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1. Introduction

The Komlés theorem [19] first proved in 1967 has many applications. (See, for example,
2], [4], [5], [6], [9], [10], [11], [15], [18], [27]). A general interpretation is given by Aldous
[1]. Several proofs have been given: Chatterji ([13], [14]); Trautner [26]. Its extension to
Lk- where X is an infinite dimensional Banach space has been studied in two directions:
one with respect to the weak o(X, X') convergence [3] and [23], the other for the strong
convergence by [25] in a unsuccessful way as pointed in [17] in which one finds a strong
version of Komlés theorem in super-reflexive Banach spaces ([17], Theorem 6). Extension
of Garling’s theorem to Mosco convergence for convex weakly random sets in separable
super-reflexive Banach spaces is stated recently by [12]. Let us mention also a recent
extension of Slenk’s theorem [24] via a regular method of summability [7] in L}, where H
is a Hilbert space.

In this paper, we aim to give an elementary proof of Komlds theorem in Hilbert space
for the strong convergence as well as we give a new proof of Révész’s theorem [22]. All
we need are some truncation techniques in the seminal proof of Komlés theorem [19] that
will be summarized in two lemmas below. Apart from these facts our proof involves only
elementary mathematical tools and does not appeal to martingale techniques as it was
done in ([17], [19], [25]).

2. Notations and Preliminaries
We will use the following notations.

- (9, F, ) is a complete probability space.

— X is a Banach space.
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- LY = LY (9, F, p) is the Banach space of all Bochner integrable mappings f : Q — X.
H is a Hilbert space.

- L%I = L%{(Q,}' , 1) is the Hilbert space of all strongly measurable mappings f :
Q — H such that || f(.)||? is u-integrable.

(.,.) is the inner product in the Hilbert spaces H and L%{.
If f:Q — X is a mapping and a, b are positive real numbers, we denote:

UIfll > a} = {we Q[ f(W) > a}.
{a<[[fll<b}={weQ:a<|flw)] <b}.
and we set: F,(f)(w) = f(w) if ||f(w)]| < a and Fo(f)(w) =0 if || f(w)] > a.

The following simple result is useful.

Lemma 2.1. Let (z,,) be a weakly convergent sequence in X and x its limit. Then there
ezrists an integer N such that
[z]] <2 inf [[z,].
n>N

Proof. As (z,) converges weakly to z, we have ||z|| < liminfy, ||z,||. If liminf, ||z,|| = 0,
then the result is obvious. Now assume that lim inf, ||z,| > 0, then

< 2liminf [|z,|| = sup 2 inf [|z,].
Il < 2tim inf [lz.[| = sup 2 inf, Jlzu]

Hence there exists N > 1 such that ||z|| < 2inf,,>x ||zn]|- O

The next lemma was used by Komlés. We extend it to Banach spaces and give a simple
proof.

Lemma 2.2. Let (uy) be a bounded sequence in LY and (v,) a sequence in LY. Suppose
that, for each k € IN*, the sequence (Fg(un))n converges weakly to vg in LY. Then the
sequence (vy) converges strongly in L% and p-a.e.

Proof. Put vy = 0. It is enough to prove that the series ) ., ||vx —vg—_1]|1 is convergent.

For each k € IN*, the sequence (FJ,(uy) — Fg—1(un))n converges weakly in LY to v —vj_1.
By Lemma 2.1, there exists mj € IN* such that:

lvg — vk—1ll1 <2 inf [[Fg(up) — Fe—1(un)l1-
n>my,

Let N € IN* and n > max(m1, ma,...,my). Then

N N
D Mok — vkl <2 1 Fr(un) — Fioa(ua)lh
k=1 k=1

< 2[|unll1

< 2sup [|up1
p21

and therefore 125 [|vg — vp_1]l1 < 2supy>1 [|lupll1 < +oo. O
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The proof of the next lemma is similar to that given by Komlés.

Lemma 2.3. Let (f,) be a bounded sequence in L]1R+' Then there exists a subsequence
(gn) of (fn) such that for each subsequence (hy) of (gn):

(@) Yps1(1/n?) || Fa(ha)ll3 < +oo;
(b) X pz1 #{hn > n}) < +o00.

Proof. Put M = sup,, ||fn||1- For each integer k& > 1 the real valued sequence

(u({k =1 < fa <k}))n

is bounded. Then there exist subsequences (f}), (f2),..., (f¥),... of (fy), where (f5+1)

n
is a subsequence of (f¥), and a sequence (p;) in [0,1] such that

Vk > 1, limp({k—1< f¥ <k}) = pp
n

and

1
k> 1,0 > 1 p({k =1 < fi <k} <pp+ o3

Put g, = fff and let (hy) be a subsequence of (g,). Then

(i) Vk>1,lim, p({k —1 < hy, < k}) = py,

and

(ii) VnE]N*,VkWith1§k§n2,,u({k—1§hn<k})<pk+k—13,

One has
N N
> = lingu({k — 1< hy <k}) < p(9),
k=1 k=1
and
N N
> (k=1pp = lignZ(k —Dp({k—1<h, <k}) <M.
k=1 k=1

Then 372 pp <1 and Y725 (k — 1)pp < M.
(a) One has

n n 1
1Fa(Ba) 5 < Zkzﬂ({k —1<h,<k})< Zkz(pk + E)
k=1 k=1
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Hence
1 5 J 1
S S IF )l < Y5 DKk + 1))
n>1 n>1 k=1
+o00

= SR+ )Y ]

k>1 n=k

1
<2} k(pk+ 13)

k>1
1
=203 (k=Dpe+ D m+ ) 75)
k>1 k>1 k>1
<2(M +1+2) < 4o0.
(b) One has

n2

p(fhn>n) = D k=1 < hy <k}) + p({hn > n*})
k=n+1

n’ 1 1
< Z (px, + g) + mllhnlll
k=n+1

Then

S ulthnzn)) < S0 et 25

n>1 n>1 k>n+1

= Z(k — Dpg + Z 72‘]\2{;— L < 400.

k>2 n>1

3. Proofs of Komlés and Révész theorems in Hilbert spaces

Theorem 3.1. Let (fy) be a bounded sequence in L}{. Then there exists a subsequence
(9n) of (fn) and a p-integrable function g such that

for each subsequence (hy) of (gn)-
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Proof. Step 1. We may assume without loss of generality that (f,) is a sequence of
simple functions. To see this, take for each n a simple function f] such that the sequence
(fn — f}) converges strongly in L}; and p-a.e. to the null function. Then (f}) is bounded
in L}; and for every subsequence (hy) of (f), we have

k k
]‘ / /
f 2 Pnl@) =5 2 (b = o) Z P
n=1 n=1
where hy, = f,, if hy, = fp,. So, %Zﬁ | hn(w) converges p-a.e. if and only if + 22—1 hl,(w)

converges u-a.e. because %Z 1(hn — hl)(w) converges to 0 p-a.e., and, when the con-
vergence occurs, they have the same limit function.

?rl»—l

Using Lemma 2.3 and extracting a subsequence if necessary, we may suppose that

S LIE)IE < 400 and Y u({llha] 2 n)) < +oo

n>1 n>1

for every subsequence (hy) of (fy,). For each integer £ € IN*, the sequence (Fj(fn))n>1
is bounded in Lf-{, and therefore, is weakly relatively compact. Then there exist subse-

quences (f¥) of (f,) and functions uy, of L% such that (f5*1) is a subsequence of (f¥)
and, for each £ > 1 we have

ligan(fff) = uy
with respect to the weak topology O'(L%{, L%{), and, using Lemma, 2.1, we can have

lugll2 < 2|Fe(f5))l2,  Vn > 1.

Put f, = f* (n>1). Then
lim Fy (1) = u
n
for o(L%, L%), and
lugllz < 2| Fe(f)llz,  Vn > k.

Put g, = 1/2% (k > 1). Since ||ug||oo < k, for each integer k£ > 1, there exists a simple
function v such that

[vklloo < &,
li’in(uk(w) — vk(w)) =0 p-a.e.

.. €k—1
— < f || F
o = vl < min(inf |IF(2) s 22).

Observe that if inf,,>, || Fi(f;)|l2 = 0, then ug = 0 and therefore we can take vg = 0.
Then we have
logllz < llve — ugll2 + [lukll2

< |1Fk(fi)ll2 + 2|1 Fe(fi)ll2, Vn >k
=3||Fe(f))ll2, Vn > k.
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Moreover
!/ /!
1 F%(fn) — vrll2 < | Fe(f)ll2 + llvll2

< A[F(f))ll2, Yn > k.
If (hy) is a subsequence of (f}), then Zk21(1/k2)||Fk(hk) — vl|3 < 400 because
D1 (/)| Fi(hi)[13 < +oc.
Step 2. Let F, be the smallest sub-o-algebra of F such that the functions fi,... f};

N
v1,...U, are Fp-measurable. Then F, is finite because all these functions are simple

functions. Let us prove that there exist integers n1 < ng < ... < np < npy1 < ... such
that ny =1 and, forallp>2andall2 <k <p:
sip sup sup [(Lp(R(L) — v, (F(fh) — o) < ek (%)

1<q<p-1 1<I<k—1 BEFn,_,

We proceed by recurrence. Let us suppose p > 2 and that n; < ng < ... < mnp_1 have
been obtained. Then, for each k € {2,...,p}, the sequence (Fi(f)) — uj)n converges
weakly to 0 in L?,, and, the set

{1p(F(fy,) —w):1<q¢<p-1,1<I<k-1, BEF,, ,}

Nq

is a finite set of L%I. Then there exists an integer Nj such that, for all n > N we have

€k—1
sup  sup  sup [( 1B(Fi(fp,) — w), (Fr(fp) — wa))| < 5
1<q<p-1 1<i<k—1 BEFn,_,

Let np > max(np—1, N2,...,Np), then foreach 2 <k <p,1<q¢<p—-1,1<I1<k—-1
and B an,,,l, we have

[(1s(Fi(fn,) —v), (Fi(fn,) — ve))| < [(Le(Fi(fn,) — v)s (Fi(fn,) — k)]

+ [(1(Fi(fp,) — v1), uk — vg)]

€k—1
< =5 +1Ffn,) = vllzlluk = vill2

€k—1 €k—1
< 21
T

< €k-1-

Then (x) is proved.

Put g, = f/z,, (p > 1). Then the sequence (gn)p>1 is bounded in L}I and, for each k > 1,
the sequence (Fj(gn))n>1 converges weakly in Ll to ug. By Lemma 2.2, there exists
g € L}, such that (ug) converges to g p-a.e.

Let (hy) be a subsequence of (g,) and let us prove that ZZZI hn(w) converges to g(w) -
a.e.

Put Sg = Zﬁzl(l/n) (Fn(hyp) — vy) and let us first show that (Sk)x converges p-a.e. Let
¢ > 0 and denote, for m € IN*,

Ap = {sup ||Sm+j — Sml| < e}
Jj21
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Applying the Cauchy criterion, it is enough to show that lim,, u(A,;,) = 1. Denote

Ao = , Apgp=1{sup [Smij— ml <€}
1<j<k

Bm,k‘ = Am,k‘—l - Am,k = { sup ||Sm+j - Sm” <eg, ||Sm+k - Sm” > 5}-
1<j<k—1

Then (AS, ,)n>1 is an increasing sequence of measurable sets, |J,>; A%,, = A%, and
(B k)1<k<n is a F-partition of AS, ,

One has

118, ,(Smtn — Sm)ll3 = 118, (Smtk — Sm) + 1B, ; (Smtn — Sm+i)ll3
> |18, 4 (St = Sm)lI3
+2(1B,, , (Sm+k — Sm); (Sm+n — Sm+k))
> & (Bmk) + 2(18,, , (Smtk — Sm), (Smtn — Smr))-

Hence

n
||Sm+n - Sm“% > Z ||1Bm,k(5m+n - Sm)”%
k=1
n
> 52N(A(r:n,n) +2 Z<1Bm,k (Sm+k - Sm): (Sm—l-n - m+k)>-
k=1
But

| Sm+ 15 = ||Z P m+k _Um+k||2 Z | Foik(Pntk) — Vsl
m+n m - =

— (m+k)?

1 1
+ 2 Z m+ im<Fm+i(hm+i) — Um+i, Fm+j(hm+j) - Um+j>'
1<i<j<n

Whence we get the following estimation

1.
/J’(Afn,n) < _2 Z m+ k 2 ||Fm+k‘(hm+k) - Um+k||%
k

1 1
2 Foilhmas) — o Font i (A i) — .
’ 1<§< +Zm+]|< meti(fmti) = Umeti, it (hnt) = vme )]

+23 " [(1p,, , (Smtk — Sm), (Smtn — Smti))]
k=1

Now we check that lim,— e (limp—eo #(A7, ,)) = 0. We shall use the foregoing majora-
tions.
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(i) As the series Zkzl(l/k2) | Fx(ht) — vkl|3 is convergent, then > p_;(1/(m + k)?)
| Frnik (Pntk) — Vmar||3 converges to 0 when m — +occ uniformly in n.

(ii) To get the following estimation put for1 < i < j <n:hpyj = f,’Lp, k =mtj, hypti =
fagpl =m+iand B = Q. Then p > 2 and, as (hy) is a subsequence of (f;, ), then

2<k<p Wehaveeasily ] <g<p—1and1<I[<k—1. Wecan then apply (x). This
gives

1 1
Z mi ma g Fmtillmei) = Umetis Fng (Bme) = vme)|
1<i<j<n

1 1 1 1
< ¥ g1 < — >  Emetjo1
1§i<j§nm+Z m+J M 9 Si<n 1<i<y Mt

1 j—1

= — Em+j-1
m 2 5ien m-+)
1 —m

< — Emtj—1 < — €
m

which converges to 0 when m — +o00 uniformly in n.

(iii) Now observe that the sets By, ; belong to the smallest sub-o-algebra ¥ of F such
that the functions hy,..., Apyak;v1, ..., Untk are X-measurable. Then by using similar
arguments to those given before and by taking B = B, ;, we can apply () to obtain the
following estimation

‘<1Bm,k (Sm+k - Sm)a (Sm+n - Sm+k)>‘

m+k m+n
F;(hi) — v Fj(hj) — v;
= |<1Bm,k Z %’ Z mF A IR A
i=m+1 j=m+k+1 J
m+k m+n

IN

11

>y =7 (L, i (Fi(hi) = 0i), Fj(hj) = vj)|
t=m+1 j=m+k+1 J

m+k m+n

Y L

2
t=m+1 j=m+k+1 J

IN
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By adding from £ =1 to n we get

n  m+k m+n

- 11
Z ‘<1Bm,k (Sm+k - Sm): (Sm+n - m+k)>| < Z Z Z ; 5 €5-1
k=1

k=1i=m+1 j=m+k+1

n  m+k 1 1 m+n
< - £
- Z i m+k+1 Z =
k=1i=m+1 j=m+k+1
n  m+k
1 1 1
SZ ;m—i—k-l—l om+k—1
k=1i=m+1

m+k 1 1

_Zm-l-k-i-l Z m+1 2mtk—1
=m+1

_z": k 1 1
Cm+k+1 m1 2mikl
1 1

~—m+12m-1

Since the last term converges to 0 when m — +oo uniformly in n, (Sk)g>1 converges -

a.e. Therefore from Kronecker’s lemma, we deduce that %Zfl’:l(Fn(hn) — V) converges
to 0 u- a.e.

We have

Lk 1k Lk Lk L

;;h Ez:: —vn+%nd(vn—un)+E;un+zg(hn—pﬂn(hn))
and

%Zﬁ:l(Fn(hn) — vp,) converges to 0 p-a.e.,

z Zfl:l(vn — uy) converges to 0 y -a.e.,

z Sk | un converges to g p-a.e.,

%Zﬁzl(hn — Fy(hn)) converges to 0 p a.e. because ), 1 p({hy > n}) < +oo.

Then %Ziﬂ hy, converges to g u-a.e. O
The following is an extension of Révész’ theorem [22] to functions with values in a Hilbert
space.

Theorem 3.2. Let (fy) be a bounded sequence in L%{. Then there exists a subsequence

(gn) of (fn) and f € L% such that if Y o> a2 < +oo, then Y n>1n(hn — f) converges
p-a.e. for every subsequence (hy) of (gn)-
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Proof. Without loss of generality, we may suppose that (fy,) converges weakly to f in
L%. Choose a sequence (f}) of simple functions with ||f, — f — fill2 < 5%. Then (f2) is

bounded in L% and converges weakly to 0. For every subsequence (hy) of (f,) we have

D Man(ha = f = Bp)lis < Y llan(hn — f = hy)ll2

n>1 n>1

< (sup |an|) Z [(hn = f = hy)ll2 < +00
n21 >1

where h;, = f, if by = fp,. It follows that 3~ <) an(hy — f — h;,) converges p-a.e. So,
> n>1 @n(hn— f) converges p-a.e. if and only if, 3 -, - anh;, converges p-a.e. We can then
suppose that (fy) is a sequence of simple functions converging weakly to 0 in L%{. Now we
k%' Let F,

be the smallest sub-o-algebra of F such that the functions f1,..., f, are F,-measurable.
Then F, is finite. As (fy) converges weakly to 0 there exists a subsequence (fy,) of (fn)
where f,, = f1 and, for all p > 2

will use several notations and results in the proof of Theorem 3.1. Put ¢ =

sup sup |<1Bfnq7 fnp>| <é&p-1 (1)
1<qg<p-1 BE]:np_l

Put g, = fn, (p > 1) and let (h,) be a subsequence of (g). Denote Sy = SOk

n=1 Gnp hn

for every k > 1. We will prove that (Sg) converges u-a.e by proceeding as in the proof of
Theorem 3.1. Introducing the sets Ay, Ay, x and By, i, as in the proof of Theorem 3.1, we
have

1 n
(A ) < E_Q[Z Gkl Boik3 +2 D lameitml | (hmsis ana )|
k=1 1<i<j<n

+23 " [(15,, ,(Smtk — Sm), (Smtn — Smeric))]
k=1

We have the following estimations

n n

D ki ilhmarll3 < sup lhpll3 D a4 (2)
k=1 p21 k=1

and

Y lamsitmejl[(Bmris bmai) < D lamerillamjlemej—1
1<i<ji<n 1<i<j<n

S(supap)® D D Emejei

P2Zm - 9<j<n1<i<j—1
= (supap)® > (j = Vemsj1
p2m - 9<j<n

1

2

< (sup ap) E : omtj—1° (3)
p2m - 9<j<n
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and

n
Z| 1Bmk m+k — S, ) (Sm+n - Sm—|—k'))|
k=1

n m+k m+n

Z YooY laillaglis, ki k)l

i=m+1 j=m+k+1
n  m+k m+n 1

S“P% ZZ > G- 1)1

=1i=m+1 j=m+k+1

n  m+k
(sup ap) Z Z +k 1
pzm k=1i= m+1m+k 2m
n
k 1
2
= (sup a
(ng p) 1 m+ k gm+k—1
1 o 1
< (sup ap)?=— —. 4
(300 0" 3 X 55 (@

By (2), (3), (4), we see that u(Af7, ,) converges to 0 when m — +oo uniformly in n. That
finishes the proof. O
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