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Abstract When W is a finite reflection group, the noncrossing partition lattice
NC(W) of type W is a rich combinatorial object, extending the notion of noncrossing
partitions of an n-gon. A formula (for which the only known proofs are case-by-case)
expresses the number of multichains of a given length in NC(W) as a generalized
Fuß–Catalan number, depending on the invariant degrees of W . We describe how
to understand some specifications of this formula in a case-free way, using an inter-
pretation of the chains of NC(W) as fibers of a Lyashko–Looijenga covering (LL),
constructed from the geometry of the discriminant hypersurface of W . We study al-
gebraically the map LL, describing the factorizations of its discriminant and its Ja-
cobian. As byproducts, we generalize a formula stated by K. Saito for real reflection
groups, and we deduce new enumeration formulas for certain factorizations of a Cox-
eter element of W .

Keywords Finite Coxeter group · Complex reflection group · Noncrossing partition
lattice · Fuß–Catalan number · Lyashko–Looijenga covering · Coxeter element

1 Introduction

Complex reflection groups are a natural generalization of finite real reflection groups
(that is, finite Coxeter groups realized in their geometric representation). In this arti-
cle, we consider a well-generated complex reflection group W ; the precise definitions
will be given in Sect. 2.1.

The noncrossing partition lattice of type W , denoted NC(W), is a particular sub-
set of W , endowed with a partial order � called the absolute order (see definition
below). When W is a Coxeter group of type A, NC(W) is isomorphic to the
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poset of noncrossing partitions of a set, studied by Kreweras [13]. Throughout
the last 15 years, this structure has been generalized to finite Coxeter groups, first
(Reiner [18], Bessis [3], Brady–Watt [6]), then to well-generated complex reflection
groups (see [4]). It has many applications in the algebraic understanding of the braid
group of a reflection group (via the construction of the dual braid monoid, see [3, 4]),
and is also studied for itself as a very rich combinatorial object (see Armstrong’s
memoir [1]).

In order to introduce the structure NC(W), we need several definitions and nota-
tions (which will be detailed in Sect. 2):

– the set R of all reflections of W ;
– the reflection length (or absolute length) � on W : for w in W , �(w) is the minimal

length of a word on the alphabet R that represents w;
– a Coxeter element c in W ;
– the absolute order � on W , defined as

u � v if and only if �(u) + �
(
u−1v

) = �(v).

The noncrossing partition lattice associated to (W, c) is defined to be the interval
below c:

NC(W) = {w ∈ W | w � c}.
This lattice has a fascinating combinatorics, and one of its most amazing proper-

ties concerns its Zeta polynomial (expressing the number of multichains of a given
length).

“Chapoton’s formula”. Let W be an irreducible, well-generated complex reflection
group of rank n. Then, for any p ∈ N, the number of multichains w1 � · · · � wp in
the poset NC(W) is equal to

Cat(p)(W) =
n∏

i=1

di + ph

di

,

where d1 ≤ . . . ≤ dn = h are the invariant degrees of W (defined in Sect. 2.1).

The numbers Cat(p)(W) are called Fuß–Catalan numbers of type W (and Cata-
lan numbers for p = 1). When W is the symmetric group Sn, these are the classi-
cal Catalan and Fuß–Catalan numbers 1

pn+1

(
(p+1)n

n

)
. Those generalized Fuß–Catalan

numbers also appear in other combinatorial objects constructed from the group W ,
for example cluster algebras of finite type introduced in [10] (see Fomin–Reading [9]
and the references therein).

In the real case, this formula was first stated by Chapoton in [7, Property 9]. The
proof is case-by-case (using the classification of finite Coxeter groups), and it mainly
uses results by Athanasiadis and Reiner [2, 18] (see also [16]). The remaining com-
plex cases are checked by Bessis in [4], using results of [5]. There is still no case-free
proof of this formula, even for the simplest case p = 1, which states that the cardi-
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nality of NC(W) is equal to the generalized Catalan number

Cat(W) =
n∏

i=1

di + h

di

.

This very simple formula naturally incites to look for a uniform proof that could
shed light on the mysterious relation between the combinatorics of NC(W) and the
invariant theory of W . This is the problem which has motivated this work. Roughly
speaking, we will bring a complete geometric (and mainly case-free) understanding
of certain specifications of Chapoton’s formula. For geometric reasons (that will be-
come clear in Sect. 3.2), we consider strict chains in NC(W) of a given length, rather
than multichains. In any bounded posets, their numbers are related to the numbers
of multichains by well-known conversion formulas: basically, they are the coeffi-
cients of the Zeta polynomial written in the basis of binomial polynomials (see [25,
Chap. 3.11]). An alternative way (more adapted in our work) to look at strict chains
in NC(W) is to consider block factorizations of the Coxeter element c:

Definition 1.1 For c a Coxeter element of W , (w1, . . . ,wp) is called a block factor-
ization of c if:

– ∀i, wi ∈ W − {1};
– w1 . . .wp = c;
– �(w1) + . . . + �(wp) = �(c).

The reflection length of c equals the rank of W , denoted here by n. Thus, the
maximal number of factors in a block factorization is n. Note that block factorizations
of c have the same combinatorics of strict chains of NC(W): the partial products
w1 · · ·wi for i from 1 to p form a strict chain by definition. Thus, using simple
computations as explained above, we can reformulate Chapoton’s formula in terms
of these factorizations (an explicit formula is given in Appendix B of [20]). Proving
Chapoton’s formula amounts to computing the number of block factorizations in p

factors for p from 1 to n.
We call reduced decompositions of c the factorizations of c in n reflections, i.e.,

the most refined block factorizations (the set of such factorizations is usually denoted
by RedR(c)). The reformulation implies in particular that the number of reduced
decompositions (or, equivalently, the number of maximal strict chains in NC(W))
is n! times the leading coefficient of the Zeta polynomial, that is,

∣∣RedR(c)
∣∣ = n!hn

|W | .

Note that this particular formula was known long before Chapoton’s formula (the
real case was dealt with by Deligne in [8]; see [4, Proposition 7.5] for the remaining
cases). Once again, even for this specific formula, no case-free proof is known.

In [4], Bessis—crediting discussions with Chapoton—interpreted this integer
n!hn/|W | as the degree of a covering (the Lyashko–Looijenga covering LL) con-
structed from the discriminant of W , and he described effectively the relations be-
tween the fibers of this covering and the reduced decompositions of c. The aim of



652 J Algebr Comb (2012) 36:649–673

this paper is to explain how, by studying the map LL in more detail, we can obtain
new enumerative results, namely formulas for the number of submaximal factoriza-
tions of c.

Theorem (see Theorem 5.1 and Corollary 5.4) Let W be an irreducible, well-
generated complex reflection group of rank n. Let c be a Coxeter element of W ,
and Λ be a conjugacy class of elements of reflection length 2 in NC(W). Then:

(a) the number of block factorizations of c, made up with n − 2 reflections and one
element in the conjugacy class Λ, is

∣
∣FACTΛ

n−1(c)
∣
∣ = (n − 1)! hn−1

|W | degDΛ,

where DΛ is an homogeneous polynomial (in the n − 1 first fundamental invari-
ants) attached to Λ, determined by the geometry of the discriminant hypersurface
of W (see Sect. 5);

(b) the total number of block factorizations of c in n − 1 factors (or submaximal
factorizations) is

∣∣FACTn−1(c)
∣∣ = (n − 1)! hn−1

|W |

(
(n − 1)(n − 2)

2
h +

n−1∑

i=1

di

)

.

The first point is new and is a refinement of the second which was already known:
like for the number of reduced decompositions, item (b) is a consequence of Chapo-
ton’s formula. The main interest of stating (b) is that the proof obtained here is geo-
metric and almost case-free (we still have to rely on some structural properties of LL
proved in [4] case-by-case). The structure of the proof is roughly as follows:

1. we use new geometric properties of the morphism LL to prove the formula of
point (a) (Sect. 5.1);

2. we find a uniform way to compute
∑

Λ degDΛ, using an algebraic study of the
Jacobian of LL (Sect. 4.2);

3. we deduce the second formula, since | FACTn−1(c)| = ∑
Λ | FACTΛ

n−1(c)|
(Sect. 5.2).

Thus, even if the method used here does not seem easily generalizable to factoriza-
tions with fewer blocks, it is a new interesting avenue toward a geometric case-free
explanation of Chapoton’s formulas.

Remark 1.2 During step (2) of the proof, we recover a formula proved (case-by-case)
by K. Saito in [22] for real groups and extend it for complex groups. This concerns
the bifurcation locus of the discriminant hypersurface of W , the factorization of its
equation, and the relation with the factorization of the Jacobian of LL (see Sect. 4.3).

Outline In Sect. 2 we give some backgrounds and notations about complex reflec-
tion groups, the noncrossing partition lattice, and block factorizations of a Coxeter
element. Section 3 is devoted to the construction and properties of the Lyashko–
Looijenga covering of type W , and in particular its relation with factorizations.
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Section 4 is the core of the proof: we study further the algebraic properties of the
morphism LL, we show that it gives rise to a “well-ramified” polynomial extension,
and we derive factorizations of its Jacobian and its discriminant into irreducibles. We
also list the analogies between the properties of LL extensions and those of Galois
extensions. In Sect. 5 we use these results to deduce the announced formulas for
the number of submaximal factorizations of a Coxeter element. We conclude in the
last section by giving a list of numerical data about these factorizations for each
irreducible well-generated complex reflection group.

2 The noncrossing partition lattice of type W and block factorizations of a
Coxeter element

2.1 Complex reflection groups

First we recall some notations and definitions about complex reflection groups. For
more details, we refer the reader to the books [11] and [14].

For V a finite-dimensional complex vector space, we call a reflection of GL(V ) an
automorphism r of V of finite order and such that the invariant space Ker(r − 1) is a
hyperplane of V (it is called pseudo-reflection by some authors). We call a complex
reflection group a finite subgroup of GL(V ) generated by reflections.

A simple way to construct such a group is to take a finite real reflection group (or,
equivalently, a finite Coxeter group together with its natural geometric realization)
and to complexify it. There are of course many other examples that cannot be seen in
a real space. A complete classification of irreducible complex reflection groups was
given by Shephard–Todd in [23]: it consists of an infinite series with three parameters
and 34 exceptional groups of small ranks.

Throughout this paper we denote by W a subgroup of GL(V ) which is a complex
reflection group. Note that for real reflection groups, the results presented here are
already interesting (and, most of them, new).

We suppose that W is irreducible of rank n (i.e., the linear action on V is ir-
reducible, and the dimension of V is n). The group W acts naturally on the poly-
nomial algebra C[V ] = C[v1, . . . , vn], where (v1, . . . , vn) denotes a basis for V .
Chevalley–Shephard–Todd’s theorem implies that the invariant algebra C[V ]W is
again a polynomial algebra, and it can be generated by n algebraically independent
homogeneous polynomials f1, . . . , fn (called the fundamental invariants). The de-
grees d1, . . . , dn of these invariants do not depend on the choices for the fi ’s (if we
require d1 ≤ . . . ≤ dn), and they are called the invariant degrees of W . Like for fi-
nite Coxeter groups, we will denote by h the highest degree dn (called the Coxeter
number of W ).

We will also require that W is well-generated, i.e., it can be generated by n reflec-
tions (this is always verified in the real case). Then there exist in W so-called Coxeter
elements, which generalize the usual notion of a Coxeter element in finite Coxeter
groups.

Definition 2.1 A Coxeter element c of W is an e2iπ/h-regular element (in the sense
of Springer’s regularity, see [24]), i.e., it is such that there exists a vector v in V ,
outside the reflecting hyperplanes, such that c(v) = e2iπ/hv.
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As in the real case, Coxeter elements have reflection length n and form a conjugacy
class of W .

2.2 The noncrossing partition lattice of type W

Recall that R denotes the set of all reflections of W . For w in W , the reflection length
(or absolute length) of w is:

�(w) = min{p ∈ N | ∃ r1, . . . , rp ∈ R, w = r1 . . . rp}.
This length is not to be confused with the usual length in Coxeter groups (called

weak length, relative to the generating set of simple reflections) that can be defined
only in the real case.

The noncrossing partition lattice is constructed from the absolute order, which is
the natural prefix order for the reflection length:

Definition 2.2 We denote by � the absolute order on W , defined by

u � v if and only if �(u) + �
(
u−1v

) = �(v).

If c is a Coxeter element of W , the noncrossing partition lattice of (W, c) is

NC(W ; c) = {w ∈ W | w � c}.

Since all the Coxeter elements are conjugate, and the reflection length is invariant
under conjugation, the structure of NC(W ; c) does not depend on the choice of the
Coxeter element c. Thus we will just write NC(W) for short, considering c fixed for
the rest of the paper. In the prototypal case of type A, where W is the symmetric
group Sn+1, R is the set of all transpositions, and c is an (n+ 1)-cycle; then NC(W)

is isomorphic to the set of noncrossing partitions of an (n + 1)-gon, as introduced by
Kreweras [13]. In general, the noncrossing partition lattice of type W has a very rich
combinatorial structure; we refer to Chap. 1 of [1] or the introduction of [20].

2.3 Multichains in NC(W) and block factorizations of a Coxeter element

Recall from Definition 1.1 that a block factorization of c is a factorization in nontrivial
factors, such that the lengths of the factors add up to the length of c (i.e., there exist
reduced decompositions of c obtained from concatenation of reduced decompositions
of the blocks).

We denote by FACT(c) (resp. FACTp(c)) the set of block factorizations of c (resp.
factorizations in p factors). Note that the length of c is equal to the rank n of W ,
so any block factorization of c determines a composition (ordered partition) of the
integer n. The set FACTn(c) corresponds to the set of reduced decompositions of c

into reflections, usually denoted by RedR(c) (composition (1,1, . . . ,1)).
To simplify we will write, from now on, factorization for block factorization.
If (w1, . . . ,wp) is a factorization of c, then we canonically get a (strict) chain in

NC(W):

w1 ≺ w1w2 ≺ . . . ≺ w1 . . .wp = c.
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Strict chains are related to multichains by known formulas, so that we can pass from
enumeration of multichains in NC(W) to enumeration of factorizations of c, and vice
versa (see for example [20, Appendix B] or [25, Chap. 3.11]).

In the following section, we describe a geometric construction of these factoriza-
tions, and how they are related to the fibers of a topological covering.

3 Lyashko–Looijenga covering and factorizations of a Coxeter element

3.1 Discriminant of a well-generated reflection group and Lyashko–Looijenga
covering

Let W be a well-generated, irreducible complex reflection group with invariant
polynomials f1, . . . , fn, homogeneous of degrees d1 ≤ . . . ≤ dn = h. Note that the
quotient-space1 W\V is then isomorphic to C

n:

W\V ∼−→ C
n

v̄ 	→ (
f1(v), . . . , fn(v)

)
.

We recall here the construction of the Lyashko–Looijenga map of type W (for
more details, see [4, Sect. 5] or [21, Sect. 3]).

Let us denote by A the set of all reflecting hyperplanes of W and consider the
discriminant of W defined by

ΔW :=
∏

H∈A

α
eH

H ,

where αH is an equation of H , and eH is the order of the parabolic subgroup
WH = Fix(H). The discriminant lies in C[V ]W = C[f1, . . . , fn], and it is an equation
for the discriminant hypersurface

H := W \
⋃

H∈A

H ⊆ W\V � C
n.

It is known (see [4, Theorem 2.4]) that when W is well-generated, the fundamen-
tal invariants f1, . . . , fn can be chosen such that the discriminant of W is a monic
polynomial of degree n in fn of the form

ΔW = f n
n + a2f

n−2
n + . . . + an,

where ai ∈ C[f1, . . . , fn−1]. This property implies that if we fix f1, . . . , fn−1, then
ΔW always has n roots (counting multiplicities) as a polynomial in fn.

Let us define Y := Spec C[f1, . . . , fn−1] � C
n−1, so that W\V � Y ×C. Then the

geometric version of the property given above is that the intersection of the hyper-
surface H with the complex line {(y, fn) | fn ∈ C} (for a fixed y ∈ Y ) generically
has cardinality n. The definition of the Lyashko–Looijenga map comes from these
observations.

1The action of W on V is conventionally on the left side, so we prefer to write the quotient-space W\V .
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Definition 3.1 We denote by En the set of centered configurations of n points in C,
i.e.,

En := H0/Sn, where H0 =
{

(x1, . . . , xn) ∈ C
n|

n∑

i=1

xi = 0

}

.

The Lyashko–Looijenga map of type W is defined by

Y
LL−→ En

y = (f1, . . . , fn−1) 	→ multiset of roots of ΔW(f1, . . . , fn) in the variable fn.

Remark 3.2 We can also regard LL as an algebraic morphism. Indeed, the natural co-
ordinates for En as an algebraic variety are the n − 1 elementary symmetric polyno-
mials e2(x1, . . . , xn), . . . , en(x1, . . . , xn). Thus, the algebraic version of the map LL is
(up to some unimportant signs) simply the morphism

C
n−1 → C

n−1

(f1, . . . , fn−1) 	→ (
a2(f1, . . . , fn−1), . . . , an(f1, . . . , fn−1)

)
.

To shorten the notations, we will also denote this morphism by LL, whenever in an
algebraic context (mainly in Sect. 4).

We denote by E
reg
n the set of configurations in En with n distinct points, and we

define the bifurcation locus of LL, namely K := LL−1(En −E
reg
n ). Equivalently, we

have

K := {
y ∈ Y | DLL(y) = 0

}
,

where DLL is called the LL-discriminant and is defined by

DLL := Disc
(
ΔW(y,fn); fn

) ∈ C[f1, . . . , fn−1].

Example 3.3 The picture of Fig. 1 gives a simplified geometric view of what happens
for the group W(A3). The discriminant hypersurface H and the bifurcation locus K
are described. The map LL associates to any point in Y the multiset of intersection
points of the line {(y, x) | x ∈ C} (vertical green lines ) with H (yellow points).

The first important property is the following (from [4, Theorem 5.3]):

Property (P0) The restriction of LL : Y − K �E
reg
n is a topological covering of

degree n!hn

|W | .

We call this integer the Lyashko–Looijenga number of type W .

3.2 Geometric construction of factorizations

Before explaining the construction of factorizations from the discriminant hypersur-
face, we recall some useful properties of the geometric stratification associated to the
parabolic subgroups of W .
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Fig. 1 Example of W(A3). The
picture represents a fragment of
the real part of the discriminant
hypersurface H (equation
Disc(T 4 +f1T 2 −f2T +f3; T ) = 0,
called the swallowtail
hypersurface), as well as its
bifurcation locus K . The
vertical is chosen to be the
direction of fn. The other
information is described
gradually in Examples 3.3, 3.5,
and 4.4

Discriminant stratification The space V , together with the hyperplane arrange-
ment A , admits a natural stratification by the flats, namely, the elements of the inter-
section lattice L := {⋂H∈B H | B ⊆ A }.

As the W -action on V maps a flat to a flat, this stratification gives rise to a quotient
stratification L of W\V :

L = W\L = (
p(L)

)
L∈L = (W · L)L∈L ,

where p is the projection V � W\V . For each stratum Λ in L , we denote by Λ0

the complement in Λ of the union of the strata strictly included in Λ. The family
(Λ0)Λ∈L forms an open stratification of W\V , called the discriminant stratification.

There is a natural bijection between the set of flats in V and the set of parabolic
subgroups of W (Steinberg’s theorem). By quotienting by the action of W , this leads
to other descriptions of the stratification L :

Proposition 3.4 The set L is in canonical bijection with:

– the set of conjugacy classes of parabolic subgroups of W ;
– the set of conjugacy classes of parabolic Coxeter elements (i.e., Coxeter elements

of parabolic subgroups);
– the set of conjugacy classes of elements of NC(W).

Through these bijections, the codimension of a stratum Λ corresponds to the rank
of the associated parabolic subgroup and to the reflection length of the parabolic
Coxeter element.

We refer to [21, Sect. 6] for details and proofs.

Example 3.5 In the picture of Fig. 1, the two strata of L of codimension 2 are drawn
in red and blue (the blue one is the one forming a cusp). Through the bijection of
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Proposition 3.4, the blue one corresponds to the conjugacy class of a parabolic Cox-
eter element of type A2 (viewed in S4, this is a 3-cycle), and the red one corresponds
to the conjugacy class of a parabolic Coxeter element of type A1 ×A1 (i.e., a product
of two commuting transpositions in S4).

Geometric factorizations and compatibilities In [21] we established a way to con-
struct factorizations geometrically from the discriminant hypersurface H . We de-
scribe below the idea of the construction and some of its properties; for details and
proofs, see [21, Sect. 4] and [4, Sect. 6].

The starting point is the construction of a map

ρ : H → W

(y,x) 	→ cy,x,

by the following steps (note that (y, x) lies in H if and only if the multiset LL(y)

contains x).

1. Consider a small loop in C
n − H , which always stays in the fiber {(y, t), t ∈ C},

and which turns once around x (but not around any other x′ in LL(y)).
2. This loop determines an element by,x of π1(C

n − H ) = π1(V
reg/W), which is

the braid group B(W) of W .
3. Send by,x to cy,x via a fixed surjection B(W)�W .

The map ρ has the following fundamental properties.

Property (P1) If (x1, . . . , xp) is the ordered support of LL(y) (for the lexicographi-
cal order on C � R

2), then the p-tuple (cy,x1 , . . . , cy,xp ) lies in FACTp(c).

Property (P2) For all x ∈ LL(y), cy,x is a parabolic Coxeter element; its length is
equal to the multiplicity of x in LL(y), and its conjugacy class corresponds (via the
bijection of Proposition 3.4) to the unique stratum Λ in L such that (y, x) ∈ Λ0.

According to Property (P1), we call the tuple (cy,x1 , . . . , cy,xp ) (where (x1, . . . , xp)

is the ordered support of LL(y)) the factorization of c associated to y, and we denote
it by facto(y).

Any block factorization determines a composition of n. To any configuration
of En we can also associate a composition of n, formed by the multiplicities of its ele-
ments in the lexicographical order. Then Property (P2) implies that for any y in Y , the
compositions associated to LL(y) and facto(y) are the same. The third fundamental
property (see [21, Theorem 5.1] or [4, Theorem 7.9]) is the following.

Property (P3) The map LL× facto : Y → En × FACT(c) is injective, and its image
is the entire set of compatible pairs (i.e., pairs with same associated composition).

In other words, for each y ∈ Y , the fiber LL−1(LL(y)) is in bijection (via facto)
with the set of factorizations whose associated composition of n is the same as that
associated to facto(y). This fundamental property is a reformulation of a theorem by
Bessis; the proof still relies on some case-by-case analysis.
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4 Lyashko–Looijenga extensions

Property (P3) is particularly helpful to compute algebraically certain classes of fac-
torizations. For example, if y lies in Y − K , then facto(y) is in FACTn(c) (in
other words, it is a reduced decomposition of c), i.e., the associated composition
is (1,1, . . . ,1). Thus, from (P3), the set RedR(c) is in bijection with any generic fiber
of LL (the fiber of any point in E

reg
n ), so it has cardinality n! hn/ |W |, because of

Property (P0). Note that this number has been computed algebraically, using the fact
that the algebraic morphism LL is “weighted-homogeneous.”

In order to go further and count more complicated factorizations of c, we need a
more precise algebraic study of the morphism LL, in particular its restriction to the
bifurcation locus K .

4.1 Ramification locus for LL

Let us first explain the reason why LL is étale on Y −K (as stated in Property (P0)),
where we recall:

K = {
y ∈ Y | the multiset LL(y) has multiple points

}
.

The argument goes back to Looijenga [15] and is used without details in the proof of
Lemma 5.6 of [4].

We begin with a more general setting. Let n ≥ 1, and P ∈ C[T1, . . . , Tn] of the
form

P = T n
n + a2(T1, . . . , Tn−1)T

n−2
n + . . . + an(T1, . . . Tn−1)

(here the polynomials ai do not need to be quasi-homogeneous). As in the case of LL,
we define the hypersurface H := {P = 0} ⊆ C

n and a map ψ : C
n−1 → En, send-

ing y = (T1, . . . , Tn−1) ∈ C
n−1 to the multiset of roots of P(y,Tn) (as a polynomial

in Tn). This map can also be considered as the morphism y 	→ (a2(y), . . . , an(y)).
We set

Jψ(y) = Jac
(
(a2, . . . , an)/y

) = det

(
∂ai

∂Tj

)

2≤i≤n
1≤j≤n−1

.

Proposition 4.1 (after Looijenga) With the notations above, let y be a point in C
n−1,

with ψ(y) being the multiset {x1, . . . , xn}. Suppose that the xi ’s are pairwise distinct.
Then the points (y, xi) are regular on H . Moreover, the n hyperplanes tangent

to H at (y, x1), . . . , (y, xn) are in general position if and only if Jψ(y) �= 0 (i.e., ψ

is étale at y).

Proof Let α be a point in H . If it exists, the hyperplane tangent to H at α is directed
by its normal vector gradα P = ( ∂P

∂T1
(α), . . . , ∂P

∂Tn
(α)).

Let y be a point in C
n−1 such that the associated xi ’s are pairwise distinct.

Then the polynomial in Tn, P(y,Tn), has the xi ’s as simple roots, so for each i,
∂P
∂Tn

(y, xi) �= 0, and the point (y, xi) is regular on H .
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The tangent hyperplanes associated to y are in general position if and only if
detMy �= 0, where My is the matrix with columns

(grad(y,x1)
P ; . . . ; grad(y,xn) P ).

After computation, we get My = AyVy , where

Ay =

⎡

⎢⎢⎢
⎣

0
...

0

(
∂aj

∂Ti

)

1≤i≤n−1
2≤j≤n

n 0 (n − 2)a2(y) . . . an−1(y)

⎤

⎥⎥⎥
⎦

and Vy =

⎡

⎢⎢⎢
⎣

xn−1
1 . . . xn−1

n
...

. . .
...

x1 . . . xn

1 . . . 1

⎤

⎥⎥⎥
⎦

.

As the xi ’s are distinct, the Vandermonde matrix Vy is invertible. As detAy =
nJψ(y), we can conclude that detMy �= 0 if and only if Jψ(y) �= 0. �

If the xi ’s are not distinct, nothing can be said in general. But if ψ is a Lyashko–
Looijenga morphism LL, then we can deduce the following property.

Corollary 4.2 Let y be a point in C
n−1, and suppose that LL(y) contains n distinct

points. Then JLL(y) �= 0.
In other words, LL is étale on (at least) Y − K .

Proof Set LL(y) = {x1, . . . , xn}. As the xi ’s are distinct, from Lemma 4.1 one
has to study the hyperplanes tangent to H at (y, x1), . . . , (y, xn). By using their
characterization in terms of basic derivations of W , it is straightforward to show
that the n hyperplanes are always in general position: we refer to the proof of
[4, Lemma 5.6]. �

In the following we will prove the equality Z(JLL) = K , i.e., that LL is étale
exactly on Y − K .

4.2 The well-ramified property for LL

Following Remark 3.2, consider LL as the algebraic morphism

C
n−1 → C

n−1

(f1, . . . , fn−1) 	→ (
a2(f1, . . . , fn−1), . . . , an(f1, . . . , fn−1)

)
.

According to [4, Theorem 5.3], this is a finite quasi-homogeneous map (for the
weights deg(fi) = di , degaj = jh). So we get a graded finite polynomial extension

A = C[a2, . . . , an] ⊆ C[f1, . . . , fn−1] = B.

Such extensions are studied in [19]. Let us recall the properties and definitions
that we need. For such an extension A ⊆ B , we denote by Spec1(B) the set of ideals
of B of height one, and Specram

1 (B) its subset consisting of ideals which are ramified
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over A. These ideals are principal, and we will talk about “the set of ramified poly-
nomials of the extension” for a set of representatives of generators of these ramified
ideals.

In [19, Theorem 1.8] we described the factorization of the Jacobian polynomial of
the extension JB/A . We can apply it here and obtain:

JLL = det

(
∂ai

∂fj

)

2≤i≤n
1≤j≤n−1

.=
∏

Q∈Specram
1 (B)

QeQ−1, (∗)

where eQ is the ramification index of Q (and
.= designates equality up to a scalar).

We also introduced in [19] the notion af a well-ramified extension:

Definition 4.3 A finite graded polynomial extension A ⊆ B is well-ramified if

(JB/A) ∩ A =
( ∏

Q∈Specram
1 (B)

QeQ

)
as an ideal of A.

Well-ramified extensions are generalizations of Galois extensions (where A is the
algebra of invariants of B under the action of a reflection group) but keep some of
their characteristics. We refer to [19, Sect. 3.2] for details and other characterizations
of this property. The name “well-ramified” is chosen accordingly to one of these
characterizations, namely:

“For any p ∈ Spec1(A), if there exists q0 ∈ Spec1(B) over p which is ram-
ified, then any other q in Spec1(B) over p is also ramified.” ([19, Proposi-
tion 3.2 (iv)])

In the following of this subsection we prove that the extension defined by LL is
well-ramified. In Sect. 4.4 we will compare the setting of Lyashko–Looijenga exten-
sions to that of Galois extensions.

We recall from Sect. 3.1 the definition of DLL:

DLL := Disc
(
f n

n + a2f
n−2
n + . . . + an; fn

)
,

so that K = LL−1(En −E
reg
n ) is the zero locus of DLL in Y . We denote by L2 the set

of all closed strata in L of codimension 2. Note that L2 is also the set of conjugacy
classes of elements of NC(W) of length 2 (cf. Proposition 3.4).

We define the following map:

ϕ : W\V � Y × C → Y

v̄ = (y, x) 	→ y.
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Then, using the notations and properties of Sect. 3.2, we have:

y ∈ K ⇔ ∃ x ∈ LL(y) with multiplicity ≥ 2
⇔ ∃ x ∈ LL(y) such that �(cy,x) ≥ 2
⇔ ∃ x ∈ LL(y) such that (y, x) ∈ �0 for some stratum � ∈ L

of codim. ≥ 2
⇔ ∃ x ∈ LL(y), ∃ Λ ∈ L2 such that (y, x) ∈ Λ

⇔ ∃ Λ ∈ L2 such that y ∈ ϕ(Λ).

So the hypersurface K is the union of the ϕ(Λ) for Λ ∈ L2. It can be shown that
they are in fact its irreducible components (cf. [21, Proposition 7.4]). Thus we can
write

DLL =
∏

Λ∈L2

D
rΛ
Λ (∗∗)

for some rΛ ≥ 1, where the DΛ are irreducible (homogeneous) polynomials in
B = C[f1, . . . , fn−1] such that ϕ(Λ) = {DΛ = 0}.

Example 4.4 In the example of A3 in Fig. 1, the two strata of L2 described in Ex-
ample 3.5—let us call them Λred and Λblue—project (by ϕ) onto the two irreducible
components of K . The explicit computation gives that the power rΛred of DΛred (resp.
for blue) in DLL equals 2 (resp. 3), which is also the common order of parabolic
Coxeter elements in the conjugacy class corresponding to the strata (indeed, those
are products of two commuting transpositions, resp. 3-cycles). This turns out to be a
general phenomenon, as described in the following theorem.

Now we give an important interpretation of the integers rΛ and deduce that LL is
a well-ramified extension.

Theorem 4.5 Let LL be the Lyashko–Looijenga extension associated to a well-
generated, irreducible complex reflection group, together with the above notations.
For any Λ in L2, let w be a (length 2) parabolic Coxeter element of W in the con-
jugacy class corresponding to Λ. Recall that rΛ denotes the power of DΛ in DLL.
Then:

(a) The integer rΛ is the number of reduced decompositions of w into two reflections.
When W is a 2-reflection group,2 it is simply the order of w.

(b) The set of ramified polynomials of the extension A ⊆ B is the family {DΛ | Λ ∈
L2}, and the ramification index of DΛ is rΛ.

(c) The LL-Jacobian satisfies: JLL
.= ∏

Λ∈L2
D

rΛ−1
Λ .

(d) The “LL-discriminant” DLL = ∏
Λ∈L2

D
rΛ
Λ is a generator for the ideal

(JLL) ∩ A.
(e) The polynomial extension associated to LL is well-ramified.

2A 2-reflection group is a complex reflection group generated by reflections of order 2; see [4, Theo-
rem 2.2] for an interesting property of these groups.
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Proof Let us prove first that all the ramified polynomials in B are included in
{DΛ | Λ ∈ L2}. The polynomial DLL is irreducible in A since, as a polynomial in
a2, . . . , an, it is the discriminant of a reflection group of type An−1. Therefore, for
all Λ in L2, the inclusion

(DΛ) ∩ A ⊇ (D)

is an inclusion between prime ideals of height one in A. So we have (DΛ)∩A = (D),
and the ramification index eDΛ is equal to vDΛ(D) = rΛ. According to Corollary 4.2,
if JLL(y) = 0, then LL(y) /∈ E

reg
n . So the variety of zeros of JLL (defined by the

ramified polynomials in B) is included in the preimage

LL−1(Z(D)
) =

⋃

Λ∈L2

Z(DΛ).

Thus, any ramified polynomial of the extension is necessarily one of the DΛ’s.
Let us prove the point (a). Let Λ be a stratum in L2, and μ be the composition

(2,1, . . . ,1) of n. Choose ξ = (w, s3, . . . , sn) in FACTμ(c) such that the conjugacy
class of w (the only element of length 2 in ξ ) corresponds to Λ. Fix e ∈ En with
composition type μ and such that the real parts of its support are distinct. There
exists a unique y0 in Y such that LL(y0) = e and facto(y0) = ξ (by Property (P3)
in Sect. 3.2). Moreover y0 lies in ϕ(Λ) (Property (P2)). Using the precise definition
of the map facto [21, Definition 4.2], and the “Hurwitz rule” [21, Lemma 4.5], we
deduce that for a sufficiently small connected neighborhood Ω0 of y0, if y is in Ω0 ∩
(Y − K ), then facto(y) is in

Fw := {(
s′

1, s
′
2, . . . , s

′
n

) ∈ RedR(c) | s′
1s

′
2 = w and s′

i = si ∀i ≥ 3
}
.

Let us fix y in Ω0 ∩ (Y − K ). Then, because of Property (P3), we get an injection

facto : LL−1(LL(y)
) ∩ Ω0 ↪→ Fw.

But this map is also surjective, thanks to the covering properties of LL and the tran-
sitivity of the Hurwitz action on w. Indeed, we can “braid” s′

1 and s′
2 (by cyclically

intertwining the two corresponding points of LL(y), while staying in the neighbor-
hood) so as to obtain any factorization of w. Thus,

∣∣LL−1(LL(y)
) ∩ Ω0

∣∣ = |Fw|.

Using the classical characterization of the ramification index (see, e.g., [19, Propo-
sition 2.4]), we infer that |Fw| is equal to the ramification index eDΛ , so rΛ = |Fw|.
This is also the number of reduced decompositions of w, i.e., the Lyashko–Looijenga
number for the parabolic subgroups in the conjugacy class Λ.

For any rank 2 parabolic subgroup with degrees d ′
1, h

′, the LL-number is 2h′/d ′
1.

In the particular case where W is a 2-reflection group, such a subgroup is a dihedral
group, hence d ′

1 equals 2, and rΛ is the order h′ of the associated parabolic Coxeter
element w.
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Consequently, for all Λ ∈ L2, eDΛ = rΛ is strictly greater than 1, so DΛ is ram-
ified, and statement (b) is proven. Using formula (∗) above, this also directly im-
plies (c).

Moreover, we obtain:
∏

Q∈Specram
1 (B)

QeQ =
∏

Λ∈L2

D
eDΛ

Λ = DLL,

so this polynomial lies in A. We recognize one of the characterizations of a well-
ramified extension (namely [19, Proposition 3.2(iii)]), from which we deduce (d)
and (e). �

4.3 A more intrinsic definition of the Lyashko–Looijenga Jacobian

In this subsection we give an alternate definition for the Jacobian JLL, which is more
intrinsic, and which allows us to recover a formula observed by K. Saito.

We will use the following elementary property. Suppose that P ∈
C[T1, . . . , Tn−1,X] has the form

P = Xn + b1X
n−1 + . . . + bn

with b1, . . . , bn ∈ C[T1, . . . , Tn−1]. Note that we do not require b1 to be zero. Let us
denote by J (P ) the polynomial

J (P ) := Jac

((
P,

∂P

∂X
, . . . ,

∂n−1P

∂Xn−1

)
/(T1, . . . , Tn−1,X)

)
.

Lemma 4.6 Let P be as above. We set Y = X + b1
n

and denote by Q the polynomial
in C[T1, . . . , Tn−1, Y ] such that Q(T1, . . . , Tn−1, Y ) = P(T1, . . . , Tn−1,X). We con-
sider the polynomials a2, . . . , an in C[T1, . . . , Tn−1] such that Q = Yn + a2Y

n−2 +
. . . + an.

We define J (P ) as above and J (Q) similarly (Y replacing X). Then:

(i) J (P ) = J (Q);
(ii) J (P ) does not depend on X, and J (P )

.= Jac((a2, . . . , an)/(T1, . . . , Tn−1)).

The proof is elementary and can be found in [20, Lemma 3.4]. Consequently, we
have an intrinsic definition for the Lyashko–Looijenga Jacobian:

JLL
.= J (ΔW ) = Jac

((
ΔW,

∂ΔW

∂fn

, . . . ,
∂n−1ΔW

∂f n−1
n

)
/(f1, . . . , fn)

)
,

where f1, . . . , fn do not need to be chosen such that the coefficient of f n−1
n in ΔW is

zero. Note that for the computation of DLL as well, the fact that the coefficient a1 is
zero in ΔW is not important, because of invariance by translation.

With these alternative definitions, the factorization of the Jacobian given by The-
orem 4.5 has already been observed (for real groups) by Kyoji Saito: it is formula
2.2.3 in [22]. He uses this formula in his study of the semi-algebraic geometry of the
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Table 1 Analogies between Galois extensions and Lyashko–Looijenga extensions

Complex reflection group Lyashko–Looijenga extension

Morphism: p : V → W\V
(v1, . . . , vn) 	→ (f1(v), . . . , fn(v))

LL : Y → C
n−1

(y1, . . . , yn−1) 	→ (a2(y), . . . , an(y))

Weights: degvj = 1 ; degfi = di degyj = dj ; degai = ih

Extension: C[f1, . . . , fn] = C[V ]W ⊆ C[V ] C[a2, . . . , an] ⊆ C[y1, . . . , yn−1]
Free, of rank: |W | = d1 . . . dn; Galois n!hn/|W | = ∏

ih/
∏

dj ; non-Galois

Unramified
covering:

V reg � W\V reg Y − K � E
reg
n

Generic fiber: � W � RedR(c)

Ramified
part:

⋃
H∈A H � (

⋃
H)/W = H K = ⋃

Λ∈L2
ϕ(Λ) � Eα

Discriminant: ΔW = ∏
H∈A α

eH
H

∈ C[f1, . . . , fn] DLL = ∏
Λ∈L2

D
rΛ
Λ ∈ C[a2, . . . , an]

Ramification
indices:

eH = |WH | rΛ = order of parabolic elements of type Λ

Jacobian: JW = ∏
α

eH −1
H

∈ C[V ] JLL = ∏
D

rΛ−1
Λ ∈ C[f1, . . . , fn−1]

quotient W\V . His proof was case-by-case and detailed in an unpublished extended
version of the paper [22].3

4.4 The Lyashko–Looijenga extension as a virtual reflection group

In [19] we discussed some properties of well-ramified extensions and explained that
they can be regarded as an analogous of the invariant theory of reflection groups.
Indeed, considering a finite graded polynomial extension A ⊆ B , if the polynomial
algebra A is the invariant algebra BW of B under a group action, then W is a complex
reflection group (by Chevalley–Shephard–Todd’s theorem). Here, for LL extensions,
the situation is similar, but A is not the invariant ring of B under some group ac-
tion. Still, many properties remain valid. Following Bessis, we use the term virtual
reflection group for this kind of extensions. The general situation is discussed in [19].

In Table 1 we list the first analogies between the setting of a Galois exten-
sion (polynomial extension with a reflection group acting) and that of a Lyashko–
Looijenga extension regarded as a virtual reflection group. This is not an exhaustive
list, and we may wonder if the analogies can be made further.

5 Combinatorics of the submaximal factorizations

In this section we are going to use properties of the morphism LL to count specific
factorizations of a Coxeter element; this will lead, thanks to Theorem 4.5, to a geo-
metric proof of a particular instantiation of Chapoton’s formula.

3K. Saito, personal communication, August 2009.
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We call submaximal factorization of a Coxeter element c a block factorization
of c with (n − 1) factors, according to Definition 1.1. Thus, submaximal factoriza-
tions contain (n − 2) reflections and one factor of length 2, and are a natural first
generalization of the set of reduced decompositions RedR(c). These are included in
the more general “primitive” factorizations studied in [21].

5.1 Submaximal factorizations of type Λ

Let Λ be a stratum of L2: it corresponds (cf. Proposition 3.4) to a conjugacy class of
parabolic Coxeter elements of length 2. We say that a submaximal factorization is of
type Λ if its factor of length 2 lies in this conjugacy class. We denote by FACTΛ

n−1(c)

the set of such factorizations. Using the relations between LL and facto, we can count
these factorizations.

For Λ a stratum of L2, let us define the following restriction of LL:

LLΛ : ϕ(Λ) → Eα,

where Eα = En − E
reg
n . We denote by E0

α the subset of Eα constituted by the config-
urations whose partition (of multiplicities) is exactly α = 211n−2.

We define ϕ(Λ)0 = LL−1
Λ (E0

α), and K 0 = LL−1(E0
α) = ⋃

Λ∈L2
ϕ(Λ)0. We recall

from [21] the following properties:

– the restriction of LL : K 0 � E0
α is a (possibly not connected) unramified covering

[21, Theorem 5.2];
– the connected components of K 0 are the ϕ(Λ)0 for Λ ∈ L2;
– the image, by the map facto, of ϕ(Λ)0 is exactly FACTΛ

n−1(c);

The map LLΛ defined above is an algebraic morphism, corresponding to the ex-
tension

C[a2, . . . , an]/(D) ⊆ C[f1, . . . , fn−1]/(DΛ).

Theorem 5.1 Let Λ be a strata of L2. Then:

(a) LLΛ is a finite quasi-homogeneous morphism of degree (n−2)! hn−1

|W | degDΛ;
(b) the number of submaximal factorizations of c of type Λ is equal to

∣∣FACTΛ
n−1(c)

∣∣ = (n − 1)! hn−1

|W | degDΛ.

Proof From Hilbert series, we get that LLΛ is a finite free extension of degree
∏

deg(ai)

deg(D)

/ ∏
deg(fi)

deg(DΛ)
= n! hn

|W |
degDΛ

degD
.

(a) The polynomial DLL is a discriminant of type A for the variables a2, . . . , an of
weights 2h, . . . , nh, so we have degDLL = n(n − 1)h. Thus,

deg(LLΛ) = (n − 2)! hn−1

|W | degDΛ.
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(b) This degree is also the cardinality of a generic fiber of LLΛ, i.e., |LL−1(ε) ∩
ϕ(Λ)| for ε ∈ E0

α . Consequently, from Property (P3) in Sect. 3.2, it counts the num-
ber of submaximal factorizations of type Λ, where the length 2 element has a fixed
position (given by the composition of n associated to ε). There are (n − 1) compo-
sitions of partition type α � n, so we obtain | FACTΛ

n−1(c)| = (n − 1)deg(LLΛ) =
(n−1)! hn−1

|W | degDΛ. �

Remark 5.2 Let us denote by FACTΛ
(2,1,...,1)(c) the set of submaximal factorizations

of type Λ where the length 2 factor is in first position. By symmetry, formula (b) is
equivalent to

∣∣FACTΛ
(2,1,...,1)(c)

∣∣ = (n − 2)! hn−1

|W | degDΛ.

As
∑

rΛ degDΛ = degDLL = n(n − 1)h, this implies the equality

∑

Λ∈L2

rΛ
∣∣FACTΛ

(2,1,...,1)(c)
∣∣ = (n − 2)! hn−1

|W | degDLL = n!hn

|W | = ∣∣RedR(c)
∣∣.

This formula reflects a property of the following concatenation map:

RedR(c) � FACT(2,1,...,1)(c)

(s1, s2, s3, . . . , sn) 	→ (s1s2, s3, . . . , sn),

namely, that the fiber of a factorization of type Λ has cardinality rΛ (which is the
number of factorizations of the first factor in two reflections).

Remark 5.3 In [12], motivated by the enumerative theory of the generalized non-
crossing partitions, Krattenthaler and Müller defined and computed the decomposi-
tion numbers of a Coxeter element for all irreducible real reflection groups. In our
terminology, these are the numbers of block factorizations according to the Coxeter
type of the factors. Note that the Coxeter type of a parabolic Coxeter element is the
type of its associated parabolic subgroup, in the sense of the classification of finite
Coxeter groups. So the conjugacy class for a parabolic elements is a finer character-
istic than the Coxeter type: take, for example, D4, where there are three conjugacy
classes of parabolic elements of type A1 × A1.

Nevertheless, when W is real, most of the results obtained from formula (b) in
Theorem 5.1 are very specific cases of the computations in [12]. But the method of
proof is completely different, geometric instead of combinatorial.4 Note that another
possible way to tackle this problem is to use a recursion, to obtain data for the group
from the data for its parabolic subgroups. A recursion formula (for factorizations
where the rank of each factor is dictated) is indeed given by Reading [17], but the
proof is very specific to the real case.

4The computation of all decomposition numbers for complex groups, by combinatorial means, is also a
work in progress (Krattenthaler, personal communication).
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For nonreal W , formula (b) implies new combinatorial results on the factorization
of a Coxeter element. The numerical data for all irreducible well-generated complex
reflection groups are listed in Sect. 6. In particular, we obtain (geometrically) general
formulas for the submaximal factorizations of a given type in G(e, e,n).

5.2 Enumeration of submaximal factorizations of a Coxeter element

Thanks to Theorems 4.5 and 5.1, we can now obtain a formula for the number of
submaximal factorizations, with a geometric proof:

Corollary 5.4 Let W be an irreducible, well-generated complex reflection group,
and d1 ≤ . . . ≤ dn = h be its invariant degrees . Then, the number of submaximal
factorizations of a Coxeter element c is equal to

∣∣FACTn−1(c)
∣∣ = (n − 1)! hn−1

|W |

(
(n − 1)(n − 2)

2
h +

n−1∑

i=1

di

)

.

Proof Using Theorem 5.1(b) and Theorem 4.5(b)–(c), we compute:

∣∣FACTn−1(c)
∣∣ = ∣∣FACTα(c)

∣∣ =
∑

Λ∈L2

∣∣FACTΛ
n−1(c)

∣∣

= (n − 1)! hn−1

|W |
∑

Λ∈L2

degDΛ

= (n − 1)! hn−1

|W | (degDLL − degJLL).

As degDLL = n(n−1)h and degJLL = ∑n
i=2 deg(ai)−∑n−1

j=1 deg(fj ) = ∑n
i=2 ih−

∑n−1
j=1 dj , a quick computation gives the conclusion. �

Remark 5.5 The formula in the above theorem is actually included in Chapoton’s for-
mula: indeed, there exist easy combinatorial tricks allowing us to pass from the num-
bers of multichains to the numbers of strict chains (which are roughly the numbers
of block factorizations). We refer to [20, Appendix B] for details of these relations
and general formulas for the number of block factorizations predicted by Chapoton’s
formula.

However, the proof we obtained here is more satisfactory (and more enlighten-
ing) than the one using Chapoton’s formula. Indeed, if we sum up the ingredients
of the proof, we only made use of the formula for the Lyashko–Looijenga number
n! hn/ |W |—necessary to prove the first properties of LL in [4]—the remaining be-
ing the geometric properties of LL, for which we never used the classification. In
other words, we travelled from the numerology of RedR(c) to that of FACTn−1(c),
without adding any case-by-case analysis to the setting of [4].

Although it seems to be a new interesting avenue toward a geometric explanation
of Chapoton’s formula, the method used here to compute the number of submaximal
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factorizations is not directly generalizable to factorizations with fewer blocks. A more
promising approach would be to avoid computing explicitly these factorizations and
to try to understand globally Chapoton’s formula as some ramification formula for
the morphism LL. A reformulation of the formula gives indeed:

∀p ∈ N,

n∑

k=1

(
p + 1

k

)
| FACTk(c)| =

n∏

i=1

di + ph

di

,

where the FACTk are closely related to the cardinalities of the fibers of LL.

6 Numerical data for the factorizations of the Lyashko–Looijenga
discriminants

Here we detail explicit numerical data regarding the factorization of the discriminant
polynomial DLL.

Let us write (as in (∗∗) in Sect. 4.2)

DLL =
r∏

i=1

D
pi

i

for the factorization of DLL into irreducible polynomials of C[f1, . . . , fn−1].
In Table 2, we give, for each irreducible well-generated group, the weighted de-

grees deg(Di) and the powers pi which appear in the factorization above. It is enough
to deal with the 2-reflection groups, because any irreducible complex reflection group
is isodiscriminantal to a 2-reflection group (see [4, Theorem 2.2]): it has the same dis-
criminant Δ and, consequently, the same braid group and the same polynomial DLL.
Thus, we only have to treat the four infinite series An, Bn, I2(e), G(e, e,n) (contain-
ing Dn), and 11 exceptional types (including the six exceptional Coxeter groups).

Notations In the last column of Table 2, the “LL-data”:

p1 · (u1) + p2 · (u2) + . . . + pr · (ur)

means that the form of the factorization is DLL = ∏r
i=1 D

pi

i with degDi = ui .
This writing reflects the additive decomposition of degDLL = n(n − 1)h (where
n = rk(W) and h = dn) in terms of the ui ’s:

degDLL =
∑

i

piui .

By-products These numbers (pi, ui) have many combinatorial interpretations. In
particular, thanks to Theorems 4.5 and 5.1, we have:

– the number of conjugacy classes of parabolic Coxeter elements of length 2 is the
number of terms in the sum (each term (pi, ui) of the sum corresponds to one of
these classes, say Λi );
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– the order of the elements in Λi is pi (provided that W is a 2-reflection group);
– the number | FACT

Λi

(2,1,...,1)(c)| of submaximal factorizations of a Coxeter ele-

ment c, whose first factor is in the class Λi , equals (n−2)! hn−1

|W | ui . For convenience,
the first factor is also listed in the table, in the second column.

We refer to [20, Appendix A] for a detailed explanation of the computation of
these data.
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