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Abstract A truly fruitful way to construct finite generalized quadrangles is through
the detection of Kantor families in the general 5-dimensional Heisenberg group
H2(q) over some finite field Fq . All these examples are so-called “flock quadran-
gles”. Payne (Geom. Dedic. 32:93–118, 1989) constructed from the Ganley flock
quadrangles the new Roman quadrangles, which appeared not to arise from flocks,
but still via a Kantor family construction (in some group G of the same order as
H2(q)). The fundamental question then arose as to whether H2(q) ∼= G (Payne in
Geom. Dedic. 32:93–118, 1989). Eventually the question was solved in Havas et al.
(Finite geometries, groups, and computation, pp. 95–102, de Gruyter, Berlin, 2006;
Adv. Geom. 26:389–396, 2006). Payne’s Roman construction appears to be a special
case of a far more general one: each flock quadrangle for which the dual is a transla-
tion generalized quadrangle gives rise to another generalized quadrangle which is in
general not isomorphic, and which also arises from a Kantor family. Denote the class
of such flock quadrangles by C .

In this paper, we resolve the question of Payne for the complete class C . In fact
we do more—we show that flock quadrangles are characterized by their groups.

Several (sometimes surprising) by-products are described in both odd and even
characteristic.

Keywords Flock quadrangle · Elation quadrangle · Automorphism group ·
Heisenberg group · Characterization

1 Introduction

Generalized quadrangles were introduced by Tits in [28] as a subclass of the gener-
alized polygons, the natural geometries of the groups of Lie type of (relative) rank 2.
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Let us formally define them in the finite case. (For definitions not given in the intro-
duction, see the next section, the monographs [19, 23] or the recent paper [18].)

A (finite) generalized quadrangle (GQ) of order (s, t) is a point-line incidence
structure S = (P,B,I) in which P and B are disjoint (non-empty) sets of ob-
jects called points and lines, respectively, and for which I is a symmetric point-line
incidence relation satisfying the following axioms:

• two distinct points are incident with at most one line;
• each point is incident with t + 1 lines (t ≥ 1);
• each line is incident with s + 1 points (s ≥ 1);
• if p is a point and L is a line not incident with p, then there is a unique point-line

pair (q,M) such that pIMIqIL.

There is a map D which sends a GQ S = (P,B,I) (of order (s, t)) to S D =
(B,P,I), a GQ of order (t, s) which is called the point-line dual of S . The pres-
ence of this map is called “point-line duality”; for GQs of order (s, t), in any def-
inition or theorem the words “point” and “line” can be interchanged and also the
parameters s and t , to obtain the dualized version.

In the last few decades, one of the most fruitful ways to construct finite generalized
quadrangles was through the detection of certain Kantor families (arising from a so-
called “q-clan”) in the 5-dimensional general Heisenberg group H2(q) over some
finite field Fq . All these examples are so-called “flock quadrangles”, and they have
order (q2, q). In [17], Payne constructed from the Ganley flock quadrangles new
quadrangles (“Roman quadrangles”) which do not come from flocks, but still arise
via a Kantor family construction (in some group G of the same order as H2(q)).
The fundamental question (first asked by Payne in op. cit., see his excellent account
[18]) then arose as to whether H2(q) ∼= G . In [10], Havas et al. showed that for
the Roman quadrangles with parameters (729,27), and using a computer program,
the corresponding groups are not isomorphic. In [11], they obtained the result for
all Roman quadrangles. The proof consists of showing that non-central elements in
H2(q) and G have nonisomorphic centralizers.

The construction of Payne appears to be a special case of a more general one: each
flock quadrangle S = S (F ) for which the dual S D is a translation generalized
quadrangle gives rise to another generalized quadrangle (which is the dual of the
translation dual (S D)∗) which is in general not isomorphic to S D , and which, by
[25], also arises from a Kantor family. (Note that the notion “translation dual” is
explained more formally in Sect. 2.2.) Denote the class of such flock quadrangles
by C . By reasons to be explained later, see for instance Sect. 2.4, we mainly consider
odd characteristic, although some structural results concerning the even case will
also be obtained. In odd characteristic, the known members of C are the Ganley and
Kantor–Knuth flock quadrangles (both infinite classes) and the “sporadic” Penttila–
Williams flock quadrangle.

S ∈ C
D−→ S D ∗−→ (S D)∗ D−→ ((S D)∗)D

↓ ↓ [25]

H2
?−→ G
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In this paper, we resolve the question of Payne for the complete class C . In fact,
we do more—we show that the flock quadrangles are characterized by their groups (in
any characteristic), a question which was open for quite some time. As an application
of the main result, the special case of prime q yields an alternative proof of the main
result of [2].

Theorem 1.1 Let S be an EGQ of order (q2, q), q any prime power, with elation
group H2(q). Then S is a flock quadrangle.

In terms of Kantor families, this result reads as follows:

Corollary 1.2 Each Kantor family of type (q2, q) in H2(q) arises from a q-clan.

Passing from the latter theorem to the solution of Payne’s question goes as follows.

Theorem 1.3 Let S = S (F ) be a flock GQ of order (q2, q) for which the dual S D

is a TGQ, q odd. Let G be a group as in the diagram above. Then G ∼= H2(q) if and
only if F is a Kantor–Knuth flock if and only if S ∼= ((S D)∗)D .

Proof If S (F ) is a Kantor–Knuth GQ, then S ∼= ((S D)∗)D [16], and the result
follows from the fact that flock GQs in odd characteristic admit unique elation groups
[24]. If S (F ) is not a Kantor–Knuth GQ, it is known that the dual of (S D)∗ is not a
flock quadrangle [23, Chap. 4]. Our main theorem now implies that its elation group
cannot be H2(q). �

If S (F ) is the Ganley flock quadrangle, the dual of (S D)∗ is the Roman quad-
rangle (which is not isomorphic to a Kantor–Knuth quadrangle), yielding thus the
result of Havas et al. [10, 11]. If S = S (F ) is a flock GQ of order (q2, q) for
which the dual S D is a TGQ, and q is even, S ∼= H (3, q2) (cf. Johnson [6, 12]
or [23, Theorem 5.1.11]). In that case, the analogous question is reduced to the main
results of [20, 24]. Other implications will be obtained further in the paper.

This paper arose while writing up [27], in an attempt to understand the importance
of symplectic forms coming from commutation in elation groups.

2 Quadrangles, groups and flocks

Let S = (P,B,I) be a generalized quadrangle of order (s, t).
Suppose p −I L, (p,L) ∈ P × B. Then by projLp, we denote the unique point

on L collinear with p. Dually, projpL is the unique line incident with p concurrent
with L. Let A ⊆ P ; then by A⊥ we mean ∩a∈Aa⊥ (here a⊥ is the set of points of P
collinear with a, including a). We write A⊥⊥ for (A⊥)⊥. Clearly, if x and y are non-
collinear points, |{x, y}⊥⊥| ≤ t + 1; if equality holds, we say that {x, y} is regular.
The point x is regular provided {x, y} is regular for every y ∈ P \ x⊥.

If the order of S is (t2, t), and {U,V,W } is a line triad, that is, three distinct lines
mutually non-intersecting, then |{U,V,W }⊥| = t + 1 [19, 1.2.4].
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2.1 EGQs and STGQs

For a GQ S = (P,B,I), we call a point x an elation point, if there is an auto-
morphism group H that fixes x linewise and acts sharply transitively on P \ x⊥ (the
group is called “elation group”). If a GQ has an elation point, it is called an ela-
tion generalized quadrangle or, shortly, “EGQ”. We will frequently use the notation
(S x,H) to indicate that x is an elation point with associated elation group H . Some-
times we also write S x if we do not want to specify the elation group. More details
on EGQs can be found in the recent work [26].

Suppose (S x,H) = (P,B,I) is an EGQ of order (s, t), s �= 1 �= t , and let z

be a point of P \ x⊥. Let L0,L1, . . . ,Lt be the lines incident with x, and define
ri = projLi

z and Mi = projzLi for 0 ≤ i ≤ t . Put Hi = HMi
and H ∗

i = Hri and F =
{Hi |0 ≤ i ≤ t}. Then |H | = s2t and F is a set of t +1 subgroups of H , each of order s.
Also, for each i, H ∗

i is a subgroup of H of order st containing Hi as a subgroup. Note
that if one chooses an other point for z, F and F∗ rest unchanged up to conjugation
by an element of H . The following two conditions are satisfied:

• HiHj ∩ Hk = {1} for distinct i, j and k;
• H ∗

i ∩ Hj = {1} for distinct i and j .

If H is a group of order s2t and F (respectively, F∗) is a set of t + 1 subgroups
Hi (respectively, H ∗

i ) of H of order s (respectively, of order st), and if the afore-
mentioned conditions are satisfied, then the H ∗

i are uniquely defined by the Hi , and
(F,F∗), or just F, is said to be a Kantor family or 4-gonal family of type (s, t) in H .
Using a (now) standard group coset geometry construction, one can then construct a
GQ S (F,F∗) which is an EGQ with elation group H ; moreover, if we start from S
as above, then S ∼= S (F,F∗) [13, 15].

Remark 2.1 The point z will not be specified below, due to the fact that H acts
transitively on P \ x⊥. Further, if A ∈ F, or A∗ ∈ F∗, LA will denote the line on
z stabilized by A. Also, [A] denotes projxLA.

If x is a regular point, it can be shown that H contains a subgroup S of order t

consisting of automorphisms which fix each point of x⊥ [27]. Such automorphisms
are called symmetries with center x, and x is a center of symmetry since t is the max-
imal number of symmetries with center x. We then say that S x is a skew translation
quadrangle (STGQ). We call the STGQ central if S is contained in the center Z(H)

of H . As [27] points out, centrality is the key to classifying STGQs.

2.2 TGQs

If the elation group H of an EGQ S x is abelian, we call S x a translation generalized
quadrangle with translation group H (and translation point x). In that case it can
be shown that it is elementary abelian (cf. [19, Chap. 8], [23, Sect. 3.4]), and that
s ≤ t [19, Chap. 8], [23, Sect. 3.3], if the order of S x is (s, t), s �= 1 �= t . Note
that H is uniquely defined—see [23, Theorem 3.3.10]. Let (F,F∗) be the associated
Kantor family. By [19, Sect. 8.5], see also [23, Sect. 3.4], the ring of endomorphisms
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of H preserving each element of F is a field Fq , over which H can be seen as a
vector space. Seeing the elements of F as subspaces (over Fq ) of the corresponding
projective space P, it appears that if s �= t or if s = t is odd, one can construct another
TGQ (S x)∗ by interpreting (F,F∗) in the dual space of P, see [19, Chap. 8], or [23,
Sect. 3.9, Sect. 3.10]. The TGQ (S x)∗ is the translation dual of S x , and has the
same order.

2.3 The general Heisenberg group

The general Heisenberg group Hn(q) (sometimes also written as Hn if we do not
want to specify q) of dimension 2n+1 over Fq , with n a natural number, is the group
of square (n + 2) × (n + 2)-matrices with entries in Fq , of the following form (and
with the usual matrix multiplication):

⎛
⎝

1 α c

0 In βT

0 0 1

⎞
⎠ ,

where α,β ∈ F
n
q , c ∈ Fq and with In being the n × n-identity matrix. The group Hn

is isomorphic to the group {(α, c,β)|α,β ∈ F
n
q, c ∈ Fq}, where the group operation ◦

is given by (α, c,β) ◦ (α′, c′, β ′) = (α + α′, c + c′ + αβ ′T ,β + β ′). The following
properties hold for Hn (defined over Fq ).

• Hn has exponent p if q = ph with p an odd prime; it has exponent 4 if q is even.
• The center of Hn is given by Z = Z(Hn) = {(0, c,0)|c ∈ Fq}.
• [Hn,Hn] = Z = Φ(Hn) and Hn is nilpotent of class 2 (Φ(Hn) is the Frattini

subgroup of H , that is, the intersection of all its maximal subgroups).

Finally recall that the following holds [13, 14].

• Let V be the elementary abelian p-group H2(q)/Z. The map χ

χ : V × V �→ Fq : (aZ,bZ) �→ [a, b]
naturally defines a non-singular bilinear alternating form over Fq ≡ Z. So V can be
seen as a 4-dimensional space over Fq , and in the corresponding projective 3-space
over Fq , χ defines a symplectic polar space W(q) of rank 2 (projective index 1).

2.4 Flock quadrangles and q-clans

Let F be a flock of the quadratic cone K in PG(3, q) with equation X0X1 = X2
2;

so F is a partition of K without the vertex consisting of irreducible conics. Then it
was noticed in [21] that the equations of the planes generated by the conics (w.r.t. a
suitable reference system) define a Kantor family of type (q2, q) in H2(q); that is, to
F corresponds an EGQ S x = S (F ), called flock quadrangle, of order (q2, q) with
elation group H2(q). Also, it happens to be an STGQ w.r.t. x, and Kantor families in
H2(q) that give rise to flock quadrangles are precisely those related to “q-clans”, see
[6, 23].

One of the corollaries of the main result of the present note is that Kantor families
in H2(q) always are of this type.
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We finally mention that if S (F ) is a flock quadrangle of order (q2, q), and its
dual is a TGQ, then S (F ) ∼= H (3, q2) if q is even. If q is odd, the TGQ S (F )D is
isomorphic to its translation dual if and only if F is a Kantor–Knuth semifield flock.
We refer to [6, 12, 23] for further details.

2.5 Property (G) and flock GQs

Let x be a point of a GQ S of order (t2, t), t �= 1, and let U,V be distinct lines
incident with x. Then S satisfies Property (G) at the pair {U,V } if any triad of lines
{V,W,Z} in U⊥ is 3-regular (which means that |{V,W,Z}⊥| = |{V,W,Z}⊥⊥| =
t + 1). (Note that the definition is symmetric in U and V .) The flag (x,L) has Prop-
erty (G) if all pairs {L,M} of distinct lines incident with x have Property (G). One
says that x has Property (G) if all pairs {U,V } incident with x have Property (G).

It can be shown that if S x is a flock quadrangle, the point x satisfies Property (G)
[17].

The following theorem was first obtained in odd characteristic in [22], answering
a fundamental conjecture of Payne’s essay [17]. In the case of even characteristic,
relying on [22], it was obtained only much later by Brown [5]. (In odd characteristic,
only one flag was required in [22]; later it was shown that one pair of intersecting
lines was sufficient [3].)

Theorem 2.2 [5, 22] A GQ of order (t2, t), t �= 1, satisfying Property (G) at two
distinct flags (u,L) and (u,M) for some point u is isomorphic to a flock GQ.

3 Special groups and alternating forms

Let H be a special group [8, p. 183] of order qm, m ∈ N\ {0,1}, with q = ph a power
of the prime p, for which

Z(H) = Φ(H) = [H,H ]
is (elementary abelian) of order q .

The exponent of H is easily seen to be p or p2 if p is odd, and 4 if p = 2. Note that
for p odd both cases occur; think of H2(q) and 〈a, b|ap = 1, bp = [a, b], a[a, b] =
[a, b]a, b[a, b] = [a, b]b〉. If the exponent of H is p, then Z(H) = [H,H ] implies
Z(H) = Φ(H).

3.1 Setting

Define a bi-additive map χ by

χ : V × V �→ Fq : (aZ(H), bZ(H)
) �→ [a, b],

where we see H/Z(H) as a vector space V over Fp . We assume that χ “defines”
a non-singular bilinear alternating form over Fq ≡ Z(H); by this we mean that the
commuting structure of χ is a (non-singular) symplectic polar space over Fq . The
assumption implies that the dimension m of V over Fq is even, and χ defines a
symplectic polar space W(2n−1, q) of rank n−1 in the projective space PG(2n−1,

q) associated to V , with m = 2n.
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Observation 3.1 If H admits a Kantor family of type (s, q), then s ∈ {q, q2}, and so
|H | ∈ {q3, q5}.

Proof This follows from the fact that if H admits such a Kantor family, |H | = s2q ,
so s = qn (n ∈ N \ {0}). Higman’s inequality yields n ∈ {1,2}. �

Now let H admit a Kantor family (F,F∗), with s = q2, and let S be the GQ
of order (q2, q) arising from (F,F∗). Since S has order (q2, q), all line spans (of
non-concurrent lines) have size 2 [19, 1.4.1]. By a result of [27] (which can also
be deduced from the proof of [19, 9.5.1]), it follows that Z(H) can only consist of
symmetries about the elation point x, so that x is a center of symmetry with associated
group Z(H) = S, and (S x,H) is an STGQ. Now define χ as before (still assuming
the condition on the alternating form over Fq ), and let W(q) be the corresponding
polar space in PG(3, q)—it is a symplectic generalized quadrangle of order q .

Observation 3.2 The elements of F∗ are elementary abelian.

Proof For A ∈ F, [A,A] ≤ A ∩ [H,H ] = A ∩ Z(H) = {1}, so A is abelian. Also,
since H is a p-group, we have Φ(H) = Hp[H,H ], implying that Ap ⊆ Z(H). So A

has exponent p, and A is elementary abelian. Since A∗ = AS = AZ(H), the obser-
vation follows. �

The following observation follows from the fact that H/S is abelian, and will be
used without further notice.

Observation 3.3 For any A∗ ∈ F∗, A∗ fixes [A] pointwise.

We are ready to obtain the main theorem. Note that it also characterizes
5-dimensional Heisenberg groups, and that it is independent of the characteristic.

Theorem 3.4 Suppose H is a special p-group of order q5 for which Z(H) =
Φ(H) = [H,H ] is elementary abelian of order q . Suppose H admits a Kantor family
of type (q2, q), and suppose χ defines a non-singular bilinear alternating form over
Fq . Then H ∼= H2(q), and the corresponding generalized quadrangle S of order
(q2, q) is a flock quadrangle.

Proof Interpret F∗ in W(q); it is a set R of q + 1 mutually disjoint lines (note that
in V , a′Z(H) ∼ b′Z(H) if and only if [a′, b′] = 1). Let A∗,B∗ ∈ F∗ be different,
and denote the corresponding lines in W(q) by A′,B ′. Consider (in W(q)) any point
a incident with A′, and define b = projB ′a. The line projbA

′ = C′ arises from an
abelian subgroup of H of order q3, denoted by C (it is not an element of F∗). Clearly
(in H ) |A∗ ∩ C| = |B∗ ∩ C| = q2. Let A ≤ A∗ and B ≤ B∗ be the corresponding
elements in F; then |A ∩ C| = |B ∩ C| = q , and

[A ∩ C,B ∩ C] = {1}.
Interpreted in S , this commutator relation gives a 3-regular triad: LA∩C

B and
LB∩C

A define the reguli (if α ∈ (A ∩ C)×, then [α,B ∩ C] = {1}, so {[B]} ∪ LB∩C
A =
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{LB,Lα
B, [A]}⊥). Letting a vary on A′, and A∗ and B∗ vary in F∗, an easy exercise

yields that each flag (x,L) incident with x has Property (G).
By Theorem 2.2, it follows that S is a flock quadrangle. By [20, 24], a flock quad-

rangle can only admit more than one elation group (w.r.t. a point) if S ∼= H (3, q2)

with q even. So in the other cases, we are done. When S ∼= H (3, q2), there are
exactly two isomorphism classes of elation groups (w.r.t. points), one of nilpotency
class 2 (Heisenberg case), and the other of class 3 (“exotic case”, see [20]). Since H

is of class 2, we are done. �

The generalization of the theorem of Havas et al. [10, 11] was already treated in
the introduction.

Remark 3.5 (Local versus global)

(i) Note that only local properties of the symplectic quadrangle are used in order to
conclude our main result; in fact, what is only needed (in both characteristics)
is that in the “commutation geometry”, lines corresponding to distinct elements
of F∗ have the property that they are both intersected by q + 1 lines of the right
size without violating GQ axioms. So instead of demanding that a symplectic
quadrangle arise, it is already sufficient to ask that only some part of an abstract
quadrangle be present.

(ii) In the even case, one could also consider the quadratic form

Q : V �→ Fq : uZ(H) �→ u2.

It singles out a hyperbolic quadric induced by the elements of F∗ on the W(q)

defined by χ . So starting from the same conditions as before, but now demanding
that Q be a quadratic form over Fq , also is enough to show that we are dealing
with a flock GQ. This stresses (i). (A grid is sufficient.)

Remark 3.6 (Subquadrangles) Note that in the even case, the opposite regulus of the
one defined by F∗ defines q + 1 elementary abelian subgroups of order q3 of H ,
in which Kantor families of type (q, q) are induced. Each of these groups defines
q2 TGQs of order q containing x. This is a known fact in q-clan geometry in even
characteristic. The mere observation that F∗ “has” a grid structure in V is already
enough to conclude this.

The reader notices that in the even case, the aforementioned quadratic form Q

singles out the involutions of H2(q); in fact, there is more.

Observation 3.7 The set of involutions of H2(q) is (∪F∗A∗)×, where (F,F∗) is any
Kantor family of type (q2, q) in H2(q), q even.

The maximal elementary abelian 2-groups of H2(q) are the 2(q + 1) subgroups
corresponding to the lines of the quadric related to Q. Let (F,F∗) be any Kantor
family (of type (q2, q)) in H2(q). As the elements of F∗ are elementary abelian (and
maximal w.r.t. this property), cf. Observation 3.2, it follows that F∗ is completely de-
termined; it is one of only two possible sets Si , i = 1,2, of q +1 maximal elementary
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abelian subgroups of H2(q) corresponding to the reguli of the quadric of Q. Note that
Aut(H2(q)) ∼= H2(q)/Z(H2(q)) � O+(4, q), so that Aut(H2(q)) acts transitively
on {S1,S2}. In other words:

Theorem 3.8 (Tangents in even characteristic) Let q be even. The set F∗ of tangent
spaces of any Kantor family (F,F∗) of type (q2, q) in H2(q), or equivalently, of any
Kantor family coming from a q-clan, is completely determined, and can always be
chosen as the same fixed set of q + 1 subgroups, independent of the isomorphism
class of F.

It seems that this fact remained unnoticed for a long time.
The following observation is slightly more general than [14, Lemma, p. 154]. It

generalizes [2, Lemma 4.6], cf. Remark 3.10(ii).

Observation 3.9 Let q = ph, p a prime. If p is odd, the elements of F∗ induce a
BLT-set in W(q), while if q is even, we have a regulus of some hyperbolic quadric on
W(q).

Proof For p = 2, this was already observed, so let p be odd. Suppose a BLT-set is
not induced; let U,V,W be distinct lines in the line set of W(q) induced by F∗, and
let U∗,V ∗,W ∗ be the corresponding subgroups of H2(q) (they are elements of F∗).
Also, let U ′,V ′,W ′ be the corresponding elements of F. Suppose there is some line
X of W(q) meeting all three of U,V,W , and let X∗ be the corresponding group in
H2(q); then |U ′ ∩X∗| = |V ′ ∩X∗| = |W ′ ∩X∗| = q . Let U be the (q +1)× (q +1)-
grid of S x corresponding to the identity [U ′ ∩ X∗,V ′ ∩ X∗] = {1} (noting that X∗
is abelian); one of its reguli contains LU ′ , the other contains LV ′ . Let u ∈ U be the
intersection point of LU ′ , LV ′ and LW ′ , and consider any β ∈ (W ′ ∩ X∗)×; then it is
easy to see that uβ is incident with three lines that meet the point set of U (namely
LW ′ ,Lβ

V ′ ,L
β

U ′ ), contradicting [19, 2.6.1]. (Note that S ≤ X∗; so X∗ has orbits of size
q on [U ′] \ {x} and [V ′] \ {x}.) �

Remark 3.10

(i) In [14], the latter observation is obtained by using the associated q-clan. Our
proof only uses [19, 2.6.1], while the setting is a priori more general—we “only”
assume that χ defines a symplectic form (the fact that S x eventually is a flock
GQ, or arises from a q-clan, is not needed).

(ii) In [2], Observation 3.9 is obtained for the special case of q prime (cf. [2, Lemma
4.6]). However, its proof appears to contain a flaw—the conclusion that (in their
notation) C∗ ∩H = (C∩(H ∩A)(H ∩B))Z(E) follows from H = (H ∩A)(H ∩
B)Z(E) and C∗ = CZ(E) is not correct. (The fact that p is odd is not used at that
point, while it should—cf. [19, 2.6.1]. As mentioned, when q is a power of 2, the
elements of F∗ induce a regulus, so C∗∩H �= (C∩(H ∩A))(H ∩B))Z(E) while
still H = (H ∩ A)(H ∩ B)Z(E) and C∗ = CZ(E).) However, the statement is
correct by Observation 3.9.
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4 Elation quadrangles of order (s,p), p a prime

In the aforementioned paper [2], the following theorem, which complements the re-
sult of Bloemen et al. [4] classifying EGQs of order (p, t), was obtained.

Theorem 4.1 (Bamberg et al. [2]) An EGQ (S x,H) of order (s,p) with p a prime,
s �= 1, is either isomorphic to W(p), or to a flock quadrangle, in which case s = p2.

In this final section, we apply our main result to obtain an alternative and very
short proof of Theorem 4.1. As any GQ of order (s,2) is classical [19, Chap. 6], we
suppose that p is odd.

Proof As in [2], we only have to consider the case s = p2, since the case s < p2

reduces to the case s = p by Frohardt’s Theorem [7] (and then [4] applies). If s = p2,
the aforementioned fact that the center can only consist of symmetries, immediately
leads to the fact that |Z(H)| = p, so that S x is a central STGQ. Any element of
F is an abelian group of order p2; any element of F∗ is abelian of order p3. By
[9, Sect. 3], either H/Z(H) is elementary abelian, or H contains a subgroup D for
which FD = {A ∩ D|A ∈ F}, F∗

D = {A∗ ∩ D|A∗ ∈ F∗} constitutes a Kantor family
of type (p,p) in D. In the latter case, there is a subEGQ S ′ of order p, which
necessarily is isomorphic to W(p) by [4]. By [1], we have S x ∼= H (3,p2). We
henceforth suppose that H/Z(H) is elementary abelian. Then [H,H ] ≤ Z(H) =
[H,H ] = Φ(H); as before, we now see H/Z(H) as a vector space V over Fp ≡
Z(H). The bi-additive map

χ : V × V �→ Fp : (aZ(H), bZ(H)
) �→ [a, b]

then becomes a non-singular bilinear alternating form over Fp , and our main result
applies. �
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