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We study various properties of Lipschitz continuous linear selectors on the family of all convex, nonempty
and compact subsets of R™. In particular, it is shown that if s is such a selector then the Lipschitz constant
of s can be estimated from below by the norm of s(B™), where B™ is the unit ball. A notion of a parametric
representation of convex bodies is introduced and illustrated with examples.
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1. Introduction

In 1838, Steiner introduced the Krimmungsschwerpunkt of a convex curve. His definition
extends to higher dimensions leading to the well-known Steiner point of a convex body.
It can be shown that the mapping which subordinates to each convex body its Steiner
point is a Lipschitz continuous selector. This mapping is also additive with respect to the
Minkowski addition. Such selectors are the subject of this work.

In the 1980’s, Lipschitz continuous selectors attracted a considerable interest in connection
with applications to differential inclusions (see e.g. [1, 2, 3]). The Steiner selector played,
often implicitly, a main role in these investigations. New selectors were derived from it by
certain nonlinear procedures (see [24] and references therein). In a few papers, Minkowski
additive selectors other than that of Steiner were described [11, 23, 30]. (However, selectors
in [30] are not continuous.) In [6], such selectors appeared implicitly. On the other hand,
it was shown [23] that uniformly continuous selectors cannot exist on the family of all
convex, compact and nonempty subsets of any infinite-dimensional Banach space (a special
case was published earlier in [8]). Thus the dimension of a space is a natural limitation
for such investigations.

In Section 3, we describe a family of selectors that are sufficient for all our further purposes.
An important notion of a parametric representation of convex bodies is introduced and an
instance of such a representation is discussed in Section 4. Other examples are presented
in the next section.

It can be seen that the Lipschitz constants of selectors which belong to the range of a
parametric representation cannot be commonly bounded. We address this and related
problems in Section 6.
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One can observe that each of the considered selectors is associated with a unique R"”-valued
measure on S"~!. Some facts concerning these measures are collected in Section 7.

Section 8 is an introduction to the second part of this work where selectors will be allowed
to range over unbounded sets.

It is rather clear that the presented results can be applied to differential inclusions, mul-
timeasures and metric projections [5]. A recent observation made by Gromov [9] suggests
that they should also be useful in the context of mixed volumes. These problems will be
discussed elsewhere.

I wish to thank Professors Helmut Groemer, Maria Moszynska and Giinter Rote for their
helpful comments.

2. Notation and definitions

Let D™ be the family of all convex, closed and nonempty subsets of R”, and let K" =
{A € D" : A is bounded}. By the Hausdorff distance on D", we mean the mapping
H:D"xD" — [0, 00] defined as follows: H(A, B) =inf{p: A C B+pB",B C A+ pB"},
where B™ denotes the Euclidean unit ball centred at the origin. (Conventionally, it is
assumed that inf() = oo.) Clearly, H is a metric on K"; if we admit oo as a possible
distance, then H is also a metric in the case of D".

We define the support function hy of A € D™ by the formula ha(x) := sup,c4(a,z). We
assume that the reader is familiar with this notion. However, let us recall that hy is
positive homogeneous of degree 1 and subadditive. Moreover, for every A, B € D" one
has hayp = ha + hp; also hy < hg & A C B, in particular, (x,-) < hg & x € B. As
is well-known (see e.g. [10]), the Hausdorff distance can be expressed by using support
functions

H(A, B) = sup{|(ha — hp)(z)| : [l«]| = 1} (2.1)

If A € D", then we define the face of A at direction x € R" as follows
Vie(A) :={a € A:{(a,z) = ha(z)}.

In general, V;(A) may be empty. However, this cannot happen if A € K". Simple
calculations show that

Vi(A) = 0ha(z), (2.2)

where 0h 4 denotes the subdifferential of hy4.

Let V f be the gradient of a convex function f. Recall that if the effective domain dom f
of f has nonempty interior, then

{Viy=0r (2.3)

almost everywhere [25]. For this reason we shall often switch from 0f to V f without any
further comments.
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Let F C D™ Each mapping s: F — R such that s(A) € A is said to be a selector
on F. The selector s is linear if s(A + B) = s(A) + s(B) whenever A + B € F. If
s(AU B) + s(AN B) = s(A) + s(B) whenever AU B and AN B belong to F, then s is
said to be a valuation. The map s is Lipschitz continuous if there exists a real L such
that ||s(A) — s(B)|| < LH(A, B) for all A, B. The smallest admissible L is said to be the
Lipschitz constant of s. The family of all Lipschitz continuous linear selectors on ™ will
be denoted by S™.

3. A selection scheme

Probably, the first known example of a Lipschitz continuous selector on K" is the Steiner

selector
1
so(A) = —/ ha(u)udo(u),
Sn—l

K

where S™ ! is the unit sphere, o the usual surface area measure, and ,, the volume of the
unit ball in R*. At first sight it is not apparent that so(A4) € A. If A is a body with C?-
smooth boundary 0A, then this can be deduced from the fact that syo(A) is the barycentre
of the Gaussian curvature of 0A (see e.g. [4, 26]). A standard approximation argument
yields now the result for all A. Another reasoning has been proposed in Shephard [28].
As we will see below, this reasoning can be applied in order to define a whole family of
selectors.

Suppose that M C R" is a compact set with nonempty interior and sufficiently smooth
boundary OM. Then for any sufficiently regular function g one has the following Stokes
type formula

/8 glwn(u)da(u) = /M Vo(u)du, (3.1)

where ¢ is the surface area measure and n(u) is the outward normal at w.

Let a function f: R™ \ 0 — R be homogeneous of degree a, that is, f(Az) = A*f(z), for
every A > 0. If & > —n and f is integrable over the unit sphere, then

1

a+n Jon1

flu)du = f(u)do(u). (3.2)
B
Let ¢: S™' — [0,400) be C'-smooth and let [ ¢do = n. Let ¢: R* — [0, +00) be the
homogeneous extension of ¢ of degree 0, that is, &(u) =¢ (L>, for u # 0, and QNS(O) = 0.

[l

It is clear that ¢ is C'-smooth with the exception of 0. By (3.2), its restriction to B" is
a density of a probability measure. Define

faly) = / iy + ) ().

It is easy to see that f4 is a convex function. As h, is Lipschitz continuous and differen-
tiable almost everywhere, one has

Viay)= | Vha(y+ w)é(v)du. (3.3)

B"
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Moreover, since, by (2.2) and (2.3), Vha(z) € A for almost all z € R", it follows that
Vfa(y) € A. On the other hand, by (3.1) (compare also [18]),

[ bty wouada(u) = T fat) + [ hay-+ 0V

n

Consequently, we have the following

Theorem 3.1 (selection scheme). Let ¢: S"~! — [0, +00) be C*-smooth and let [ ¢pdo
= n. Let ¢ be the homogeneous extension of ¢ of degree 0. Then for each y € R"™ the
mapping

n

An VW= [

Sn—1

hoa(y + w) b (w)udor(u) — / haly + u)V (u)du

15 a linear Lipschitz continuous selector. If L is its Lipschitz constant, then

||v&s(u>||da(u>) |

1
L< 1 e
<+ 1) (n+ 2 [

Proof. It remains to establish the estimate for L. For A and B € K", assume m =
IV fa(y) — V£5(y)|]. Then

m < [ a0 = o+ 0[6) fuldo(u)

N /n'hA(““)—hB(y+u)|||V<5(u)||du.

It follows from the homogeneity of support functions and (2.1) that for u € B™,
|ha(y +u) = hp(y +u)| < H(A, B)|ly +ul| < H(A, B) ([lyll +1).-
These estimates together with (2.1) and the fact that ||Vé(u)|| is homogeneous of degree

—1 show that
H(a.8) (Il + 1) ([ odo+ [ vl

HA,B) (Il +1) (n+ 2 [ 1931a0).

3
IN

IN

O

Observe that if we assume ¢ = é and y = 0 in the selection scheme, then we get the

Steiner selector.

Sometimes it is convenient to replace B™ by another domain M. By much the same
method as above, one can show that the mapping

1
A — ha(u)n(u)do(u)
K Jom
is a Lipschitz continuous linear selector (compare [13]). ( k denotes here the volume of
M.) Selectors of that kind are used in [23] in order to define an analogue of the Steiner
selector for arbitrary Minkowski space X. (M is there the unit ball of the conjugate space

X*.) The case where M is a hypercube is considered in [11].
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4. The harmonic representation of convex sets

By a parametric representation of F C D™, we mean a mapping S from a set M to
selectors of F such that for each A € F the set Ag = {S(m)(A) : m € M} is dense in A.
As a rule, we shall be concerned with representations which fill up A so that ri A C Ag,
where ri A is the relative interior of A. (The only minute exception is Corollary 6.3.) In
this section, we discuss a particular parametric representation of ™ which we call the
harmonic representation. Its basic properties are collected in Theorems 4.1 and 4.2.

Theorem 4.1. There exists a unique mapping S, int B" 3 x +— s, € 8", which satisfies
the following conditions:

(i)  for every A € K", the mapping x — s,(A) is harmonic;
(ii)  the multifunction B™ 3 = +— t,(A), such that t,(A) = s,(A) for x € int B", and
tz(A) = Oha(z) for x € S"' is upper semicontinuous.

Proof. (i) simply says that = — s,(A) must be a solution of the Laplace equation, while
(ii) describes the boundary condition that this solution must satisfy. As is well-known
and easily deducible from the maximum principle [17], these facts imply the uniqueness
of s,.

The theory of harmonic functions suggests that s has to be defined as follows

sz(A) = 1 VhA(u)%da(u),

On—1 Jgn-1 [l — ]|

where o,,_; stands for the area of S"~!'. The fact that s, is a selector follows easily from the
_ 1-fz|?
= lu—zf®

observation that the Poisson kernel P, (u) is a density of a probability measure

with respect to o := %_la. Therefore, it remains to establish the Lipschitz continuity of
Sg.
As the function u +— Vhy(u)P; (HL> is homogeneous of degree 0 and nk, = o, 1, we

ul|
deduce from (3.2) that
(A = — [ Vha)P, (H—UH> du.
u

Kn JpBnr

Now, if we assume y = 0 and ¢ = éPz in the definition of f4 then, according to Theorem
3.1 and the preceding equality, we get

5o(A) = Kin/s hoa(u) P, (IIUTH) wdo () — ﬁi/ ha(u)V P, (ﬁ) du.

This makes the Lipschitz continuity of s, transparent. ]

The above formula can be simplified. To this end, let us check the gradient in the second
integrand and observe that this integrand is homogeneous of degree 0. Thus, again by
(3.2),

sa(A) = — /S  ha(w)P(w) (u+ W) do(u). (4.1)
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Let us remark that by the harmonicity of z +— P,(u), the mapping z — Q.(u) =
P, (u) (u + L"Tf) is also harmonic.

[lu—z

Expression (4.1) enables us to give a simple estimate for the Lipschitz constant L, of s,.
By a similar reasoning as in the proof of Theorem 3.1, one has

L, < n/
Sn—l

Since P, is a density of probability measure, we obtain

R Bk
tu€S } \/1 + 0 |22 (4.2)

Note that this estimate is not sharp for any z; e.g. if z = 0, then sg is the Steiner selector;

therefore, /2% < Ly < 4/ 2(7;—“) ([19, 26, 32]).
Theorem 4.2. {s,(A) :z € int B"} =ri A.

u+u<x,u)—x

P, (u)dé(u).

2
lu — ]

u(z,u) — x

ngnsup{ U+

2
lu — ]

The proof requires the following

Lemma 4.3. Let T: B® — A € K" be an upper semicontinuous multivalued mapping
satisfying the following conditions:

(i) for every x € B", T(z) is a compact subset of A;
(i) ifz,y € S™ ! and x #vy, then T(z) NT(y) = 0;
(iii) T, pn s single-valued;

iv) UT(S" ) =0A.
Then YT(B") = A

Proof. Define S := T _,. Let S™'(z) = {b: z € S(b)}. By (iv), S~" is a well-defined
mapping from 0A onto S"~'. By (ii), S~ is single-valued. By the upper semicontinuity of
T, it is also continuous. Suppose that | JT'(B") # A. This, together with (iv), implies the
existence of an a € i A\ YT (B"). Now, let C : A\ {a} — 0A be the central projection
with centre a, that is, C'(x) is a unique element of the intersection of the ray emanating
from a and passing through z and the boundary dA. Thus the mapping S~ o CoT is a
continuous retraction of B™ onto S™~!, which is a contradiction. O

Proof of the theorem. Recall first that for every u we have Ohs(u) = {a € A : {a,u) =
ha(u)}. Define A, = A+ eB". Clearly, |J{0ha (u) : v € S"'} = 0A. and Oha_(u) N
Oha,(v) = 0 for different u and v in S"~'. Hence z — t,(A,) satisfies the assumptions of
Lemma 4.3 and, consequently, A, = tgn(Ac). Observe that for every z € B",

H(to(A), to(A)) = H(to(A) + to(eB"), t,(A)) < e.

Thus A = tg.(A). It is easy to see now that the conclusion holds true if int A # (.
Indeed, z > t,(A) sends then S"~! to OA and for every x € int B™ we have t,(A) € int A.
Therefore it remains to consider the case int A = (). Without loss of generality, we may



K. Przestawski / Lipschitz continuous selectors 255

assume that 0 € A. Let X be the smallest linear space containing A, and let D be the
unit ball of its orthogonal complement, i.e. D = {z € X : ||z|| < 1}. It is obvious that

int(A+ D) =r1iA+r1iD # 0.

Therefore, what has been stated above applies to A + D. Let m denote the orthogonal
projection from R™ onto X. Now, the proof can be easily completed:
riA = n(int(A+ D)) ={nt,(A+ D) : z € int B"}
= {nty(A) + 7ty(D) : z € int B"} = {t,(A) : = € int B"}.

For further purposes we shall need the following
Proposition 4.4. s,(B") = z for every z € int B™.
Proof. Clearly, Ohpgn(z) = z for x € S®'. By Theorem 4.1, the mappings id;y p»

and s,(B") are both solutions of the Laplace equation that satisfy the same boundary
condition. Therefore, they must coincide. 0

5. Cyclically monotonic representations

A mapping g from M C R" into R" is cyclically monotonic if for each sequence x1, xo, ... ,
Ty, in M we have

(9(x1), 20 — 1) + (g(x2), T3 — x2) + - - + (g(Tn=1), T — Tin—1) + {(9(@m), T1 — ) < 0.

Recall that if ¢ is continuous, then there exists a differentiable, convex function G: R* —
R such that VG = g. Conversely, for each differentiable and convex G: R* — R, its
gradient VG is continuous and cyclically monotonic [25].

A parametric representation S of F C D" defined on M C R" is said to be cyclically
monotonic if m — S(m)(A) is cyclically monotonic for each A € F.

Let us adopt the following notation. If A € K™ and f4 is as defined in Section 3, then
fz(A) := Vfa(z) and f(A) := {fz(A) : 2 € R*}. Thus each f, is an element of S".
Sometimes it will also be convenient to write h(A, z) instead of ha(x).

Theorem 5.1. The mapping R" 3 z — f, € 8™ is a cyclically monotonic representation
of K".

Proof. Let e be an exposed point of A, i.e. there exists y € R™\ 0 such that V,(A) = {e}.
By (2.2), we have {e} = Vha(y). As z — Vha(z) is upper semicontinuous, there exists
p > 0 such that

H({e}, Vha(v)) < ¢ (5.1)

whenever ||y —v|| < p. Let 7 be chosen so that 1/7 < p. By (5.1), the definition of 7 and
the fact that Vh, is homogeneous of degree 0, we have for each u € B”

IVha(ry +u) — Vha(ry)|| = HVhA <y n g) - VhA(y)H <e
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From this expression and (3.3) we obtain

1y (4) = ell = <e (5.2)

/n (Vha(ty —u) — Vha(1y)) gzz(u)du

It is shown in Rockafellar [25, §24] that for every convex and closed function g
ri(dom g*) C range dg := U{ag(:c) :x € R"} C domg*, (5.3)

where ¢g* is the conjugate of g. Thus cl(range dg) is a convex set and its relative interior
is contained in the range of dg. Since z — f;(A) is the subdifferential of f4, the set
C:=cl{fz(A): z € R"} is convex. Clearly, C C A. By (5.2), the set exp A of all exposed
points of A is contained in C. By the Straszewicz theorem (see e.g. [10]), the convex
hull of exp A coincides with A. Thus C' = A. The left inclusion in (5.3) implies now that
riAC {f.(A4): 2z e R"}. 0O

Theorem 5.2. Suppose that the function ¢ which appears in the definition of f, is even,
that is, ¢(u) = ¢(—u) for u € S* . Then for A€ K" and z, y € R

t—+o00
Proof. By the subadditivity of support functions, we have
—ha(—v) < ha(ty +v) — ha(ty) < ha(v), (5.4)

for any v € R".

If g: R* — R is convex, then, as is well-known,

i 9@+ 5y) —g(2) _ n

s—0t S

9g(x),y)-
In particular, by (2.2) and the homogeneity of support functions,

) . ha(y+ v) — ha(y)
tggloo ha(ty +v) — ha(ty) = tl}frnoo L T = h(V,(A4),v) (5.5)

Let p and v be two R"-valued measures on S™~1 and B", respectively, defined so that
du(u) = ¢(u)udo(u) and dv(u) = Vé(u)du. Since ¢ is even, p and v are odd, that is,
du(—u) = —dp(u) and dv(—u) = —dv(u). Therefore,

/S ) = / () =0.

Define v(u) := x + u. By the selection scheme and the above equality, we get

foand) = [

- ha(ty +v(u)) — ha(ty)du(u) — / ha(ty +v(u)) — ha(ty)dv(u).

n

The convergence fy 14 (A) = fz(V4(A)) can now be easily drawn from (5.4), the Lebesgue
bounded convergence theorem and (5.5). O
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Let w = (x1,...,2,) be an ordered basis in R". Let us define V, =V, o---0oV,,. It is
easily seen that for each A the set V,,(A) is a singleton. Its unique member, say v,(A),
is an extremal point of A. The mapping v, is linear on K". We call it a lexicographical
selector. It is well-known that v, is measurable on ™. Our next theorem describes the
regularity of v,, in the language of Baire classes. For further information on lexicographical
selections and their applications the reader is referred to [15, 20, 21, 22, 30, 33].

Let ®y(X,Y") consist of all continuous mappings from a metric space X to a metric space
Y. For each m € N we define ®,,(X,Y) as the set of all these mappings f: X — Y that
there exists a sequence {f : k € N} C ®,, 1(X,Y) which is pointwise convergent to f.
The set @,,(X,Y) \ ®,,—1(X,Y) consists of functions which are of the m-th Baire class.

Theorem 5.3. For every ordered basis w in R" the lexicographical selector v, belongs to
o, (K" R).

Proof. Let (kyi,...,k,) € N* and w = (x1,... ,2,). By the preceding theorem, we have
hmkn—mo . limkl—mo fk1w1—|—---+knwn = Vy- U

For every A € K", the function f4 is the convolution of hy with ¢1pa, where 1ga is
the characteristic function of the unit ball. This suggests that convolutions with smooth
functions can be used for producing Lipschitz continuous linear selectors on ™.

Let v be a nonnegative C'-smooth function on R* with the following three properties:

i) [y(u)du=1;
(i) [lully(u)du < oo
(i) [ [lull - sup{[Vy()[| : [[o]l > [Jull}du < oo.
For A € K", let g4 be the convolution g4 = hy4 *y. (We let the notational convention
established for f4 remain valid for g4.) Because |ha(z)| < sup{||a|| : a € A}||z|], it follows
from (ii) that g4 is well-defined. The Lebesgue bounded convergence theorem together
with (iii) imply
92(A) = ha * V().

Also,

92(A) = (Vha) xv(x) = 7 x Vha(z).

Clearly, the second of these expressions and (i) imply that g, is a linear selector. On the
other hand, by the first of them, (2.1) and the homogeneity of support functions we have

19:(4) — go(B)] = l(ha — his) + V()] = H [ts = ) =) vr )

=| [ (22 ) e -

ull

< H(A4,B) [ 1z = ul - [V3(w)du.
Summing up, g, € S™ for every z € R". Its Lipschitz constant L, does not exceed
[ llz = ul| - || Vy(u)||du. (Obviously, this integral is finite by (iii).)

A similar procedure has been used in [12] in order to define certain projections.

One can easily see that Theorems 5.1 and 5.2 remain valid for g,. However, in the second
of them, we must assume that 7y is even.
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Suppose that v is a radial function, i.e. y(x) = y(2') whenever ||z|| = ||2’||. Then gy is
equivariant under orthogonal transformations, that is, Vgo(T'A) = TV go(A) whenever T
is an orthogonal transformation. Meyer’s theorem [14] (see also [16, 27]) implies that go
is the Steiner selector so. In this implicit way, sy appears in [6].

6. Lipschitz constants of linear selectors

It is not surprising that the Lipschitz constants of selectors belonging to S™ cannot be
commonly bounded. The next theorem shows how the Lipschitz constant of s € S"
depends on the distance of s(B™) from the origin. As a consequence, we deduce that for
each parametric representation S: M — 8™ of K" the set {S(m) : m € M} cannot be
uniformly equicontinuous.

Theorem 6.1. Let s € 8™, where n > 2, and L, be the Lipschitz constant of s. If
ls(B")|| = B, then Ly > —2 where A is a positive constant depending only on n.

A1 —p2’
v

Moreover, A > 73

Proof. For v € S"! define 7, as follows
rn/ (v, ub|do(u) = 1. (6.1)
Sn—l

Let A, denote the line segment [—7,v,7,v]. Then ha,(u) = 7,|(v,u)|. As 7, does not
depend on the choice of v, we have

Br— / A5 (v).
Snfl

(Note that the integral here is multivalued. It can be defined by using the usual Riemann
procedure, for example.) Since s is linear and continuous, we deduce that

S(B") = /S s(A.)do (o). (6.2)

Let zo € S™! be chosen so that

Bzo = s(B"). (6.3)

There exists a unique orthogonal transformation U such that Uxy = ¢ and Uw = —w
for every w orthogonal to zy. Define 5 = %(s + U™'sU). Tt is evident that Ly < L,.
Moreover, 5(B") = s(B™). Thus we can further assume § = s. This assumption implies
that U commutes with s. Since A,, = UA,, for every w L z, it follows that

s(Ay) =0. (6.4)
Let s[v] = (s(A4,),xo) and | = L,. By (6.2) and (6.3),

/S shldatv) = 5 (6.5)
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Observe now that for every v, w € S™1,

H(A,, Ay) = 1p/1 — (v,w)2. (6.6)

Suppose as before that w 1 xg and that xy, v and w are linearly dependent. Then by
(6.4), (6.6) and the definition of /,

[s(Au)ll = lls(Av) = s(Aw)|| < Imn/1 = (v, w)* = ITn (v, o).
Since s(A,) and v are collinear, we also get [s[v]| = ||s(Ay)]||{v, zo)|. Therefore,
|s[v]| < 7 (v, 20)2. (6.7)
On the other hand, s(A,) € A, implies that

[s[oll < 7l (v, z0)]- (6.8)

Let M = {v e S"': [(v,x0)| < 7}, and let M’ be the complement of M in S*"'. By
(6.5), (6.7) and (6.8),

!

ﬂé/sn_l |s[v]|d5(y) S/ernl(v,xo>|2d6(v)+/ Tl (0, 20) |5 (v).

From the fact that for every bounded and measurable function ¢: [—1,1] = R

[ sttt = = [ gm0

27_n 1

where k,(t) = (1 — 12)2("=® (see e.g. [7] or [31]), we deduce that

/ 2k, (1) dt + / |t|kn (t)dt.
<1/t 1> 1t[>1/1

=4, 5(t), we obtain

n—1

< (n—1)I

Since —(n — 1)tk,(t)

1/1 d
p< —l/ Tf%knw(t)dt + kn+2(1/1).
0

Integration by parts yields

Il
5ggAlmwwﬁ=ﬁﬂw

It is easy to see that b, is strictly increasing and maps [1,4+00) onto [n/7,41, 1). Further-
more, for every n we have b, > b, 1. In particular, 3 < by(1). By the Schwarz inequality,
we get

1/2

1/1 e \'? [ s LN\
ﬂﬁbz(l)=l/ V1—12dt <1 / dt / 1 — 2dt :(1—3?) .
0 0 0
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Hence
3/3
1> \/_7/
V11— 3?2
O
Let us remark that our theorem cannot be generalized to valuations. More precisely, for
each x € B" there exists an s which is a valuation and a Lipschitz continuous selector on

K™ such that its Lipschitz constant is not greater than 2L,. This result will be proved in
Part II of this work.

Corollary 6.2. The set L™ :={L,:s € 8"} is unbounded.

Proof. By Proposition 4.4, we know that s,(B") = z for z € int B". By our theorem,
Ly> 2
V1=l
Thus {L, : « € int B"} is unbounded and so is L. O

Corollary 6.3. If S: M — 8™ is a parametric representation of K™, then the set of all
Lipschitz constants L, of selectors S(m) is unbounded.

Proof. Since {S(m)(B") : m € M} is dense in B", for every 3 € [0,1) there exists an
m € M such that ||S(m)(B")|| > . For such an m we have L,, > Ay/1 — (2. O

Let 1,(8) = inf{L; : s € 8", ||s(B")|| = B}, and let A\, (8) = L.(B)\/1— (2. As we
have shown in Theorem 6.1, \,(8) > v/3/3. A certain estimate from the above for )\,
can be easily obtained by using (4.2). This estimate, however, is far from being optimal.
In search of a better result we have to find an appropriate, for this purpose, family of
selectors.

Assume ¢ = n/o,_1 in the selection scheme, and define

ky(A) :=n /snl ha(x + u)udo(u). (6.9)

By Theorem 5.1, k, is a parametric representation of X". Let L! be the Lipschitz constant
of k;. Since kg is the Steiner selector, Ly = Ly.

Proposition 6.4. L < Ly\/||z||> + 1.

Proof. Fix elements A and B in K" such that H(A, B) < 1. Pick v € S"! so that
N = |[ke(A) = ko (B)|| = (ka(A) = ks(B), v).
Then

N =1 /S  (ha(o ) = h( + ), 0)d5 ()

T+ u T+u
o[ () - ()
/Snl |z + ul| |z + ull

n/s -+l [, v) 455 (u).

IN

[l + ull[(u, v)|do (u)

IN
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The change of variable u — —u gives us
n -
N <G [ G+ ull+llo = ul)l (o v)ldotw).
By the obvious inequality ||z + u|| + ||z — u|| < 2+/]|z||? + ||u||? and the fact that ||u|| = 1,

we obtain
N < n/ Vzl? + 1{u, v)|d6(u) = Lo/ ||z]|* + 1,

where we have used the formula Ly = n [ |(u, v)|d&(y), which can be found in [32] or [26]
(compare also [23, Th. 6.1]). 0O

Proposition 6.5. Given any ( € [0,1), suppose that ||ky(B")|| = 8. Then ||z| < —£

\1-82"

Proof. Define zy = k,(B"). Let v € S"~! be chosen so that (zy,v) = 3. Since hpn(z +
u) = [lz +ull,

5:nL%JM+uvaMﬂw.

Let U be any orthogonal transformation which preserves z, i.e. Ux = z. As o is invariant
under the action of U, it follows that

ﬂ:nL%JM+uM%UWMﬂm.

This implies that v and z are collinear. (For 8 # 0, 2o and v are collinear as well.)
Similarly as in the proof of the previous proposition, by the change of variable u — —u,
we get

8 = 5 [ (et ul =l = ul)u,v)ds(w)
o[ lerdloleoul g,

2 Jon-1 ||z +ul| + ||z — ull

Thus

5= n/s 2(x, u){u,v) i3 (),

not ||+ ul| + ||z — ull
and v = ﬁ if x # 0. Consequently,

lll{u, v)? -

B=n do (u)

2l
= g
st /alP +1

CVIElP+T

It follows immediately from these two propositions that

Theorem 6.6. \,(3) < L.



262 K. Przestawski / Lipschitz continuous selectors

7. Selection measures

We begin with listing some standard facts which are well-known and explained in detail in
[23], for example. The set K™ = {hs : S"! - R" : A € K"} is a closed cone in C'(S™71).
The mapping K > A — h, is an isometry between K" and K™ equipped with the
Hausdorff and the supremum metrics, respectively. It is also an algebraic isomorphism
of cones. (K™ possesses a natural structure of a cone with usual addition of sets and
multiplication of sets by nonnegative scalars.) The set K" — K" ={f —g: f,g € K™} is
a dense subset of C(S™1).

These facts imply that for every Lipschitz continuous linear selector s on K" there exists
exactly one continuous and linear mapping 5: C(S" ') — R" such that s(A) = 3(ha).
It should also be clear that the mapping s +— § is an isometric isomorphism onto S =
{§:5€ 8"} C L(C(S"1),R"), i.e. for every two selectors s; and s, in 8" the operator
norm ||5; — So|| coincides with Ly, 4,. In this way, 8™ is a natural example of a convex
unbounded set in a Banach space whose recession cone is 0, something that cannot happen

in finite dimensions [25]:

Proposition 7.1. If n > 2, then 8" is conver, unbounded and does not contain any
half-line.

Proof. By Corollary 6.2, 8" is unbounded. Clearly, it is also convex. Moreover, if there
would exist a half-line ¢ in 3", then taking two different elements §;, 8, in £ and A € K"
such that §;(A) # §3(A) one could deduce {5(A) : s € £} be a half-line contained in A,
which is impossible. O

It is not clear to the author whether 8™ contains any extremal point (compare [33, 20, 21],
where the case of linear but not necessarily continuous selectors is discussed).

It follows from the Riesz representation theorem that for every s € S™ there exists a
unique R"-valued Borel measure pu, on S™ ! such that § has an integral representation
with respect to pus. Thus 8™ can also be identified with the set M™ of all measures us. The
elements of M" will be called selection measures. It would be interesting to have effective
methods that enable one to determine whether a given measure on S™~! corresponds to
a selector. A little appears to be known in this direction even in the case of n = 2. The
following properties of selection measures have been established in a joint work of G. Rote
and the present author.

Theorem 7.2.

(i) If s € 8% and us is singular with respect to the arc length measure, then us(—B) =
—us(B) for every Borel set B C S™ ' (equivalently, s(—A) = —s(A) for every
AeK?)

(il)) Ifn >3, u € M", then for every n — 2-dimensional subspace X of R",

ul(s™ N X) =0,

where |u| denotes the variation of p.

Details will be published elsewhere.

Observe that these selection measures which correspond to selections s, that appear in
the harmonic representation have their densities, with respect to the surface area measure
o, determined by (4.1). To provide further examples, we shall need the following
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Lemma 7.3. Let ¢: R* — R be continuous and homogeneous of degree 1, ®: S"! — RF
be measurable and bounded, and let R be a linear isomorphism of R*. For any w and z
in R* put (w|z) = (R™'w, R7'2) and |w| = |R™ w||. Let

Fo) = [ oo+ Ra)p(do(u).

Let
o = Wy -7
v
and
oy = wly) + 7
v

where v € S"7!, y € R" and 7 = /(v|y)2 + [v[2(1 — |y[2).
Then the function F' can be expressed in the following manner:

(i) Ifly| <1, then
F(s) = [ o(0)@o R (sy0 = y)et | det B 1 o)
M

where M = S™ ! if ly| < 1, and M = {v € S"' : (v]y) > 0} otherwise.
(ii) If|y| > 1, then

F(y) = /M o(v) (/{‘(I) oR Yk v—y)+ KL ® o R k4w — y)) |det R| 7 'do(v),

where M = {v € S ! : (aily) > Iyl =1}

Proof. Let S_ = {u e S" ' : (R7'y,u) < -1}, Sy = {u € S"': (R~'y,u) = —1} and
S, ={ue S (R 'y,u) > —1}. Let

F )= [ o+ Ruddot)

and

Since o(Sy) = 0, it follows that

F(y) =F_(y) + F}.(y).

For each v € S_ U S, define ¥(u) = HZiEZII' Now, let eq,...,e,_1 be an orthonormal

basis in T,,S""!. Let v = ¥(u), and f; = ¥,(e;), where i = 1,...,n — 1. If for each
p € S"! we identify 7,5"! with p*, then elementary calculations show that

K

1
fi=— (Rei—
K
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where k = ||y + Ru/|. Since kv = y + Ru, we have
u=rR 'v—R. (7.1)

This implies
1= &?[v]* = 2k(v]y) + [yl
It is obvious that x_ and k. are the only solutions of this equation. It is also easily seen

that if u € S_, then k = k_; otherwise K = k. Moreover, from (7.1) and the expressions
for k_ and &, it follows immediately that 7 = |[(R™'v,u)|. Let ||fi A---A fu_1|| be the

volume of the parallelepiped spanned by fi,..., f,_1. Then
lfinc oA fuall = lin--Afaa Al
1 Req, Re,_1,
= LR - (Be,v)v \ p Re,_, — enpvlv
K"~ K K
1
= o ||Rer A--- A Rey 1 AN
det R det R
= | s es Ao Aeny AR || = q
K" K"

Suppose now that S_ # (). Then W is a bijection from S_ onto M, and by a change of
variables, the homogeneity of ¢ and the above formulae we get

Fo) = [ o) setudotu

- / o(0)Bo R Mk v—y)k LA A fusl tdo(v)
M

= / o(v)®o R (k_v —y)k"|det R|"'7'do(v).
M

By the same reasoning, we obtain the appropriate formula for F,. To complete the proof,
it remains to observe that S, is nonempty for all y, while S_ only for those of them for
which |y| > 1. O

From the formal point of view, the mapping k,, defined by (6.9), is the simplest cyclically
monotonic representation, and as such deserves to have their selection measures described.

Theorem 7.4. Let

ke =(v,zy—7, kKky={(v,x)+T,

wherev € S* 1 2 €R" and 7 = \/(U,l“>2 +1—[ly]|%

Then the selector k, can be expressed in the following manner:

(i) Ifllzll <1, then

ky(A) = n/sn_l ha(v)1y(v)(ksv — 2)k2T o (v),

where M = S™ ' if ||z]| < 1, and M = {v € S"7' : (v, z) > 0} otherwise.
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(ii) If ||z]| > 1, then
ki (A) = n/sn_l ha(v)1y(v) (K" (k—v — 2) + &7 (kpv — z)) 7 'd6 (v),

where M = {v € S" ' : (v,z) > +/||z||? — 1}.
Proof. It suffices to assume in Lemma 7.3 y =z, ¢ = ha, R =id and ®(u) = u/k,. O

Suppose that we are given another scalar product, say (-, -), on R”. Then we may define the
Steiner selector, say s'g, corresponding to this product. Now we determine the selection
measure of s'.

Proposition 7.5. Let a linear isomorphism T of R* be chosen so that (z,y) = (Tx,Ty)
for any © and y. Then

_ 1 (T*T) u

0(A)=T"" T(A) = — h

S O( ) 0500 ( ) Kn, /Sn—l A(u) ||(T*)_1U||n+2‘ det T‘dO'(U),
where T™ is adjoint to T .
Proof. Since

! 1 -1 1 * -1
so(A) = — hreay(w)T ™ udo(u) = — ha(T*u)T ™ udo(u),
,{/n Sn—l ,{”I’L Sn—l

it suffices to use Lemma 7.3 assuming R = T*,y = 0, ¢ = hy and ®(u) = (1/k,)T tu. O

8. Conclusion

We conclude with remarks concerning selections on D™. It is clear that there exist sets
A, B € D" such that A 4+ B is not closed. This enforces us to define the Minkowski
addition on D" as follows

A® B=cl(A+B).

Obviously, (D", @) is a semigroup and one can ask if there exists a linear selection s on it.
The answer is in the negative in a trivial way. Nevertheless, it seems to be of considerable
interest that Lipschitz continuous selections which are valuations do exist on D". It can
be a bit surprising for those who know how strongly these two classes of selections are
related to each other in the case of K.

It follows from the equation
(AUB)+ (ANB)=A+B

whenever AU B, A, B € K™ that each linear selection on K" is a valuation. On the other
hand, by a result of Spiegel [29], if s is a Lipschitz continuous valuation, and if for every
z € R" and A € K™ we have s(24) = 2s(A), and s(A + z) = s(A) + z, then s is linear.

Selectors which are valuations will be investigated in detail in Part II of this work.
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