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This paper answers the following question motivated by the problem of spannability of functions. When
is the convex hull of an unbounded (closed) set closed? We provide necessary and sufficient conditions for
the closedness of the convex hull. Then we apply these results to the problem of spannability of functions
playing an important role in mathematical economics and variational calculus. Resulting characterizations
of spannability of functions imply previously known sufficiency conditions for spannability.
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1. Introduction

It is a well-known, elementary fact that the convex hull of a closed bounded set in finite-
dimensional space is closed. When is the convex hull of an unbounded (closed) set closed?
This question is motivated by the problem of spannability of functions, which plays an
important role in various applications. The spannability problem appeared first in math-
ematical economics. Shapley and Shubik [9] found the spannability of utility functions
to be important for the existence of quasi-cores of economies with nonconvex preferences.
Later, the spannability of integrands of variational problems proved to be of paramount
importance in the study of relaxation of variational problems (see Ekeland-Temam [1]).
Thereafter its use in variational calculus and nonsmooth analysis became common (see
e.g. [2], [3] and [4]).

Though the question under consideration is motivated by the spannability problem, it is
certainly of general interest and may potentially find other applications.

We will freely use standard notations and concepts of convex analysis, most of which can
be found in Rockafellar [8]. We recall some of them. All sets considered in the sequel
are subsets of n—dimensional real coordinate space R". The dimension of a set A is the
dimension of its affine hull. Following Klee [6] we say that a set A is coterminal with
aray p = {x +ry; r > 0} provided sup{r : r > Oand z + ry € A} = co. When M
is an affine subspace, an embracing subset of M is a set whose convex hull is M. The
relative interior of a convex set C' is defined as the interior of C when C' is regarded as
a subset of its affine hull. It will be denoted by riC. A point of a convex set C' is called
an extreme point if it can not be represented as a convex combination of two points of
C different from that point. An ezposed point is an extreme point through which there
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is a supporting hyperplane which contains no other points of C. A face of a convex set
C is a subset C' C C such that every line segment in C' with a relative interior point in
C' has both end-points in C'. An extreme ray is a face which is a closed half-line. The
set of all extreme points of C' will be denoted by ext C' and the union of all extreme
rays by rext C. The lineality space of a convex set C' is defined as the intersection of
asymptotic cones of C' and — C. Specifically, it is a subspace consisting of vectors z such
that C + Az C C for all A € R. R = RU {—00,00} is the extended real line. The graph
and the epigraph of a function f : R* — R are denoted by gr f and epi f, respectively.
Recall that epi f = {(z,a) € R X R: a > f(x)}.

For a subspace L C R", L+ and Pr; will denote respectively its orthogonal complement
and the orthogonal projection operator to L.

We start with a simple example. Consider the set A = {(z,y) € R*: =10, 0 <y <
lorz >0, y=1}. Clearly, coA = {(z,y) € R?: 2 >0, 0 <y <1} U{0}, and it is
not closed. Notice that coA contains two extreme rays. For one of them e = {(z,y) €
R?: y =0, z >0} we have e N co A = {0}. The convex hull of the set A’, obtained by
adding any bounded part of e to A, still will not be closed. It is equally easy to see that
the convex hull of any set obtained from A by an addition of any unbounded part of e
will be closed.

Actually, this simple observation is crucial. Consider a closed set in R", the convex hull
of which contains no line. It turns out that this convex hull is closed, if and only if the set
itself is coterminal with every extreme ray of its closed convex hull. This result, which is
central to the present paper easily implies the theorem characterizing the spannability of
convexification of a function of several variables from [5]. Recall that this theorem implies
all previously known results on sufficient conditions for spannability. We consider also
the case of a set whose convex hull does contain a line.

2. Main Results
We formulate now the central result.

Theorem 2.1. Let A be a closed set in R", the conver hull of which contains no line.
Then the convex hull of A is closed, if and only if A is coterminal with every extreme ray
of the convex closure of A.

Some helpful results for the proof of this theorem are in order.

Lemma 2.2. For an arbitrary set A in R™, each face F' of its convexr hull is the convex
hull of the intersection AN F.

Proof. Let F be a face of the convex hull C = co A. Let H; be a hyperplane supporting
C at some point of ri F, and let H;" be the closed half-space with the boundary H; and
containing C. Clearly, a convex combination of points from A, at least one of which belongs
to A\ Hy, is contained in C'\ Hy, and therefore not in F' C H;. Since F' C co A, it follows
that C; = co(AN Hy) D F. Two cases are possible: (i) F' = Cy. Then, ANH; C F C Hy,
and therefore AN F = AN Hy, so that co(ANF) = F.

(ii) F # C4. Since F and () are the faces of C' and F' C (1, then F is the face of Cj.
Let Hy be a hyperplane in H supporting C; at some point of ri F. As above, we obtain
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Cy = co(AN Hy) D F. Again two cases are possible: F'= Cy or F' # (5. Since R" is finite-
dimensional and dim Cy; < dim Cj for £ = 0,1, ..., proceeding in this manner, after a
finite number (say m) of steps we will come to the coincidence F' = C,,, = co(A N Hy,).
Then AN H,, C F C Hy, and therefore AN F = AN H,,, and thus co AN F)=F. O

Proposition 2.3. Let A be a nonempty convex closed set in R™ and x be an exposed point
of A. Let H, be an arbitrary hyperplane support to A at x, such that H,N A = {z}. Also,
let HS be a hyperplane lying in the half-space containing A, and parallel to H,. Then,
A% =TI° N A, where TI = co(H, U H?) is bounded and diameter d° of A’ tends to zero,
when & tends to zero.

Proof. Suppose A% is unbounded. Let e be a ray from the asymptotic cone of A%. Then,
r +e C Al and clearly, e is parallel to the hyperplane H,. Hence, z + e € H,. Since,
z+e C Al it follows that z + e C A N H, C AN H,. This contradicts the assumption
ANH, = {z}.

Next, we show that d° — 0 for § — 0. Suppose otherwise. Let d; be a decreasing sequence
which tends to zero, §; < 1, and d% > gy > 0. Then, there exists 7, € A (k € N) such
that y € I1% (k € N) and ||z, — z|| > €. As proved above, AL and thus the sequence
{zx} is bounded. Without loss of generality, assume that xy — z,. Clearly, o € AN H,
and x¢ # x. This contradicts the assumption AN H, = {z}. O

The following lemma is a direct consequence of Theorem 3.5 from Klee [6].

Lemma 2.4. Let A be a nonempty closed set in R". Then, every extreme point of the
conver closed hull coA belongs to A.

Proof. Obviously if coA has an extreme point, then it contains no line. Since A is closed,
one direction of Theorem 3.5 from Klee [6] gives A D ext(coA). O

The following result is proved by Klee [6, point 2.8]: Suppose C is a finite-dimensional
closed conver set which contains no line and X C C. Then coX = C if and only if
X DextC, and X s coterminal with every extreme ray of C.

We paraphrase this result in the following way.

Lemma 2.5. For a subset A in R", co A is closed if and only if A D ext(coA), and A is
coterminal with every extreme ray of coA.

Proof of Theorem 2.1. Since an extreme ray of ¢oA is its face, the necessity of the
condition of Theorem 2.1 for the convex hull of A to be closed follows from Lemma 2.2.
By Lemma 2.4, every extreme point of coA belongs to A, that is, ext(coA) C A. By
the assumption, A is coterminal with every extreme ray of coA. Then, by Lemma 2.5,
co A = oA, i.e., the convex hull of A is closed. This proves the theorem. O

Theorem 2.6. Let A be a set in R™ such that the lineality space L of its convex hull is
not trivial. Then, the convex hull of A is closed, if and only if

(i)  the projection Pryi(A) is coterminal with every extreme ray of coAN Lt, and
(ii)  for every extreme point z of cOANLE, AN(z+ L) is an embracing subset of z+ L.
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Proof. Necessity: Let co A be closed, i.e., co A = ¢oA. Let z € ext(coANL™L). Then, since
z—+ L is the face of co A = coA by Lemma 2.2, 2+ L = co[AN(z+ L)]. That is, AN(z+ L)
is an embracing subset of z + L.

Let e be an extreme ray of rextcoA N L+. Since e is a face of coA N L+, then e + L is
a face of coA. By assumption (i) co A = co A, e + L is the face of co A. By Lemma 2.2
then, e + L = co(AN (e+ L)). It follows that Pry;.(A) is coterminal with e.

Sufficiency: The following simple fact will be exploited in the sequel: if A and B are
subsets of R", B C co A, then co(AU B) = co A. So, by assumption (ii), we can assume
that for each z € ext C, where C' = coAN L,

z+ L C A. (2.1)

Note that set ext C' is nonempty (see Rockafellar [7, Corollary 18.5.3]). Moreover, by
Theorem 2.5 from Klee [6],

C = co(ext C Urext C). (2.2)

Since the endpoint of an arbitrary extreme ray e of C is an extreme point of C, it follows
easily from (2.1) and the condition (i) of the theorem that,

e+ L CcoA. (2.3)
Again by the fact above, (2.3) can be replaced by
e+ L CA. (2.4)
Fix z € L, and denote C, = coA N (z + L*). It follows from (2.1) and (2.4) that
ext Cp Urext C, C A.

Then by Theorem 2.5 from Klee [6], C, = co(ext C, U rext C,), and hence C, C co A.
Since coA = U{C, : = € L}, it follows that co A C coA, ie., coA is closed. This
completes the proof. O

Remark 2.7. Assumption (i) of Theorem 2.6 is analogous to the “coterminality” as-
sumption in Theorem 2.1, while assumption (ii) requiring that for every extreme point z
of c0cAN LY, AN (z+ L) be an embracing subset of z + L, substitutes, in a sense, for
the “closedness” assumption in Theorem 2.1. Note that by Lemma 2.4 the closedness of
A implies that every extreme point of its closed convex hull belongs to A. The following
simple example shows that assumption (ii) of Theorem 2.6 cannot be replaced by the
closedness of A.

Example 2.8. Put f(z,y) = max{exp(—z?), |y|} for (z,y) € R? and A = epi f. It is
easily seen that coA = {(z,y,2) € R®: z > |y|}, with the lineality space L = {(z,0,0) :
xz € R}. Clearly coAN L = (). So, co A is not closed and for an extreme point z = 0 of
coAN LY, AN(z+ L) is empty, and therefore it is not an embracing subset of z + L.
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3. Applications to Spannability

Recall that a function f : R® — R is said to be spannable if for each point € R™ there

exist points z1, ... ,x, € R" and nonnegative numbers Ay,... , A\, with A\ +...+ A, =1
such that
m m
z=)Y A and f7(x) =) Nif(x),
i=1 i=1

that is, the graph of function f** is contained in the convex hull of the graph of function
f-

It is easily seen that the spannability of an affinely bounded from below function f, i.e.,
the inclusion

gr f* C co(gr f). (3.1)

is equivalent to the inclusion

epi f* C co(epi f). (3.2)

To see that (3.1) implies (3.2), assume (3.1) holds, and let (o, z) € epi f**. Since f**(z) <
«, where a € R, f**(z) is finite. By assumption (3.1), (f**(z),z) € co(gr f), i.e.,
(f*(x),z) = O, Mif (@), Yoiey Niz;) for some z; € R*, X\; >0 (i =1,...,m) and A\ +
.+ A = 1. Clearly, (f(z) + %T(z),xl) € epi f. Then,

(o, ) = (M fi(@1) + (@ = f7(2)) + Z Aif (), Z)\z‘fvz’),

and therefore (o, x) € co(epi f). A similar argument shows that inclusion (3.2) implies
inclusion (3.1).

The following theorem which gives necessary and sufficient conditions for the spannability
of function f such that epi f** contains no line, easily follows from Theorem 2.1. Recall
that this theorem implies all known results on sufficient conditions for the spannability
(see [5]).

Theorem 3.1. Let f : R* — R be a lower semi-continuous function such that epi f**
contains no line. Then f is spannable, if and only if its graph is coterminal with every
nonvertical extreme ray of the epigraph of f**.

Proof. Let function f be spannable, i.e. gr f** C co(gr f), or equivalently co(epi f) =
epi f**. Since f is lower semi-continuous, epi f is closed and by the assumption co(epi f)
contains no line. Then, by Theorem 2.1, epi f is coterminal with every extremal ray of
epi f**. Clearly, for every nonvertical extreme ray e of epi f**, (epif)Ne = (grf)Ne.
Hence, gr f is coterminal with every extreme ray of epi f**. We now show that if a function
f satisfies the assumptions of the theorem, then it is spannable. Since epi f is closed and
co(epi f) contains no line, by Theorem 2.1, epi f is coterminal with every extreme ray of
co(epi f) = epi f**. But as noted above, for nonvertical extreme ray e of epi f**, (epi f)N
e = (grf) Ne. So, gr f is coterminal with every nonvertical extreme ray of epi f**. This
completes the proof. O
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Theorem 3.2. Let f : R® — R be an affinely bounded from below function with the
nontrivial lineality space L of epif**. Then, f is spannable if and only if the projection
Pr;.(gr f) is coterminal with every nonvertical extreme ray of epi f** N L, and its graph
gr f contains an embracing subset of z+L for every extreme point z of the set (epi f**)NL*.

Proof. Necessity: Let f be spannable, affinely bounded from below, and suppose epi f**
has nontrivial lineality space L. Then,

co(epi f) = epi f** C co(epi f)

i.e., co(epi f) is closed. By Theorem 2.6, Pr;.(epi f) is coterminal with every extreme
ray of epi f** N L+, and for every extreme point z of epi f** N LY, epifN(z+ L) is an
embracing subset of z + L. As we note in the proof of Theorem 3.1, for every function g
with epi g** containing no line, (epig) Ne = (grg) N e for every nonvertical extreme ray
e of epig*™. Similarly, in this case (Prp.(epi f)) Ne = (Prp.(gr f)) Ne for every extreme
ray e of (epi f**) N L*. So, it follows that Pry.(gr f) is coterminal with every extreme
ray of (epi f**) N L*. Since for an extreme point z of (epi f**)N LY, 2+ L C gr f** and
[ < f, it follows that (grf) N (z+ L) = (epif) N (2 + L), so (grf) N (z+ L) is an
embracing subset of z + L.

Sufficiency of the assumptions (i) and (ii) for spannability of function f is a direct conse-
quence of the inclusion gr f C epi f and Theorem 2.6. This completes the proof. O

The relationship between Theorem 3.1 and Theorem 3.2 is quite similar to that between
Theorem 2.1 and Theorem 2.6. The remark following Theorem 2.6 clarifies the latter
relationship. The convexification of the function given in this remark is f**(z,y) = |y|,
and by the arguments in the remark, f is not spannable.

In conclusion we bring two very simple examples of spannable functions illustrating theo-
rems 3.1 and 3.2 which are not encompassed by previous sufficiency results on spannability.

Example 3.3. Let f: R — R be defined as

f(2) = {—[x] for z > 0,

—[2z] for z <0,

where [z] denotes the integer part of z. Clearly

£ (@) = {—x for x > 0,

—2x forx <0,

and f is spannable.

Example 3.4. Let f : R* — R be equal to zero over the sequences (k,0) and (0, k) for
k = +1,+2, ..., and positive elsewhere. Clearly f**(z) = 0 and f is spannable.
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