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The paper describes the geometrical structure of Nash equilibrium sets in partially convex games without
constraints. A condition characterizing a distinct class of Nash equilibrium sets is given. A complete
description of such sets in two dimensions as well as some pictures illustrating the appearing difficulties
are presented.

1. Introduction

In non-cooperative game theory the concept of a Nash equilibrium point is the most
important one ([9], [10]). Such a point has the property that every players choice of his
strategy is the best response to these of the other players. This concept is a generalization
of the equilibrium concept developed by Cournot in 1838 ([5]). Many applications of it
can be found in economic theory ([3]). Based on this concept a staggering number of
solution concepts were developed (see [7]). An introduction to the theoretical aspects the
interested reader can find in [11], [6] or [8].

In this paper we investigate the set of all Nash equilibrium points for partially convex
games without constraints. Our purpose is a geometrical characterization of such sets to
get a survey of the possible structures. At first we want to give a condition allowing us
to characterize a distinct class of Nash equilibrium sets in any dimension. Furthermore
we try to give an equivalent description of Nash sets in the 2-dimensional space. Some
pictures will show the difficulties which can occur.

2. Preliminaries

We consider the n-dimensional euclidean vector space R"™. With n; we denote the di-
mension of the strategy space of player i, and with k players we have ny + ... + ng =
n. So x € IR"™ can be written as = = (z1,...,2;) with z; € R", and z_; denotes
(X1, ey Tim1, Tig1, -y T) € R such that z = (24, x—;). Furthermore we define for a set
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G CR"
G_; = {:L" ; € R (w4, 2—5) € G}
Glr—) = {y € G‘ Y—i = :v_i}
A partially convex (or convex) game in our sense is a k-tuple (f1,..., f ) of continuous
functions f; : R™ — IR which are convex for any fixed z_; € R"-%, (i =1,...,k). Such a
tuple is called a game in strategic form. Furthermore the set (;S(x i) = argmln fz( —i)
has to be nonempty and compact for all + € R" and ¢« = 1,...,k. A point z* with

z; € ¢(z*;) for i=1,... k is called a Nash equilibrium point.

3. Nash sets in R"

3.1. A first characterization

T

Figure 1

At the beginning we want to consider a simple two-dimensional set GG consisting of a
half circle and a single point (see Figure 1). We assume this set to be the set of Nash
equilibrium points of a convex game. Then the payoff function hs of player 2 is con-
vex on every vertical line, especially argmin hg(z1,-) is convex for arbitraryly fixed ;.
Since the intersection of such a vertical line and G belongs to argmin ha(x1,-) we can
conclude the following: If a vertical line through the point (z1,0) intersects the set G
then the convex hull of the whole intersection belongs to the set minimizing hy(z1, -), i.e.
conv G(z1) C {z1} x argminha(z1,-). With the same argument for any horizontal line
we can derive a simple condition for Nash sets in two dimensions: Our set G has to fulfil
conv G(z1) Nconv G(xz3) C G for all x € R2. Tt is easy to see that the set considered
above cannot be a Nash set of a convex game for this reason.

An extension of the derived condition for arbitrary convex games could have the following
form:

If G CR"” and n = nq + ... + n with n; € IN, then

ﬂ conv G(z_;) C G for all z € R"™.

Lemma 3.1. Assumen € N andn=ny+ ...+ ng withn; e N (i =1,...,k).
Let (f1, ..., fx) be a conver game with Nash set G.
Then the condition (B1) is satisfied.
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k
Proof. For the proof we fix x € R", 2* € () convG(z—;) and i € {1,....,k}. Since
=1
r* belongs to conv G(z_;) it is a convex combination of vectors z!,..., 2%+ € G(z_;).
The definition of G(z_;) ensures G(v—;) C G, hence 2/ € G for all j. Thus we have

xf € argmin f;(-,z—;) for j=1,..,n;+1 and finally z; € argmin f;(-,2_;), because

] .
-1
is complete. O

B o _— N . . .
r_; =x_; = z*, and argmin f;(-,z_;) is convex. Since we chose an arbitrary i the proof

The next question we deal with is the search for a class of sets for which our condition
(B1) is a sufficient one. To do this we also need a possibility to construct a convex game
based on a given set.

3.2. Construction of convex games

Let G € IR" be an arbitrary nonempty, closed subset of R", and n = ny + ng with
ni,ng € IN.

The distance function is a simple function with the minimal set G. If the set G is not
convex the distance function does not satisfy the desired convexity properties. So the
distance function has to be changed.

We define F(z) := d(z,G). Then we can get a function h : R" — R from changing
the epigraph of F'. We take epih(-, z2) = cl convepi F(-, z3) for all fixed g € R™. The
values of h can explicitly be given, too (comp. [12, p. 157]).

Lemma 3.2.

(i) h(-,z2) is convex Vz2 € R™

(il) h is continuous in R"

(iii) h(zx) < F(z) Vz € R"

The proof shall not be given here, it is easy to verify the assertions.

The closure in the definition of A is not very useful. But it is possible to show that in all

cases being interesting for us the use of the closure can be avoided. For this we recall the
following definition: G(z2) is said to be locally bounded at z3 if for all bounded sets €

including x5 ||z1|| < L < oo for all 23 € Q for all z; € G(x2) holds. If this holds for all
x5 € R™ then G(z2) is locally bounded.

Lemma 3.3. If G(x2) is locally bounded, then convepi F'(-,x2) is closed Vxa € R™2.

Proof. We fix 2 € R™. At first we assume, there is a sequence {z}}%°, C R™ such
that ||z}|| — oo and F(a%,73) < ¢ for a fixed ¢ < oo and all [ € IN. Then we have
vectors (z4,7) € G with d((2}, z3), (z},7L)) < ¢ for all I. So we get the boundedness
of {z4}5°,, and with the properties of G(z3) the sequence {Z}} has to be bounded, too.
Therefore we conclude F(z1,z3) — oo for ||z1]| — oo.

Now we consider a sequence {2} C conv epi F(-, z3) converging to z, where z; = (z,y;)

for all l € N and z = (z,y). Then every vector z is a convex combination of vectors zf,

m+l . mtl : o
i=1,..,n1+1[12,p. 157],ie. 1= > Nz with A} >0, > A} =1 and 2] = (2}, 1)),
i=1 i=1
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where yf > F(z},2}). With the convergence of z; and the existence of a lower bound for
the sequences yli, 1t =1,...,n1+1 we get the boundedness of the sequences {zl’}fil So there

is a subsequence {l,}>°_; C IN such that Zlim — 2z* and )\fm T2 Nfori=1,...,n1+ 1.

F is continuous, and so z' € epi F'(-,z3) for all i and z € convepi F(-,25), because
z =3 Nzt O

Example 3.4. Lemma 3.3 is not true in general:

We take the graph of the function f(z1) = =1 as the set G C R%, and we consider x5 = 0.
Obviously G(z2) is not uniformly bounded in every open set including x5. Considering
the set epi F'(-,0) we get the open half plane {x1 > 0} by forming the convex hull.

With the help of Lemma 3.3 we can formulate the following helpful assertions.

Lemma 3.5. If G(z3) is locally bounded, then the following statements are valid:
(i) minh(-,z3) =min F(-,z3) Va3 € R™

(i) 7 € argmin F(-,z5) = Jzp € R™ : (27,22) € G

(iii) argminh(-,z2) = convargmin F'(-,z9) Vzy € R™

Proof.

(i) Let z3 be a minimizer for A(-, z3). The vector (27, h(z7, z})) is a convex combination
of vectors (z%, h') € epi F (-, x3). Therefore h(z},r%) > min; F(z%, v%) > min F(-, z3)
and so minh(-,z3) > min F(-,z5). With h(z) < F(z) Vz € R", the proof is
complete.

(ii) Assuming z7 is a minimizer for F'(-,z3). We can find a vector z = (z1,Z2) € G such
that d(Z,2*) = d(z*,G) < d(z*,z)Vz € G. Considering (Z1,x5), we get for the case
T1#2]

F(z1,33) = d((z1,23),G) < d((21,23),7)

= |72 — =3

< \llet = 22 + g - 22
= d(z,2%) = F(2},1})

which contradicts the choice of z. So z1 has to be equal to 7.

(iii) With (i) and (3.2 (iii)) we get argmin F'(-,z3) C argminh(-,z3). Since h(-,z3) is
convex, conv arg min F'(-, z3) C argmin h(-, z3) is also true.
If on the other hand z] minimizes h(-,z3), so (¢}, h(z},z3)) is a convex combination
of (z%,h') € epi F(-,23),i = 1,...,n1 + 1. With (i) we have h* = h(z%,23) for all i.
The construction rules lead to h* > F(x%,2%) and F(z%,x%) > h(x%, %), so we get
F(2%,23) = h® = min F(-,z3) for all 5. Therefore 2} € argmin F(-,z3) and finally
x} € convargmin F'(-, x3). O

Corollary 3.6.
i) h(z)>0 VzeR"
(i) If G(z%) # 0 for z* € R", then conv G(z3) = argmin h(-, z3) x {x3}.
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3.3. A sufficient condition

T IT
ry Ty

Figure 2

With the results of the last section we are now able to construct convex games based
on a given set G C IR". Obviously the set G is always included in the Nash set of the
constructed game. Now our aim is to find a sufficiently large class of sets for which the
reversed inclusion is true under the condition (B1).

It is clear that the class of compact convex sets belongs to such a class, because the
distance function is convex for these sets (see [12, pp. 28, 34]). On the other side
there are bad examples. A simple one is shown in Figure 2. Here the condition (B1) is
satisfied, but the Nash set resulting from the constructed game (hq, h2) includes the whole

line segment [(xll, x5), (xlll, x5)]. (h; was defined with epi h;(-, x_;) = convepi F'(-, z_;) for
z € R?, i =1,2). So we have to avoid the existence of such two points like (a:ll, z3) and

(xlll, x5). This can be ensured if all projections G_; of G are convex. We will show, that
all sets satisfying this condition are useful.

Theorem 3.7. Assumen € N und n = ny + ... + ng with n; € N(i = 1,...,k).
Furthermore let G C R™ be nonempty and compact and let all projections G_; of G onto
R" (i=1,...,k) be convex.

Then G is the Nash set of a convex game if and only if the condition (B1) holds.

Proof. The necessity of (B1) has already been demonstrated in Lemma 3.1.

Now let G C R" be a set with the desired properties. As shown above it is possible
to construct a convex game by means of the convex hull of the distance function. With
F(z) = d(z,G) we define h; : R™ — R, such that epi h;(-, z—;) = conv epi F(-,2_;) for
allz e R"and i =1, ..., k.

It remains to show that G is indeed the Nash set of the game (hq, ..., hg), that means
z* € G iff 7 € argmin h;(-,2*,;) fori =1,..., k.

If 2* € G then F(2*) = hi(z*) = 0 for all 4, and with Corollary 3.6 follows z} €
argmin h;(-, z¥ ;).

For the other direction of the proof we consider a vector z* € IR" satisfying the property
of a Nash equilibrium. Now two cases are possible.
At first all sets G(z*;) could be nonempty. Then we get with Corollary 3.6 z* €

conv G(z*;) for i = 1,..., k, and with (B1) immediately follows z* € G.
On the other side there could be an index i with G(z*; ) = 0. Then all sets G(* ;) must
be empty. Assuming that this is not true there is an index jo with G(a2 ;) # . Due to

Corollary 3.6 x* belongs to conv G(mijo). So z* is a convex combination of z!, ..., z™ €
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G(ac*_jo), whereas z! = (xé-o,a:*_jo) for | = 1,...,m. Hence it follows xl_io € G_j,, and with
the convexity of G_;, we get 2*; € G_;, in contradiction to G(z*; ) = 0.

Up to this point we have shown that in the second case all values r; = h;(z*) are greater
than zero. Without loss of generality we assume r; <= r; for 1 =1, ..., k. Considering

z} we get with Lemma 3.5 the existence of subvectors y1, ...,y € argmin F'(-,z* ;) such
that 27 = 377, Ajyl with A; > 0 and >it1Aj =1. Due to Lemma 3.5 there are now
y’ 1 (j =1,...,m) such that y/ = (y{,4”,) € G and ||y’ ; — a* ||| = r1 for all ;.

Now we fix an arbitrary index ig € {2,....k}. With the convexity of G_;, we get
Z;nzl )‘jyj—io € G_j,. Thus

2
m
2 R B
ri < | D Aiwki, — 2%
i=1
2
m .
_ (o] *
= Do N0y, — )
Jj=1
2
k m
_ R
= 2|2 Al =2
‘:1 .:
z'z;é'io J 1
2
m
.2 ad *
== Z)\ino ~ L
Jj=1
<r? < 7"@-20

Hence Z;n:l )\jyg =g; fore=1,...,k. With y) € G we finally get x*,;, € G_; for all i and
hi(z*) = 0, which contradicts the result we had obtained above. O

4. Nash sets in R?

In the following we want to restrict ourselves to the 2-dimensional case, i.e. we consider
two players with one-dimensional strategy spaces. In this special case we try to generalize
the condition (B1) to get an survey of all possible Nash sets. As seen in Figure 2 a
construction of a game by means of the distance function is not possible here. So we
want to use special results from the field of parametric optimization, related with the
concept of upper semicontinuous multivalued functions. There are two definitions of
upper semicontinuity known to the author, but in the context of multifunctions with
nonempty compact images they are equivalent. So we do not have to distinguish between
it.

Lemma 4.1. Assume n,ni,n2 € N and n = nj + na.

(i) Ifh:R"™ — R is a continuous function, h(-,z2) is convex and ¢(x2) = argmin h(-, x2)
is nonempty and compact for all xo € R™, then ¢ : R™ — R™ is a upper semi-
continuous multifunction and graph(¢) is connected.
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(i) If ¢ : R™ — R™ is a upper semicontinuous multifunction with nonempty, compact
and convex images, then there is a continuous function f : R" — IR, such that
f(-,x2) is conver and argmin f(-, z2) = ¢(x2) for all x2 € R™.

Proof. The proof of (i) can be found in [4, p. 68], (ii) immediately follows from Lemma
3.2 and Lemma 3.5 a

4.1. A further necessary condition

. | | |
2 | |
| | 5 =
2
fL‘2 -—
| |
4
T2 - —I -— - - J. -— ‘/B2 B
2
| | |
| | l | | | |
LT T T oo
Figure 3 Figure 4 Figure 5

Now we want to use the condition (B1) in the two-dimensional case. If we have 4 points
arranged such as in Figure 3 there has to be a 5th point belonging to both line segments
drew solid there. But what happens if we turn the whole picture a little bit? We are
now in the situation of Figure 4. Obviously the condition (B1) is satisfied here, but every
attempt to construct a game with this Nash set will fail. Thus we can formulate a further
condition.

Assume 2!, 22 23 21 € G and [z}, 2%] N[22, 2Y] # 0.

B2
If Qi = [z}, 2] x [z°;,22,], then QNG #0,i=1,2 (52

Lemma 4.2. Assumen; =ng =1, ¢1 : R™ — P(IR™) and ¢3 : R™ — P(R™) up-
per semicontinuous with nonempty, compact, conver image sets. Furthermore let xl, z? €
graph(py) and 23,7 € graph(ps) with [z}, 22 N (23,24 # 0. If Q = [z}, 23] x [23, 2]
and ' € Q for i =1,...,4 then the intersection of the graphs of o1 and @y is nonempty,
and one intersection point belongs to Q).

Proof.

1
T

2
S

Figure 6
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Due to Lemma 4.1 G = graph(¢1]p, ! %) and G? = graph(pa|}, s, 4) are compact and

connected sets. Assuming G'NG2 = (Z) we get d(G', G?) > 0. Thus there is € > 0 such that
B.(GY)NG? = (). B.(G*) is an open and connected set, therefore it is path connected.
Hence there is a continuous path 1 in B¢(G!) connecting z! and 22, i.e. there is a
continuous function 71 : [0, 1] — R? with v1(0) = z', v1(1) = 22 and 71 ([0, 1]) € B(G").
Obviously we can assume 7; to be injective and ~1([0,1]) C [z1,22] x R". Because
[23, 23] C (w3, 73) we can complete 1 to a closed Jordan curve v which does not intersect
G? and encloses only one of the points z° and z* (see Figure 6). With the theorem of
Jordan ([1, p. 39]) we get two open disjoint sets U,V C R?, whereas G2 c U UV and
23 € U and z* € V. Since G2 is connected, this is not possible. So G' N G? # () and
G'NnG? c Q. O

Corollary 4.3.  Assume (f1, f2) to be a convex game with Nash set G, fi, fo : R* — R.
Then G satisfies the condition (B2).

Example 4.4.

I
I
[
a b

Figure 7

It is easy to see that (B1) holds if (B2) is satisfied. So we have a more general condition,
but considering Figure 7 we get immediately, that this condition is not sufficient, yet.
Due to Lemma 4.1 it is necessary and sufficient to construct two upper semicontinuous
multivalued maps intersecting only in the bold faced set. The graph of the map belonging
to player 1 includes the whole shaded area. The graph of the other map especially includes
the points (a,z2) and (b, z2). Additionally it links these two points without intersecting
the shaded area. It is clear that this is not possible. If we avoid such situations we can
fully characterize Nash sets in two dimensions (see below).

4.2. Concluding remarks

Coming to the end we want to complete the investigation of 2-dimensional Nash sets. In
this simple case a full characterization is possible, but it can be seen that the difficulties
will enormously grow in higher dimensions.

At first we want to give some additionally assertions without a proof, then the idea of the
proof will be indicated through an example.

Considering such sets like this drawn in Figure 7 it is easy to get an idea why they have
so bad properties. But it is difficult to express this idea. One attempt is the following
one.
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If we have i = 1,2, a,b € G; and T; € (a,b), such that (a,b)NG; =, then we define M :=
{z—; € R™: (a,z_;) € convGi(a) and (b,z_;) € convG1(b)}, G~ :={z € G : z; > T;}
and G< = {z € G : z; < T;}.

If M is nonempty, then there are 6 € R, z € ({a,b} x M) NG,

B3
such that G5, N (z—j,2—; +6) =0 or GZ; N (2—j,7—; + ) = ) (B3)
Lemma 4.5. Let G C R? be compact and nonempty, n; = ng = 1.

G fulfils the conditions (B2) and (B3) iff there is a convex game with Nash set G.

Lemma 4.6. Let G C R? be compact and nonempty, ni = ng = 1.

The condition (B2) is sufficient for the existence of a convex game with Nash set G if G
consists of a finite number of points or if the projections of the connected components of
G onto R™ are pairwise disjoint (i = 1,2).

The complete proof of Lemma 4.5 can be found in [2], Lemma 4.6 immediately follows.

Figure 8 Figure 9 Figure 10

Example 4.7. Now we want to return to the set shown in Figure 8. In section 3.3 we
showed that the construction we described there could not be used for this set. But there
is really a convex game with this Nash set. The Figures 9 and 10 include the corresponding
upper semicontinuous maps belonging to the players. Similar the proof of Lemma 4.5 can
be done by piecewise constructing the two maps. This is why a generalization of (B2)
and (B3) cannot be done in a similar way in higher dimensions.

4.3. Some Examples

To show how difficult a description of Nash sets in higher dimensions can be we want to
give some examples of Nash sets. Minimal changes of the Nash set of a given convex game
can cause the loss of this property. On the left we have drawn the Nash sets, on the right
we have changed these sets in the way indicated above.
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These figures show that there is only one arrangement of 4 points that can be a Nash set.
The turned points do not fulfil (B2) (comp. Figures 3, 4, 5).

X DC

Here the changed set does not satisfy condition (B3).
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