, lz〉gGz

= 〈k, l〉g = 〈kx, lx〉gGx
= 〈sx, tz〉gGx

= 〈s, t〉g = Eg . �

We will need the following notation for the last part of this section.

Definition 5.19 Let p and d be two global points of G� . We say that p is perpen-
dicular to d , in symbols p ⊥ d , if there is a global line k of p and a global line m if
d satisfying k ⊥ m. We denote all global points perpendicular to a global point p by
P p and we define p∼ = P p ∪ p.

Recall from Definition 4.5 that p∼ contains all global points not collinear to the
global point p.

Lemma 5.20 Let p and d be distinct global points of G� . Then p∼ 
⊆ d∼.

Proof Let l be global line of p and m be an element of d . By Proposition 5.9 there
exists a vertex z ∈ {l,m}⊥. Since p ∩ Lz = pz is a local point of Gz distinct from
the local point d ∩ Lz = dz, by Remark 4.7 we obtain that p∼

z 
⊆ d∼
z . Since Gz is

isomorphic to a subspace of G� , the unique global point b containing the local point
bz ∈ p∼

z is an element of p∼. This implies p∼ 
⊆ d∼. �

Lemma 5.21 Let Eg be a linear global plane and let x be a global point. Then Eg

and x∼ have a global point in common, so Eg ∩ x∼ 
= ∅.

Proof If x is incident to Eg , then the property that x ∈ x∼ implies x∼ ∩ Eg 
= ∅.
Hence we consider the setup that x is not contained in the plane Eg . The plane Eg

is by definition spanned by two different intersecting global lines k and l, i.e., Eg =
〈k, l〉g . Let h be a global line of the x, Proposition 5.9 implies the existence of vertices
m, n and z such that m ∈ {k,h}⊥, of n ∈ {h, l}⊥, and of z ∈ {l,k}⊥. In the interior
hyperbolic space Gm, the subspace km ∩ xπ

m is of dimension at least one, so there
local point im in the intersection km ∩ xπ

m. We remark here that the interior point im
is not necessarily singular. If the local point im is indeed singular, then im ∈ x∼

m , and
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therefore i ∈ x∼ ∩k ⊆ x∼ ∩E
g
� , where i is the unique global point containing im, and

we are done. Alternatively, we consider in the interior hyperbolic space Gn an local
point jn incident to the subspace ln ∩xπ

n . Again, if jn is a singular interior point, then
we are done.

Hence we may assume that both subspaces ln ∩ xπ
n = jn and km ∩ xπ

m = im are
non-degenerate interior points. By definition of a global plane, the global lines k and
l intersect in a global point p, so pm = p ∩ Lm is a singular interior point in Gm
as well as the interior point pn = p ∩ Ln of the space Gn is singular. We may also
assume that neither pm is incident to xπ

m nor pn is incident to xπ
n , as otherwise there

is nothing to prove. It follows that the interior singular points xm and pm span an
interior line gm, which corresponds to a vertex g ∈ �. Moreover, as g and k intersect
in the global point p, the lines k and g span the global plane Pg = 〈k,g〉g ⊆ Gm.
By construction of the interior line gm, the span 〈km, gm〉 is a non-degenerate three-
dimensional subspace of Gm, so P

g

Gm
= 〈km, gm〉gGm

is a linear geometric plane.
Next we consider the path g ⊥ m ⊥ k ⊥ z ⊥ l between the vertices g and l in �.

By assumption the global plane Eg is linear, thus H z
kz,lz

= kπ
z ∩ lπz is an (n − 3)-

dimensional non-degenerate subspace in Gz. As Pg is also a linear plane the subspace
Hm

km,gm
= kπ

m ∩ gπ
m of Gm is non-degenerate and of dimension n − 3.

We will analyse the unique induced subspace H k
kz,lz

and H k
km,gm

inside Gm and

claim the existence of a vertex t ∈ {k, l,g, z}⊥. Since Vk := 〈mk,H k
km,gm

〉 is a non-

degenerate (n − 1)-dimensional subspace we obtain that Wk := Vk ∩ zπ
k is at least of

dimension (n − 3). Since the subspace H k
kz,lz

⊆ zπ
k is (n − 3)-dimensional and non-

degenerate, the intersection Wk ∩H k
kz,lz

is at least (n−4)-dimensional of rank at least

n − 5 ≥ 2. Therefore there is an interior line tk in Wk ∩ H k
kz,lz

. This interior line tk

corresponds to a vertex t ∈ {k, l,g, z}⊥, as claimed.
In the interior hyperbolic space Gt the interior lines kt and lt span the linear geo-

metric plane E
g

Gt
= 〈kt, lt〉gGt

. Since g is a vertex of the set x ∩ Lt, the intersection
xt = x ∩ Lt is an interior singular point of Gt. Therefore the (n − 1)-dimensional
subspace xπ

t intersects the graphical plane EG(Gt) at least in a two-dimensional sub-
space, which contains an interior singular point st. Certainly st ∈ x∼

t , which implies
s ∈ x∼ ∩Eg , where s is the unique global point containing st. The claim is proved. �

We have now reached our goal.

Proposition 5.22 The point-line geometry G� = (P�, L�) is isomorphic to the geom-
etry of singular points and hyperbolic lines of an m-dimensional non-degenerate uni-
tary polar space over Fq2 .

Proof By Lemma 5.13 the geometry G� is a connected partially linear space. By
Corollary 5.17 it is non-linear and by Lemma 5.18 planar. Since for every vertex x of
� the interior hyperbolic space Gx is of order q using that Gz ∼= H(Un) it follows by
Lemma 5.12 and the property that the geometry Gz is isomorphic to a subspace of G�

that the space G� has order q . By Lemma 5.16, the space G� satisfies Hypothesis 1
of Theorem 4.6. The validity of Hypothesis 2 has been addressed in Remark 4.7,
Hypothesis 3 follows from Lemma 5.20, Hypothesis 4 from Lemma 5.21. Hence by
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Theorem 4.6 the geometry G� is isomorphic to the geometry of singular points and
hyperbolic lines of a non-degenerate symplectic or unitary polar space over the field
Fq respectively Fq2 . Since G� contains linear planes, it is isomorphic to the geometry
of hyperbolic lines of some non-degenerate unitary polar space over the field Fq2 . �

Corollary 5.23 The graph � is isomorphic to the hyperbolic line graph of an m-
dimensional non-degenerate unitary vector space over the field Fq2 .

Proof of Theorem 1 By Corollary 5.23, we have � ∼= G(Um) for some m ∈ N. Since
G(Um) is locally G(Un) if and only if m = n + 2, cf. Proposition 3.3, necessarily
� ∼= G(Un+2) �

Proof of Theorem 2 [3, Section 6] and [7] provide a standard method how to derive
the claim from Theorem 1. �

Appendix A: Order formulae

In this appendix for convenience of the reader we collect a number of known results
that will be used extensively throughout the paper. Let U be a finite dimensional
vector space over the finite field Fq2 . The finite field Fq2 has an automorphism of
order two σ : Fq2 → Fq2 with a �→ a = σ(a) = aq . By F0 = {a ∈ Fq2 | a = a} we
denote the fixed field of order q of Fq2 under the automorphism σ . It is well-known,
see [12] or [16], that for any non-zero scalar λ of F0 the equation x ·x = λ has exactly
q + 1 solutions in F

×
q2 and the equation x + x = μ has precisely q solutions in Fq2

for any μ ∈ F0.
Next we fix a non-degenerate sesquilinear form (·, ·) on the n-dimensional vector

space U . The Gram matrix Gα = ((vi, vj ))1≤i,j≤n has full rank with respect to any
basis α : v1, . . . , vn of U . A vector v of U is said to be isotropic (degenerate) and non-
isotropic (non-degenerate) respectively if (v, v) = 0 or (v, v) 
= 0. If the dimension of
U is at least two then the unitary vector space U contains isotropic and nonisotropic
vectors.

Lemma A.1 A n-dimensional non-degenerate unitary vector space Un contains

qr(n+r−2m)

∏n
i=n+r−2m+1(q

i − (−1)i)∏r
i=1(q

i − (−1)i)
∏m−r

i=1 (q2i − 1)

different subspaces of dimension m and rank r for 2r ≤ 2m ≤ n + r . Furthermore in
a (n + l)-dimensional unitary vector space Un+l of rank n are

min{l,m−r}∑
k=max{0, 2m−n−r+1

2 }
qr(n+r−2m+2k)+2(m−k)(l−k)

×
∏n

i=n+r−2m+2k+1(q
i − (−1)i)

∏l
i=l−k+1(q

2i − 1)∏r
i=1(q

i − (−1)i)
∏m−r−k

i=1 (q2i − 1)
∏k

i=1(q
2i − 1)

different m-dimensional subspaces of rank r for max{0, 2m−n−r
2 } ≤ min l,m − r .
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Proof This is Lemma 5.19 of [16]. �

For quick reference, we list the possibilities for all m-dimensional subspace with
the rank of a n-dimensional non-degenerate unitary vector space Un, m ≤ n, 1 ≤ n ≤
6 as well as of a n + l-dimensional rank n unitary vector space for 1 ≤ n + l ≤ 6 in
Table 1.
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