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1. Introduction

Let L : I x R" x R" — IR be a Borel function, where I denotes an interval of IR (for
semplicity we will assume I = [0,1]). We will consider in the following solutions of the
so-called Lagrange problem, that is, absolute minimizers of the one dimensional problem
of the Calculus of Variations

F: weWH(I,R"), u0)=A4, u(l)=B — Fu)= /L(t, u, u')dt.
I

In the paper [13] we proved BMO regularity results for some Lagrange problems of the type
considered in [1], for which minimizers need not necessarily be Lipschitz. The Lagrangians
L(t, s, z) considered in these papers verify, besides some standard conditions in order to
get the existence of minimizers, a growth condition of the type power in z:

g(t,8)|z|* —ca < L(t,s,2) < g(t,9)|z|* +ca V(t,s,2z) € I x R" x R"

with a > 1, ¢2,¢c4 > 0, g continuous and positive.

Aim of this paper is to extend the results of [13] for Lagrangians satisfying growth condi-
tions of the type

9(t,s)®(|z]) —ca < L(t,s,2) < g(t,9)®(|z|) + ¢4 V(t,s,z) € I x R" x R" (1.1)
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with an N-function ® (i.e. a nonnegative convex function on R™ such that ®(0) = 0,
d(t d(t
lim Q =0, lim L
t—>0 ¢ t—+oo ¢
will assume throughout the paper that L verifies (1.1) with ¢g continuous and bounded
function, greater than a positive constant, L l.s.c. in (s, z), L convex in z so that absolute

minimizers of F exist, as shown in [16]. The first classical results about the Lagrange

= +00) such that d7 is convex for some o > 1, c9,c4 > 0. We

problem are due to Tonelli [25, 26]: if the Lagrangian L(t, s, z) is a nonnegative C3 function
on IR? satisfying L., > 0 and the superlinear growth condition L(t,s,z) > ¢(z) where
©(2)/]z] = oo as |z| — o0, it is possible to show that absolute minimizers exist, and any

minimizer v has a finite or infinite derivative u’ at every point of I. Moreover v’ : I —
R U {—00, +00} is continuous and the Tonelli set defined by F = {x € I : |u/(z)| = oo}
is a closed set of zero measure [3].

About the Lagrangians of the type (1.1) we recall that if L(¢,s, z) = g(¢,s)®(z) with &
strictly convex and g positive, continuous and locally Lipschitz in s uniformly in ¢, in [8]
it is shown that absolute minimizers exist and are of class C*.

We will essentially improve the results of [13] also in the case of ® power function: we
will deduce some BMO results for derivative of minimizers that we found to be in EXP.
Moreover, some of our results may be extended to Lagrangians which have growth in z
bigger than powers, for instance exponential growth. We will give some examples and we

will state some results of optimality about the Tonelli set of minimizers, of the type of
Ball-Mizel [3], Davie [11].

We will follow the same technique used in [13], based on properties of functions verifying
reverse integral inequalities; nevertheless, this paper contains some results of independent
interest (see Lemma 2.1 about rearrangements and Lemma 2.6 about sufficient conditions
to get BMO regularity of functions) and some applications of classical results of Harmonic
Analysis to the Calculus of Variation (see Section 4).

2. Preliminaries

Throughout the paper we will assume that ® is an N-function such that dx is convex
for some a@ > 1. Let E C IR be a bounded interval, and let Ly = Lg(F) be the set of
all (equivalence classes modulo equality a.e. in E of) measurable functions f satisfying

o <@) € L}(E) for some ¢ > 0. Following [19, 20, 18] we define

||f||¢=inf{t>0:[E@(|f§x)‘)dx < 1} , Vf € Lg(E).

The functional || - ||¢ is called Luxembourg norm and it may be checked that it is a
Banach function norm.

We will denote by EXP = EXP(E) the Orlicz space corresponding to ®(t) = e — ¢ — 1.

In the following we will consider also the John-Nirenberg space of functions with bounded

mean oscillation, i.e. the space of the functions f € L!(E) such that

I £1l= sup ]{ £(0) —J[J F(s)ds

dt < 4+o0.
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This space is called BMO = BMO(F), and is a Banach space under the norm || - ||, [24].

It can be proved that L°(E)S BMO(E)z EXP(E)z (N LP(E).
1<p<oo

Finally we introduce a very useful tool to prove some lemmas in this section. Let f be
a measurable function defined in F. The decreasing rearrangement of f is defined to be
the function

ff)=inf{s>0: [{z € E: |f(x)| > s} < t} vVt €0, |E|l.

There is a wide literature about rearrangements (see for example [6]).

We begin with the following lemma, consequence of a one-dimensional result by Koren-
ovskii [17], who proved the case M = 0.

Lemma 2.1. Let E C R be a bounded interval, f € Lg(E) be a nonnegative function,
M >1, M > 0 be such that

][<I>(f)dt < M® (][ fdt) +M (2.1)
J J
for any interval J C E. Then we have
][cb(f*)dt < Mo <][ f*dt) L7 (2.2)
J J

for any interval J C|0, [E|], where f* denotes the decreasing rearrangement of f.

Proof. Let e > 0. By assumption (2.1) we have

<1+M€A_41>]€q>(f)dt < M(1+A;Ai[1><b<]€fdt>+ﬁ<l+]\;j\ifl)

Let us set
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we have shown that

]{¢e(f)dt < (14 e)Moe (fjfdt) VJ C E.

By convexity of ¢ we have, by the theorem of Korenovskii [17], that

]{gbe(f*)dt < (1+ Mg, (f]f*dt) vJ C [0, |E|]

and therefore

eM . M
7€<1+M_1><I>(f )t +

<(1+eM (1 + Md‘fl) ® (f] f*dt> +(1+ G)M% v.J C [0,|E]].

Letting ¢ — 0 we get

—_~

M MM
]écI)(f*)dt+ < M3 <]€f*dt) b WICIE]L (23)

M—-1

i.e. inequality (2.2). O
Let us note that in order to prove Lemma 2.1 we don’t need that da is convex for some
a > 1, but only convexity of ®.

We will need in the sequel the following higher integrability result from reverse Jensen
inequalities, corollary of the following Lemma, proved in [13] (see also [23, 14, 15]).

Lemma 2.2. Let E C R be a bounded interval, and let f € L*(E), f >0, a > 1,
M >1, M > 0 be such that

][f(t)o‘dt <M <][ f(t)dt) +M VJCE.
J J
Then the following holds:

q 0 a o M q¢-a 0. Bla
(%If(t) dt) : ‘I%,M(CI)]{If(t) dt+’7a,M(Q) q va € looplos M), w7 e B

where B(a, M) is the solution greater than « of the equation:

a
r— X
:1— @ :0
Yo, () M — (x — 1)

We remark that we get an estimate of the exponent of integrability in terms of the
coefficients appearing in the reverse inequalities. Such estimate is analogous to the one

obtained in [12], where the case & power, f non-increasing function, M = 0 is proved.
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Lemma 2.3. In the same assumptions of Lemma 2.1, we have CIJ(f)é € LY(E) Vq €
(o, B(a; M),

Proof. Put v = @(f)é. By assumption (2.1) and convexity of (IJ(f)é we have

%}vadt :]é@(f)dt < M[cbé (%}fdt)]aJrﬁ/f
<M (%j@(f)%dt>a+M=M (f}vdt)aJrf\Z VJCE

Then, by Lemma 2.2, the following holds

o] ()

—_~

M _
< L][ vedt + -«
Ya,m(q)J 5 Yo, (9) 4
M _
_ L][ O(f)dt + 7% vyela,Bla, M), VJ C E.
Ya,m(9)J s Yo, i (@) 4
and therefore the assertion follows. O

Remark 2.4. Since J&Iiml B(a, M) = 400, if inequality (2.1) is satisfied with M = 1,
%

applying Lemma 2.3 we have that @(f)é € () LP(E). Corollary 2.10 below shows
1<p<co

that as a matter of fact, if M =1, we have @(f)% € BMO(E).

Next Lemma, true also in dimension n > 1, gives a characterization of BMO that can
be shown by using some well-known results, and so we omit its proof (see Corollary 1.5,
chap. 8 of [24]).

Lemma 2.5. Let Qg C R" (n>1) be a cube. If « >0 and g : Qo — R is a measurable
function belonging to LP(Qg) V1 < p < oo, then

1 5
sup lim sup — (J[ \g(x)\pdx) <oo & gé € BMO(Qo)
QCQo p—oo P Q

where the supremum is taken over all cubes QQ C Q.

By using Lemma 2.5 one could prove a BMO regularity result for a minimizer u in the
case ®(t) =t*, o > 1. Namely, in the same assumptions of Theorem 4.3 of [13] and with

an analogous argument, it is possible to get that |u’ \%% € BMO Y0 < u < A, where
A is the exponent of Holder of the function g related to the functional F. In Section 3
below we will prove a more general result, that in the case ®(t) = t%, a > 1 gives that

also |u'|2 € BMO.
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In the following we need of other conditions ensuring BMO(Qg). We notice that if p > 2,
then it is easy to prove that for all f € LP(Qp) the inequality

]éf”drc < <]{2 fdx)p+k (2.4)

for any cube Q C Qq, with k£ independent of ), implies f € BMO(Qp): in fact, we have
(see the proof of Lemma 3.5 of [13]):
1
2 2
dm)

Aot (e < (- ()

1

- []é (f(a:)p— (]{2 f%)2) dxr < [7{2 (f(x)p— <]{2 f)p) dx]% < kb,

If 1 < p < 2, inequality (2.4) still implies fZ € BMO(Qp), as shown by the following
lemma.

Lemma 2.6. Let Qo CR" (n>1) be a cube, p €]1,2], f € LP(Qo). Then

P v \° ok
Pd d k Pd 2 —_
f i < (]éfx> rkvQca= | P < <]{2f o)+t veca

and therefore f2 € BMO(Qo).

(VIS
[ViS]

D=

Proof. We have, by the Holder and Young inequalities, that for any Q) C Qg

7{? fide < (7{2 fdx)p th= (7{2 i f2_Pd:v)p Tk
(7{2 (T dx) o <7€2 (127)7 dx) T
(U] ()

<(p-1) (ﬁfgdl): (2—p)]{2fpdx+k

(p—l)jéf”dx < (-1 (]éfgdx>2+k

from which the assertion follows. O

IN

and therefore

Remark 2.7. By using Lemma 2.5 one can easily show that the converse of Lemma
2.6 is true, namely, if fg € BMO(Qo), p > 1, then there exists k£ > 0 such that

p
][f”dx < (7[ fdac) +k VYQ C Q.
Q Q
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By using Lemma 2.6, we have the following generalization of Lemma 3.5 of [13], that can
be proved essentially in the same way:

Lemma 2.8. Letp>a>1, andlet h € CO’%(I), h > 0. If f € LP(I) is a nonnegative

function such that
][J W) FO°dt < (][J h(t)dt) (][J f(t)dt)a+’z\2

for any interval J C I, with M > 0 independent of J, then f% € BMO(I).

Corollary 2.9. Letp > a > 1, and let h € CO’%(I), h > 0. If f is a nonnegative
measurable function such that @é(f) € LP(I) and

f] WD)t < (]{ h(t)dt) ® (76 f(t)dt) + 0T (2.5)

for any interval J C I, with M >0 independent of J, then (D(f)% € BMO(I).

Proof. We have

QI*—‘

h(t )rdt

f,h )Hff )]+

< ( ){ <1> (f())dt] +M  VJcCL

/\?‘*\

Nl

From this inequality, by using Lemma 2.8, we get [@% ( f)] € BMO(I), and the assertion

follows. 0

Corollary 2.10. If h is a positive and Holder continuous function on I and f is a

nonnegative function such that Cbé(f) € [ LP(I) and verifying inequality (2.5), then
1<p<oo

o3 (f) € BMO(I).

3. BMO regularity for minimizers

We begin with the following theorem, that is an extension of the main result of [1] by
Ambrosio-Ascenzi. The functional F considered in the following verifies the assumptions
mentioned in the introduction, and therefore the Lagrangian L is a Borel function such
that

a®(|z]) —ca < L(t,s,2) < c39(|z|) + 4 (c1,c3 > 0;¢2,¢4 > 0) (3.1)

We remark that we make such assumptions only in order to get existence of absolute
minimizers, but they are not necessary to prove Theorem 3.1. Nevertheless, assuming
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the existence of a minimizer u in the proof of Theorem 3.1, the continuity of the positive
function g ensure that inequality (3.1) is true with the constants ¢; = ‘ITHIII(I_ g, c2=maxg,
X X

where K CCIR" is the closed convex hull of the range of u.

Let us note also that we don’t use the assumption ® € Ay, and therefore in this theorem
Lagrangians with exponential growth are allowed.

Theorem 3.1. Let ® be an N-function such that d3 is conver for some o > 1, and let
us assume that there is a continuous positive function g on I x R™ such that

L
lim (t7 87 Z)

o () 1) e

uniformly in the compact subsets of I x R"™. Then any minimizer u : I x R™ — R of the
functional F satisfies the condition

e(u')e [ ()

1<p<oco
and therefore u is A -Hoélder continuous for any \ < 1.

Proof. We begin by following the same argument of the proof of Theorem 1.1 of [13],
that we give here for completeness. We denote by K CC IR" the closed convex hull of
the range of u, and we set v = |[u/| € Lg(I). First of all we will show that for any M’ > 1
there exist h € N,C > 0, some positive constants m; (i = 1,..., h), such that if

1—1 ?

Eiz I: < < - .=1,...,
{te . <t < h} (¢ h)

then for any interval J = [a, b] C E; the following inequalities hold:

2
][ B(u(t))dt < M'® (][ v(t)dt) + % (3.3)
J J mg
Let us consider the modulus of continuity of g,
wg(o) = sup |9(t1, s1) — g(t2, 52)|

dist((t1,51),(t2,52))<o
(t1,81),(t2,82)€EIx K

and the modulus of continuity of u

wu(0) = sup  |u(ty) — u(ta)|
[t1—t2|<d

Since g|,, . and u are uniformly continuous, we have
XK

wg(2wy(6)) 1 0 as 61 0. (3.4)
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Now, for any J = [a,b] C I, let w be the function
u(t) ift e I\J

w(t) =
) u(a) + (7([] u'(t)dt) (t—a) ifted
We have
ult) = w®)] < fu(t) - @) + "0 =20 )|
< Jult) ~ u(@)] + [ut) ~ (@] [;=2| < 2u0-a) W

and therefore:
9t w(t) —g(t,u(t)] < wy(lw(t) —u)]) < wg(2wu(b—a)) Viel. (3.5)
On the other hand, by assumption (3.2), for any 0 < € < }I)l(l}l} g there exists A > 0 such
that
[9(t,s) — €]®(|2]) < L(t,s,2) < [g(t,s) +€P(|z]) V(t,s) el x K, Vz:|z|>A
and by assumption (3.1) we have
—c3 < L(t,s,2) < c3®(A)+cs V(t,s) eI x K, Vz:|z] <A

and therefore
9(t,5) = d0(eD) — 2~ (ago —¢) #(4) < Lt
X
< [g(t,s) +€|®(|z]) + c3P(A) +ca V(t,8,2) €I x K xR"™.
Setting
C = max {02 + (maxg - e) ®(A),c3®P(A) + 04} :
IxK

we get
[g(t,u(t)) —e)@(|u'(t)]) = C < L(t,u(t),'(t)) Viel (3.6)
Lt,w(t),w' (t)) < [gtt,w(t)) +e@(w'@))+C VJCI, Vtel (3.7)
and by (3.5), inequality (3.7) becomes

Lt,w(t),w'(t)) < [g(t,u(t)) + wg(2wu(b—a)) + e @(Ju'(t))+C VteI. (3.8)

By using the continuity of g(¢,u(t)) and (3.4), for any M’ > 1 there exist €, 0 < € < }m}} g,
X
h € N such that, if we pose

1—1 1
E;, = I: < < - =1, ...,
{te N <t < h} V1 h

M = max g(t, u(t)) + (mu (%)) be

7

m; = I%ing(ta u(t)) — e

7
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we have
M; < M'm (3.9)
Then, for any i = 1, ..., h, from (3. ) d (3.8) we have
m®(v(t)) — L(t, u() ‘(t))  VteE; (3.10)

L(t,w(t),w'(t)) < MCD(\w @)+ VJ C E;, VteE; (3.11)
and therefore, integrating over J C E;, from (3.10) and (3.11) we get

m,-/Jcp( w(t))dt — C|J| < M/ (

mi][ Su(t))dt < M(I)( )+2C VJC B Vi=1,..h
J

)dt+C’\J| V.J C E;

1.e.

from which, by (3.9), we get (3.3).

Now, applying Lemma 2.3, we get @é € Li(I) Vq € [a, B(a, M")] and therefore, since

A}iml B(a, M') = +oo, we have ®a [] LP(I) from which the assertion follows. O
'—
1<p<oco

Next Lemma will be used to prove the BMO regularity result for Lagrangians of the type
(1.1): we prove that every minimizer satisfies an inequality of the type (2.5). We remark
that in some cases also exponential growth of ® are allowed.

Lemma 3.2. Let L be a Borel function such that
g(t,8)®(|z]) —ca < L(t,s,2) < g(t,8)®(|z|) + ¢4 V(t,s,2z) € I x R" x R"

where @ is a N-function verifying the Ao condition with constant ce and such that D5 is
convez for some a > 1, g is A—Holder continuous on every compact subset of I x R",
g >0, co,cq > 0. Then every minimizer u of F is such that the function v = |u'| satisfies
the following inequality

]{ ot u () B(v(t))dt < 7{1 ot u(t))dtd (f] v(t)dt) +T

for any interval J C I, where T = T(ca,cq, A, g,u, cg) is independent of J. The assump-
tion that ® verifies Ag condition can be dropped if g depends only on t.

Proof. Let J = [a,b], and let w be the function that agrees with u in I\J, and that is
linear in J, so that u(a) = w(a), u(b) = w(b), wL = ][ u'(t)dt. We have
J

][g(t,u(t))fb(v(t))dt—@ < ][L(t,u(t),u'(t))dt
J J

< ]{IL(t,w(t),w’(t))dt < Jég(t,w(t))dté (]{v(t)dt> + ¢4

- f} ot u(t))dtd (]é v(t)dt> + ey +]€ g(tw (D) — g(t, u(t))|dtd (76 v(t)dt) |
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Now we have just to prove that

sup
J

Frate.w) - st utoaee (f v(t)dt)‘ < T = T(epea Mg, usca)

If g depends only on ¢, the assertion is obvious. We note that for every 0 < p < A

o (76 v(t)dt) < 5 + g (]6 v(t)dt)q

1 13 1—£ 4 1 q
§C5+06W J’U(t)‘1|J| adt| = C5+66W ”U”L

q

m

for some c5,cg > 0, ¢ > 1 (the existence of ¢ is ensured by the assumption ® € As). On
the other hand we have

]é[g(t,w(t)) — g(t, u(t))ldt < 2A[g]o,x[u]3,§\=f\”

and therefore we get the assertion. O

By using Lemma 3.2 and Corollary 2.10 we have the following

Theorem 3.3. If ® wverifies the Ay condition and g is Hdélder continuous on every
compact subset of I x R", then every minimizer u of F is such that the function v = |u/|

satisfies @(v)% € BMO(I).The assumption that ® verifies the Ay condition can be dropped
if g depends only on t.

Example 3.4. Letl<a <2, 1<p<2a !, w(z)=|log|z|[P and

|2 if s = v(t)
L(t,s,z) = Y (t,s,2) € [-1,1] x R x R,
|z|* 4+ M otherwise

¢
where v(t) = [ w(z)dz. In [13] we showed that if M > 0 is a constant sufficiently large,
1

then v is a minimizer of F and w = v' ¢ BMO(—1,1). As a matter of fact we have
w? € BMO(—1,1), in conformity with the assertion of Theorem 3.3.

4. The Tonelli set

The first examples of Lagrangians in which the Tonelli set E is nonempty where given by
Ball and Mizel in [3, 4] and have been studied in [10]. Similar examples are in [21, 22]. In
[11] and [3] it is shown that Tonelli’s result (see Section 1) is optimal in the sense that any
closed set of measure zero is the singular set E corresponding to a suitable L. Moreover,
other properties of the Tonelli set E are studied in [5], and in [9], in which it is shown
that if L is of polynomial type in its three arguments, then E is a suitable closed set of
measure zero, namely, countable with at most a finite number of points of accumulation.
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All the examples and theorems of previous authors study Lagrangians with continuous
second derivatives in all their arguments. In [8] Lagrangians not necessarily differentiable
are considered, and it is shown that also in a more general setting the Tonelli set is a
closed set of measure zero; in [2] Lipschitz regularity for minimizers has been proved for
Lagrangians with superlinear growth, independent of ¢, and measurable in s.

Now let us consider Lagrangians of the type (1.1). As observed in [8], the absolutely
continuity of minimizers ensures that the Tonelli set F is a set of measure zero.

We remark that in spite of BMO regularity of minimizers that we proved in Theorem 3.3,
we substantially cannot prove any further property of the Tonelli set, in fact we will show
the following

Theorem 4.1. Any closed set of measure zero of I is the singular set of an absolute
minimizer of some functional corresponding to a suitable Lagrangian L verifying (1.1).

We will prove Theorem 4.1 by constructing functionals with prescribed Tonelli closed set
of measure zero. The corresponding examples given by Davie [11] are not of our type:
his examples are either with L having not superlinear growth, or with L having a non
positive asimptotic behaviour.

The examples we give are of the type of [1], and are issued by using some results of
Harmonic Analysis about the (A,) class of weights of Muckenhoupt (see [24]).

Let us recall some basic definitions: the Hardy-Littlewood local maximal function of a
function f € L] (I) is defined by
= supj[ f(t)
teJ

JCI

and the (A,) condition of Muchenhoupt is defined by

fe() & sw (][f dt) (][f -7 1dt> e 1)

fe() & 3Jk>0 such that sup ][f(t)dt < k essigff
JcI

where each supremum is taken over all intervals J C I. It can be easily shown that if
1 <r < s, the class (A4;) is contained in the class (As). We will use the following well
known results, the first of which is by Coifman-Rochberg [7, 24]:

Theorem 4.2. If f >0, f € L}, (I), then for each 0 < € < 1 we have (M f)° € A;.

Theorem 4.3. Iff >0, f € L}
n > 0 such that f1 € (As).

(I), then log f € BMO(I) if and only if there exists

loc

Proof of Theorem 4.1: Let E be a closed subset of I having measure zero, let Uy = I,
and let Uy, Us, ..., Uy, ... a sequence of open subsets of IR such that |U,| < 27" U,41 C U,

o0 oo
and (| Up = E,and let f = ) xv,niI-

n=1 n=0
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We have
o0 o
‘/ﬂﬂﬁ=§:W50ﬂf§§:T“=2<+m (4.1)
I n=0 n=0

and therefore f € L'(I), f = +oc on E, 1 < f < 400 on I\E. The Hardy-Littlewood
local maximal function of f is therefore such that M f = +oo on E (because M f(t) > f(t)
a. e. in I). Now we claim that M f < 400 on I\E. In fact, let tg € I\ E. Since

I\NE =1\ ﬁ Up = G I\Uy,
n=1 n=1

there exists M € IN such that tg ¢ Ujs, and therefore tg & Upsy1. Let Z be an open

interval centered in #y such that ZNUp4q = 0. We have ZNU, =0 VYn > M and
therefore xy,nr(t) =0 Vt€Z, VYn > M. From this it follows that f(t) < M VteZT
and therefore

fﬁ@ﬁgM
J

for any interval J C Z.
Now let J be a fixed interval in I containing g, it is |J| < 3|Z| or |J| > £|Z|. In the first

case we have J C 7 and therefore ][ f(t)dt < M, in the second case we have
J

2
7{1 fla < /I F(0)dt < oo,

In this way we get M f < +occ on I\E.

Now let us note that also the function (Mf)% is such that (Mf)% = +oo on E, (Mf)% <

+o0 on I\ E, and by Theorem 4.2 the function (Mf)% belongs to the (Ag) class of Muck-
enhoupt. Put
v=logMf,

we have v > 0 because f > 1, v = +00 on E, v < 400 on I\E and by Theorem 4.3
v € BMO(I). By using Remark 2.7, there exists k£ > 0 such that

]éu(t)%it < (l[lv(t)dt)2 +k

for any interval J C I. The function v satisfies the condition (see [1]) to be the derivative
of a minimizer of some functional corresponding to a suitable Lagrangian L verifying
(1.1), and therefore we get the assertion. O



302 A.Fiorenza / BMO regularity for one-dimensional minimizers of some Lagrange problems

References

[1] L. Ambrosio, O. Ascenzi: Hdélder continuity of solutions of one - dimensional Lagrange
problems of Calculus of Variations, Ricerche di Matematica 40(2) (1991) 311-319.

[2] L. Ambrosio, O. Ascenzi and G. Buttazzo: Lipschitz regularity for minimizers of integral
functionals with discontinuous integrands, J. Math. Analysis and Appl. 142 (1989) 301-316.

[3] J. M. Ball, V. J. Mizel: One dimensional variational problems whose minimizers do not
satisfy the Euler-Lagrange equation, Arch. Rational Mech. Anal. 90 (1985) 325-388.

[4] J. M. Ball, V. J. Mizel: Singular minimizers for regular one-dimensional problems in the
Calculus of Variations, Bull. Amer. Math. Soc. 11(1) (1984) 143-146.

[5] J. M. Ball, N. S. Nadirashvili: Universal singular sets for one-dimensional variational prob-
lems, Calc. Var. 1 (1993) 429-438.

[6] C. Bennett, R. Sharpley: Interpolation of Operators, Academic Press, Orlando, 1988.

[7] R. R. Coifman, R. Rochberg: Another Caracterization of BMO, Proc. Amer. Math. Soc.
79 (1980) 249-254.

[8] F. H. Clarke, R. B. Vinter: Regularity properties of solutions to the basic problem in the
Calculus of Variations, Trans. Amer. Math. Soc. 289 (1985) 73-98.

[9] F. H. Clarke, R. B. Vinter: Regularity of Solutions to Variational Problems with Polynomial
Lagrangians, Bull. Pol. Ac. Sc. Math. 34(1-2) (1986) 73-81.

[10] F. H. Clarke, R. B. Vinter: On the Conditions under which the Euler Equation or the
Maximum Principle Hold, Appl. Math. Optim. 12 (1984) 73-79.

[11] A. M. Davie: Singular minimizers in the calculus of variations in one dimension, Arch.
Ration. Mech. Anal. 101 (1988) 161-177.

[12] L. D’Apuzzo, C. Sbordone: Reverse Holder inequalities A sharp result, Rendiconti di Matem-
atica 10(VII) (1990) 357-366.

[13] A. Fiorenza: Regularity results for minimizers of certain one-dimensional Lagrange problems
of Calculus of Variation, Bollettino U. M. I. 10-B(7) (1996) 99-128.

[14] N. Fusco, C. Sbordone: Higher integrability of the gradient of minimizers of functionals with
nonstandard growth conditions, Comm. Pure Appl. Math. 43 (1990) 673—683.

[15] T. Iwaniec: Gehring’s Reverse Maximal Function Inequality, Approximation and Function
Spaces, Proc. Lut. Conf. Gdansk, Ed. Z. Ciesielski, North Holland, 1981.

[16] A. D. Ioffe: An existence theorem for problems of the calculus of variations, Dokl. Nauk
SSSR 205 (1972) 277-280; Soviet Math. Dokl. 13 (1972) 919-923.

[17] A. A. Korenovskii: The exact continuation of a reverse Holder inequality and Muckenhoupt’s
conditions, Matematicheskie Zametki 52(5) (1992) 32-44; transl. Mathematical Notes, May
1993, 1192-1201.

[18] V. Kokilashvili, M. Krbec: Weighted inequalities in Lorentz and Orlicz spaces, World Sci-
entific, Singapore-New Jersey-London-Hong Kong, 1991.

[19] M. A. Krasnosel’skii, Ya. B. Rutickii: Convex Functions and Orlicz Spaces, P. Noordhoff
Ltd, Groningen, 1961.

[20] M. M. Rao, Z. D. Ren: Theory of Orlicz Spaces, Pure and Applied Math. 146, Dekker, 1991.



A.Fiorenza / BMO regularity for one-dimensional minimizers of some Lagrange problems 303

[21] M. A. Sychev: On the regularity of solutions of some variational problems, Sov. Math. Dokl.
43 (1991) 292-296.

[22] M. A. Sychev: On a classical problem of the calculus of variations, Sov. Math. Dokl. 44
(1992) 116-120.

[23] C. Sbordone: Rearrangement of functions and reverse Jensen inequalities, Lecture Note
Summer Institute Amer. Math. Soc., Berkeley, 1983.

[24] A. Torchinski: Real-Variable Methods in Harmonic Analysis, Academic Press, 1986.
[25] L. Tonelli: Fondamenti di Calcolo delle Variazioni, Vol. LII, Zanichelli, 1921-1923.

[26] L. Tonelli: Sugli integrali del calcolo delle variazioni in forma ordinaria, Ann. Sc. Norm.

Super. Pisa 21 (1934) 289-293; in: L. Tonelli: Opere Scelte I1I1(105), Cremonese, Roma,
1961.



304 A.Fiorenza / BMO regularity for one-dimensional minimizers of some Lagrange problems

HIER :

Leere Seite
304



