
Journal of Algebraic Combinatorics 5 (1996), 323-328 
�9 1996 Kluwer Academic Publishers. Manufactured in The Netherlands. 

Asymmetric Combinatorially-Regular Maps* 
MARSTON CONDER conder @ math.auckland.ac.nz 
Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand 

Received December 8, 1994; Revised May 17, 1995 

Abstract. It is shown that for every g > 3, there exists a combinatorially regular map M of type {3, 7} on a 
closed orientable surface of genus g, such that M.has trivial symmetry group. Such maps are constructed from 
Schreier coset graphs corresponding to permutation representations of the (2, 3, 7) triangle group. 

1. Introduction 

A map M is a 2-cell embedding of a connected graph (or multigraph) into some closed 
surface S without boundary, dividing S into simply-connected regions called faces of the 
map. The faces of M are of course the connected components of the space obtained 
by removing the embedded graph from the surface; alternatively, they may be viewed as 
the cycles of some permutation of the set of arcs (or directed edges) of the underlying 

graph. 
We use V(M), E(M) and F(M), to denote the sets of vertices, edges and faces of M, 

respectively. The Euler characteristic of the associated surface S may then be calculated 
using the Euler-Poincar6 formula X = I V (M) I - I E (M) I + I F (M) I, and in the case where 
S is orientable, this is also equal to 2 - 2g where g is the (orientable) genus: the number 
of cylindrical handles glued to the sphere in order to obtain S; (see [2] Section 8.1). 

An automorphism of a map M is any automorphism of the underlying graph (or multi- 
graph) which preserves also the faces of the embedding----or, what is essentially equivalent, 
a homeomorphism of the surface S preserving V(M) and E(M) and necessarily also F(M). 
As usual, these automorphisms form a group under composition, called the automorphism 
group of the map M, and denoted by Aut M. 

By connectedness, the action of each automorphism of a map M is uniquely determined 
by its effect on any incident vertex-edge-face triple, or "flag". In particular, the order of 
Aut M is bounded above by the number of flags, and when this upper bound is attained, 
Aut M acts transitively, indeed regularly, on flags, and M is called a (reflexible) regular 
map. Examples include embeddings of the 1-skeletons of the Platonic solids on the sphere, 
and others on orientable surfaces of all possible genera--see [2, 4] and [5] for details of 
these and further background along with some of the history of regular maps. 

Every regular map is combinatorially regular, in that each of its faces is bounded by the 
same number of edges, say p, and each of its vertices is incident with the same number Of 
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edges, say q. We say such a map M has type {p, q}. Counting the number of arcs of M 
in three different ways gives the well known identity ql V(M)I = 21E(M)I = plF(M)I,  
and the Euler characteristic X becomes 21E(M)I(1/p + 1/q - 1/2). Also the dual of M 
(whose vertices correspond to faces of M and whose faces correspond to vertices of M) 
is combinatorially regular of type {q, p}, lies on the same surface as M, and has the same 
automorphism group as M. 

On the other hand, combinatorially regular maps are not necessarily regular (in the sense 
of having the largest possible number of automorphisms). In this paper we show that in fact 
they can go to the opposite extreme, of having no automorphisms other than the identity. 
We construct an infinite family of combinatorially regular maps of type {3, 7}, on orientable 
surfaces of every genus g > 3, and each with trivial automorphism group. 

This answers a question raised by Paul Schmutz (in a private communication) based on 
his research on the lengths of shortest closed geodesics on Riemann surfaces; see [3]: do 
there exist (2, 3, 7) triangular tessellations of surfaces with automorphism group acting 
trivially on the triangles? We show the answer is yes. 

2. The construction 

For each positive integer n > 2 we construct an orientable map M(n) having 28n vertices, 
42n edges, and 12n faces. Every face is bounded by 7 edges, and every vertex is incident 
with 3 edges, so that the dual of M(n) is combinatorially regular of type {3, 7}, and lies on 
a surface of Euler characteristic - 2 n  and (orientable) genus n + 1. 

To do this, we consider transitive permutation representations of the (2, 3, 7) triangle 
group A = (x, y [ X 2 = y3 = (xy)7 __ 1). Corresponding to any such representation on a 
set f2 is a Schreier coset diagram, which is essentially a directed graph whose vertices are 
the points of f2, and in which each vertex ot ~ f2 is joined by an arc to each of the images 
ot x and oty of od under the permutations induced by x and y. 

These diagrams, described more generally in [2], were used in [1] to investigate factor 
groups of A. In particular, in any coset diagram for A the 3-cycles of the permutation 
induced by the generator y may be represented by small triangles, with edges directed 
anticlockwise, and the double arcs representing 2-cycles of x may be replaced by single 
edges (whose end-points are interchanged by x). Also under certain circumstances, separate 
diagrams for A may be joined together to create a new diagram, corresponding to a transitive 
permutation representation of A of larger degree. 

Now suppose D is any such diagram, corresponding to a representation of A in which 
none of the elements x, y, xy and x y - l x y  has a fixed point. If the above simplifications are 
made, and then each small triangle representing a 3-cycle of y is shrunk to a single vertex, 
the diagram becomes a simple cubic graph. Further, this graph has a natural embedding 
in an orientable surface S, in which the edges incident to any given vertex are oriented 
anticlockwise in the same order as described above: if v is the vertex corresponding to the 
3-cycle (or, trY, Ol yy) of y, then the three edges incident to v are oriented anticlockwise in the 
order (t~, otx), (trY, otyx), (c~yy, olyyx). Subject to this orientation, the faces of the resulting 
map M correspond precisely to the cycles of the product xy, and are therefore each bounded 
by 7 edges, so the map M is combinatorially regular of type {7, 3}. 



ASYMMETRIC COMBINATORIALLY-REGULAR MAPS 325 

/ 
Diagram P 

We apply this argument to a family of coset diagrams, all obtained by joining together 
a chain made up of one copy of a particular diagram P and a number of copies of a 
second diagram Q. These two basic diagrams P and Q correspond to the following transitive 
permutation representations of the (2, 3, 7) triangle group A, each on 84 points: 

Diagram P: 

x -+ (2,13)(3,16)(5,19)(6,14)(8,22)(9,25)(11,28)(12,23)(15,31)(17,34)(18,20) 
(21,37)(24,40)(26,43)(27,29)(30,46)(32,49)(33,42)(35,52)(36,55)(38,58)(39,61) 
(41,53)(44,51 )(45,64)(47,67)(48,70)(50,63)(54,72)(56,73)(57,69)(59,68)(60,66) 
(62,76)(65,79)(71,82)(74,80)(75,78)(77,83)(81,84), 

y ~ (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24) 
(25•26•27)(28•29•3•)(31•32•33)(34•35•36)(37•38•39)(4••41,42)(43•44•45)(46•47•48) 
(49,50,51 )(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72) 
(73,74,75)(76,77,78)(79,80,81)(82,83,84); 

Diagram Q: 

x --~ (2,13 )(3,16)(5,19)(6,14)(8,22)(9,25)( 11,28)(12,23)( 15,31 )( 17,34)(18,20) 
(21,37)(24,40)(26,43)(27,29)(30,46)(32,49)(33,52)(35,55)(36,58)(38,61)(39,64) 
(41,67)(42,63)(44,70)(45,51)(47,73)(48,76)(50,66)(53,79)(54,56)(57,82)(59,80) 
(60,72)(62,71)(65,74)(68,78)(69,84)(75,83)(77,81), 
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Diagram Q 

! 

5 6 ~ 2  3 

X 
f 

i 
11 12~ a 9 

y --, (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24) 
(25,26,27)(28,29,30)t 31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48) 
(49,50,51 )(52,53,54)155,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72) 
(73,74,75)(76,77,78)(79,80,81)(82,83,84). 

Note that in both representations, the permutations induced by y and xy have no fixed 
points, while on the other hand, x fixes each of the four points 1, 4, 7 and 10. Moreover, 
(xy) 3 takes 1 to 4, and 7 to 10, in both cases. In the terminology of [1], this means these 
four points form a pair of (3)-handles: [ 1, 4] and [7, 10], each of which can be used to join 
the coset diagram to any other one containing the same sort of configuration. 

We take one copy of the diagram P, and n - 1 copies of the diagram Q, and join them 
together in a circular chain, by attaching the (3)-handle [1, 4] of each diagram to the (3)- 
handle [7, 10] of the next. Specifically, we insert two new x-edges, from the points 1 and 4 of 
one diagram to the points 7 and 10, respectively, of the next. Overall these joins correspond 
to the addition of 2n disjoint transpositions to the cycle structure of the permutation induced 
by x on the union of the associated vertex-sets, in a way that preserves the cycle structures 
of the permutations induced by y and xy. The result is a diagram which corresponds to a 
transitive permutation representation of A on 84n points. 

By our choice of the diagrams P and Q and our use of all (3)-handles, the permutations 
induced by x, y and xy in this representation are easily seen to have no fixed points. Also it is 
not difficult to verify that xy- lxy  has no fixed points; indeed xy - lxy  induces a permutation 
with cycle structure 223442212512 when n = 2, or 2232n42212282392(n-3)622 when n > 3. 

As explained earlier, this is enough to ensure that a combinatorially regular map of type 
{7, 3} may be formed from the diagram by shrinking each of its small triangles to a single 
vertex, and so we obtain such a map M(n) having 28n vertices, 28n x 3/2 = 42n edges, 
and 42n • 2/7 = 12n faces, as claimed. 
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3. Asymmetry 

We now show that the maps constructed in the previous section have no automorphisms 
other than the identity. To do this, we use the fact that the underlying graph of the map 
M(n) in each case has exactly one circuit of length 4, which must then be preserved by 
every automorphism. For notational convenience, let ~ denote the vertex of M(n) obtained 
by shrinking the small triangle containing the point t~ of the diagram P. 

First observe that any circuit of length 4 corresponds to the existence of a fixed point 
of some element of the form xyPxyqxyrxy s (with p, q, r, s E {1,2}) in the group A, 
and that every element of this form is conjugate to either a non-trivial power of xy, or 
(xy-lxy) 2, or xy- lxy- lxyxy .  (Note, for example: xyxyxyxy -1 = (yxy)-lxy(yxy) 
since (xy) 7 = 1.) But we know that xy has no fixed points, while (xy-lxy) 2 has exactly 
four fixed points: these are the points labelled 75, 78, 81 and 84 in the single copy of 
the diagram P, and they make up the two transpositions in the cycle structure of xy-lxy.  
On the other hand, xyxyxy- lxy  -l has cycle structure 32102222492 when n = 2, and 
3272~n-2) 182212~"-3)522(7n - 4)2(7n + 8) 2 when n > 3, and hence has no fixed points. 

In particular, there is just one circuit of length 4 in M(n), made up of the vertices 75, 78, 
81 and 84 in the single copy of the diagram E 

Next, there are four vertices at distance 1 from this circuit in M(n), namely 57, 63, 66 
and 72, and a further eight vertices at distance 2, namely 36, 69, 39, 51, 45, 60, 48 and 54. 
Of these eight, all but the two vertices 60 and 69 are adjacent to a vertex of distance 3 from 
the circuit (while 60 and 69 are adjacent only to vertices at distance 1 or 2). 

It follows that if 0 is any automorphism of the map M(n), then 0 must preserve the 
circuit of length 4, and either fix or interchange the vertices 60 and 69 of the diagram E If 
0 fixes them, then 0 fixes all vertices close to the 4-circuit, and it follows easily that 0 is 
trivial. Otherwise 0 induces the following partial permutation on those vertices of M(n) 
obtained from triangles in diagram P, corresponding geometrically to a 180-degree rotation 
of diagram P: 

0 --+ (3, 9)(6, 12)(15, 24)(18, 27)(21,30)(33, 42)(36, 45)(39, 48)(51,54)(57, 66) 

(60, 69)(63, 72)(75, 81)(78, 84). 

This partial permutation, however, does not extend to the whole of M(n), because the 
rotational symmetry of the diagram P does not carry over to the copy or copies of the diagram 
Q to which diagram P is joined. Thus M(n) has no non-trivial automorphisms, as required. 

Note: There is no such asymmetric map of type {7, 3} on a surface of genus 2. This 
follows from the fact that although the the (2, 3, 7) triangle group has 100 different transitive 
permutation representations of degree 84 in which none of the elements x, y, xy and xy- lxy  
has a fixed point, the corresponding map in each case has automorphism group of order 2, 
4, 8, 12, 24 or 32. Further details are available from the author upon request. 
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