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A weakened set of conditions is established for the epi-distance convergence of a sum {f, + gy }vew of
parametrised closed convex functions {f,},ew and {g, }vew for v — w, on an arbitrary Banach space.
They are as follows: (1) 0 € sqri(dom f.,, — dom g,,); and (2) X,, := cone(dom f,, — dom g.,) has closed
algebraic complement Y,,; and (3) X, NY,, = {0} for all v near w, (where X,, := span(dom f,, —dom g,)).
These are motivated by similar interiority conditions found in Fenchel duality theory. Our results are
then used to investigate saddle-point convergence in Young-Fenchel duality in which both functions vary
in a very general fashion.

1. Introduction

Over the last thirty years a number of authors have proposed topologies for the hyperspace
of closed convex sets, the most famous being the Mosco topology. It has become evident
that despite the success of this topology in characterising convergence of convex sets in
reflexive Banach spaces, it fails to have many desirable properties in non-reflexive spaces
(see [11]). On the other hand the Attouch-Wets topology (or epi-distance topology) has
proved itself a valuable tool for obtaining quantitative estimates outside of the reflexive
context (see [3],[4],[5]). Another candidate for a replacement of the Mosco topology is
the slice topology of Beer [10]. A comprehensive treatment of all of these is given by
Beer in [14]. Our paper concentrates on utilizing special features of Banach spaces to
analyse epi-distance convergence. This has only previously been embarked upon in one
instance [8]. Since the definition of the epi-distance topology only requires the existence
of a metric it is usually the case that authors have only specialised to the context of a
normed linear space (possibly not complete), [14]. Our considerations here are largely
topological and so we do not attempt to obtain error bounds or estimates of metrics
generating the Attouch-Wets topology. This endeavour has been undertaken in [8] under
stronger assumptions.

Azé & Penot [8] and Beer [12] have considered the following problem: Given two families
of closed proper convex functions { f, }yew and {g, },ew, mapping a normed space to the
extended reals, both converging in the epi-distance sense to f, and g, (as v — w) re-
spectively, when is the family {f, + g, }»ew epi-distance convergent to f,, + ¢,,7 Beer [12]
gives a simple condition, namely (int dom f,,) N dom g,, # (. This interiority condition
transforms to the familiar Slater constraint-qualification on application to perturbed con-
vex optimization problems. In [8] this is weakened to a more complex condition designed
to extract convergence estimates. We observe here that this condition is equivalent to
0 € int(dom f, — domg,) for all v in a neighbourhood of w. Although the condition
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(int dom f,,) N dom g,, # 0 is a natural and often-used assumption in convex analysis it
has been noted in recent years that it is unduly restrictive in some infinite-dimensional
spaces (such as [!), due to the lack of interior in the cone of positive vectors. This has
motivated the introduction of weaker interiority notions such as the concept of “quasi rel-
ative interior”[15] and “strong quasi relative interior”[18]. We refer the reader to Gowda
and Teboulle [16] for an insightful comparison of these constraint qualifications.

In the context of conjugate duality Robinson [20] first showed that in non-reflexive spaces
the weakened condition 0 € core(dom f,, — dom g,,) is sufficient to ensure strong duality.
Jeyakumar [19] has shown in this context that such conditions may be used to derive
other seemingly weaker constraint-qualifications 0 € sqri(dom f,, —dom g,,), involving the
concept of strong quasi relative interior (i.e. cone(dom f,, — domg,) = X, is a closed
subspace). In this paper we will show that for functions on a Banach space, the conditions:
(1) 0 € sqri(dom f,, — dom g,,); and (2) the algebraic complement Y, of X, is closed and
satisfies X, N'Y,, = {0} for all v near w, (where X, := span(dom f, — domg,)), are
sufficient for establishing epi-distance convergence of the sum {f, + g, }+ew (as outlined
above). The condition 0 € core(dom f,, —dom g,,) (and so also 0 € sqri(dom f,, —dom g,,))
is implied by 0 € int(dom f,, — dom g,,). Surprisingly, for closed proper convex functions
0 € core(dom f,,—dom g,,) implies 0 € int(dom f,,—dom g,,), (and so both are equivalent).
This equivalence does not seem to receive due acknowledgement in the literature (compare
this with the well-known and well-documented equality of core and interior for the domains
of single closed convex functions). Moreover 0 € int (dom f, — dom g,) holding at w
implies it holds locally (i.e. X, = X, locally). Thus our result is a non-trivial extension of
the sufficient conditions given in [8] for epi-distance convergence of a sum of parametrised
closed convex functions.

These observations lead one to consider a weak set of conditions ensuring strong duality for
the Young-Fenchel duality scheme which also imply stability of the perturbed problem (in
the epi-distance sense). We also investigate saddle-point convergence of the associated
saddle function. From within the framework of variational analysis this allows one to
investigate the convergence of approximate solutions of the perturbed primal and dual
optimization problems to solutions of the limiting problem. It may be shown that one
can quite generally deduce the existence of an accumulation point of the approximating
dual solutions. These results augment those obtained by Attouch, Wets, Brézis, Azé and
Penot as well as that by other authors.

2. Preliminaries

In this section we draw together a number of results and definitions. This is done to make
the development self-contained.

In the following the upper-case roman letters A, B etc, are used to denote sets in a (real)
Banach space. R shall stand for the extended reals [—o0, +00]. We will let C'(X) stand for
the class of all nonempty closed convex subsets of a Banach space X and C B(X) the closed
bounded convex sets. Place d(a, B) = inf{||la—b|| |b€ B}, B(0,p) ={z e X | ||z|| <p}
and B(0,p) = {x € X | ||lz|| € p}. Corresponding balls in the dual space X* will be
denoted B*(0,p) and B*(0, p) respectively. The indicator function of a set A will be
denoted d4.

We will use u.s.c. to denote upper-semicontinuity and l.s.c. to denote lower-semicontinuity.
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Recall that a function f : X — R is called closed, proper convex on X if and only
if f is convex l.s.c. is never —oo and not is identically +o00. The class of all closed
proper convex functions on X is denoted by I'(X), and the class of all weak* closed
proper convex functions on X* will be denoted by I'*(X*). We shall use the notation
cl A and A interchangeably for the closure of a set A in a topological space (Z, 7) and, to
emphasise the topology, we may write cl, Aor A'. Forz € Z, N () denotes the collection
of all 7-neighborhoods of z. For a function f : Z — R, the epigraph of f, denoted
epi f, is the set {(z,a) € Z xR | f(z) < a}, and the strict epigraph epi, f is the set
{(z,a) € ZxR | f(x) < a}. The domain, denoted dom f is the set {z € Z | f(z) < +00}.
The (sub-)level set {x € Z | f(z) < a} (where a > infy f) will be given the abbreviation
{f < a}. Any product X x Y of normed spaces will always be understood to be endowed
with the box norm ||(z, y)|| = max{||z||, ||y||}; any balls in such product spaces will always
be with respect to the box norm.

If f: (Z,7) = R, its 7-Ls.c. hull, denoted f  or cl, f, is defined by f () = lim inf , - f(2').
The (extended) lower closure cl_f is defined to coincide with cl, f if the latter does not
take the value —oo anywhere, and to be identically —oo otherwise.

Definition 2.1. Let F:W — 2% be a multifunction from topological spaces W to X.
(1) limsup, ., F(v) = Nyeprw) Usev F(0)-

(2) liminf,,, F(v) = ﬂ{BcW|we§} UveB F(v).
(3) F(-) is lower-semicontinuous at w iff F'(w) C liminf,_,,, F(v).

Remark 2.2. It is easily seen that this notion of lower-semicontinuity is equivalent to
the classical formulation-namely: For any open set U intersecting F'(w) there is a neigh-
borhood V' of w for which F'(v) N U is nonempty for every v in V.

Remark 2.3. For metrizable X, the above definitions can be shown to have the equiva-
lent forms:

(1)

limsup F(v) = {z € X |3 nets vg = w, x5 — = with 25 € F(vg) VG }

v—w

= {z € X |liminfd(z, F(v)) = 0}
V=W

(2)

liminf F(v) = {2 € X |Vnetsvg —w, Jzg = xst. 53 € F(vg) eventually }

v 2w

= {z € X |limsupd(z, F(v)) =0}

v—w

Definition 2.4. Let A be a convex set in a topological vector space and x € A. Then

1) cone A = UysoAA (the smallest convex cone containing A);
) x € qri A (quasi relative interior) iff cone(A — z) is a subspace of X;

) x € sqri A (strong quasi relative interior) iff cone(A — x) is a closed subspace of X;
4) x € core A (core) iff Yy € X Je > 0 such that V) € [—¢, €] we have x + \y € A;

) For a € A place aff A = a + span(A — a), the affine hull; (this is independent of the
choice of a € A)
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(6) icr A (intrinsic core) is the core of A relative to aff A;
(7) y €riA (relative interior) iff 0 is an interior point of A — y relative to aff(4 —y).

From [17] and [22] we have the following. Recall that a set A in a topological linear
space X is ideally convex if for any bounded sequence {z,,} C A and {\,} of nonnegative
numbers with 2701021 An = 1, the series ZZOZI An T, either converges to an element of A,
or else does not converge at all. Open or closed convex sets are ideally convex, as is
any finite-dimensional convex set. In particular, if X is Banach, then such series always
converge, and the definition of ideal convexity only requires that Y >°, A,z, be in A.
From [17, Section 17E] we have the following

Proposition 2.5. For a Banach space X,

(i) IfC C X is closed conver, it is ideally conver.

(i)  For ideally convex C, core C = coreC = int C' = int C.

(iii) If A and B are ideally convex subsets of X, one of which is bounded, then A — B is
1deally conver.

Proof. We prove the last assertion only; the rest can be found in the cited reference. Let

{a, —b,} C A — B be a bounded sequence, let A, > 0 be such that >>°, A, = 1. Then
{a,} C A and {b,} C B are both bounded, so > ">, A\ya, € Aand Y ° A, b € B (both
convergent). Thus Y 07 Ay(an —by) =D 00 Anan — Y ooy Apby € A— B. O

Proposition 2.6. Let f, g € I'(X) (X a Banach space). Then

core(dom f — dom g) = int(dom f — dom g).

Proof. It suffices to show that 0 € core(dom f — dom g) implies 0 € int(dom f — dom g)
since for any = € core(dom f — dom g) we may define g(y) := g(y — ), a closed proper
convex function, for which dom§ = domg + x and so 0 € core(dom f — dom g). If
0 € core(dom f — dom g) then by a simple argument 0 € core(epi f — epi g). From this it
follows that whenever p > 0 satisfies p > ||(Z, @)|| for some (Z, &) € epi f Nepig, we have

0 € core(epi f N B(0, p) — epig N B(0, p)). (2.1)

Indeed, if (z,«) € X xR, then since X x R = cone(epi f — epi g) we have for some \ > 0,
(x1,1) € epi f and (x9, 2) € epig that

(r,0) = A((w1,00) = (22, 2))
_ m([l(xl,alml—l)( )]~ [ (2. 00) + (1—%,@)1)

t
€ tA(epif N B(0,p) —epig N B(0, p))

if ¢ > 1 is selected so that 1||(z;, ;)| + [|(Z, &) < p for i =1,2. As (z,@) € X x R was
arbitrary we have

X x R = cone(epi f N B(0, p) — epi g N B(0, p))

implying (2.1). As epi fNB(0, p) and epi gN B(0, p) are closed and convex they are ideally
convex. By Proposition 2.5, epi f N B(0, p) — epig N B(0, p) is ideally convex and so

0 € int (epi f N B(0, p) — epig N B(0, p)) . (2.2)
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Using the fact we are using box norms in X x R we may project onto X to obtain

0 € int ({f < p} N B(0,p) — {g < p} N B(0,p)) C int(dom f — dom g).

The following is a consequence of the previous proof.

Corollary 2.7. If f, g € I'(X), where X is a Banach space and p > inf{||(z,a)| |
(z,) € epi f Nepig} then

0 € core (dom f —domyg) implies 0 € int ({f < p}NB(0,p) — {g < p} N B(0,p)) .

From [16] we have a characterization of sqriC.

Lemma 2.8. If C C X a linear topological space then

{ z € icr(C) } if and only if v € sqriC

and aff(C' — z) is a closed subspace
further, if x € sqri C then aff(C' — z) = cone(C — z) also.

We immediately have the following confirming the conjecture in [16] that strong quasi
relative interior is close to being a relative interior (see [16, page 932]).

Lemma 2.9. Let f, g € T'(X) (X a Banach space). Then 0 € sqri(dom f — dom g) if
and only if 0 € ri(dom f — dom g) and aff (dom f — dom g) is a closed subspace of X.

The infimal convolution plays a central role in our development.

Definition 2.10. Let f and g be closed convex functions on a linear topological space
X into the extended reals. Then

(fOg)(z) := inf (f(y) + g(z = y))

ye

is called the inf-convolution.

It is well known that the strict epigraph of the inf-convolution is equal to the set-addition
of the strict epigraphs of the individual functions:

epi, (fOg) = epi, f + epi, g.
Also dom(fOg) = dom f + dom g and
(fOg)" =f"+g"
where f*(z*) = sup,cx({z,2*) — f(z)) is the Young-Fenchel conjugate of f. From [1] we

have the following (which establishes a condition for f*[Jg* to be lower-semicontinuous
and so for epi f* + epig* to be weak* closed) giving epi(f*Ug*) = epi f* + epi g*.
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Proposition 2.11. Assume that f, g are proper closed conver functions from a Banach
space X into the extended reals. Suppose also that 0 € sqri(dom f — dom g). Then

(f+g9)=f0Og

and, moreover the inf-convolution is exact, that is: for each x* € X* we have (f*0 g*)(z*)
= f*(z* —y*) + g*(y*) for some y* € X*.

The proof of this theorem involved the following statement, which will be of importance
in the development of our results. We state this as a lemma and for completeness we
include the proof, excerpted from the indicated reference.

Lemma 2.12. Assume that f, g are proper closed conver functions from a Banach space
X into the extended reals. Suppose also that 0 € core(dom f — dom g). Then

H(K,r) ={(27,25) € X* x X* | f*(27) + 9" (z3) < K and ||z] + z3|| < r}
is norm-bounded in X* x X* for any r > 0 and K > infpcx« (f*0g%)(z*).

Proof. In view of the Uniform Boundedness Principle, it suffices to check that for each
element (z,y) of X x X there is a constant C(z,y) such that for all (z*,y*) € H(K,r),
we have (z*,z) + (y*,y) < C(z,y). Indeed, z —y = A(u — v) for some A > 0, u € dom f
and v € dom g, and then

(%, 2) + (¥ y) = Ma"u)+ My v) + (@™ + ¢,y — \v)
< M)+ flu) + g7 (W) +9(v) + 2" + v llly — M|
< MK+ f(u) +9(v) + 7y — M := Clz, y).
O

Lower semi-continuity of the epi-graphical multi-function v — epi,(f,[0¢g,) may be de-
duced from that of its components using the following lemma. We include its derivation
due to a lack of a solid reference.

Lemma 2.13. If Fi(-) and F5(-) are multi-functions l.s.c. at xq then F(z) = Fi(z)+Fy(z)
18 l.s.c. at xy.

Proof. We use the classical formulation of l.s.c. (Remark 2.2). Let N be a neighborhood
of a point yo € F(xo). There exist y; € Fj(xo) such that yo = y; + yo. Taking two
neighborhoods N; of y; such that Ny + Ny, C N, there then exist neighborhoods V; of z
for which F;(z) N N; # 0 for all z € V;. Hence for all x € V; N V5,

0 # Fi(z) NNy + Fy(z) N Ny C (Fi(z) + Fa(z)) N (N1 + No) C F(z) NN

giving the result. U

In [24, Lemma 4.1], it is shown that the epigraphs of the closures f,[1g, (in the strong
topology on X) satisfy

lim inf epi (va g'u) D epi (fuwO guw)

V=W

under the condition that dom f N dom g} # 0 for v in a neighborhood of w. This result
is of limited use here as we are interested in this occurring in the dual space.
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3. Convergences Used

Here we summarise the variational limit notions used in this paper. A reader conversant
with variational convergences need only consult this section for definitions and notation.
Let X and W be topological spaces, then for z € X, w € W, and {f,},ew a collection of
R-valued functions, define the lower and upper epi-limits by:

e-liyyufy)(x) = sup sup infinf f,(y),
(@t ) @) UeN (z) VEN (w) VEV YEU )
(e-lsyswfo)(xz) = sup inf supinf f,(y) .

UeN (z) VEN (w) yev yEU

It is well known [21] that these limits correspond to the Kuratowski limit of the epi-graph
multifunction in the sense that

epi(e-1sy 4w fy) = liminf epi f, and
v—w

epi(e-liy fy) = limsup epi f,. (3.1)
v—w

Also, for a sequence {f,}2°, of functions, on a first-countable space X, we have [2]| for
each x € X

(e-lip oo fn)(z) = min  liminf f,(z,) and
{a;n}?lozl —Sxr N—0
(e-Ispsoofn)(x) =  min limsup fp(x,) . (3.2)

{Zn}$21 22 pnooo

Definition 3.1. Let {f,},cw be a family of functions. We say that {f, },ew is epi-u.s.c.
(resp. l.s.c.) at w € W if for all x € X we have

(e'lsv—m)fv)(x) S fw(x)a (resp. fW(m) S (e'liv%wfv)(x))-

Equivalently for an epi-u.s.c. family the epi-graphs of f, are lower Kuratowski-convergent
to epi fy,.

Definition 3.2. A family of functions { f, },ew in R is epi-convergent to a function f,
(as v — w) if it is both epi-u.s.c. and epi-l.s.c. at w.

Since e-li, ,fy < e-lsyufy on X, the relation defining epi-convergence is in fact an

equality. Now consider the dual space and what would correspond to one half of dual
slice convergence.

Definition 3.3. Let {f,},ew be a family of functions on a normed space X, and { f; },ew
the family of conjugate functions on X*. We define a bounded-weak* upper epi-limit (as

v = w) of {f}vew by

bw*-limsup epi f; := {(z",@) € X" xR [T nets v, » w; (y;,0,) € epif:B

v—w

such that o, — «a; y; norm bounded; y; N x*}.
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It is an elementary exercise to see that this set recedes to +oo in the vertical direction
and hence resembles the epigraph of some function. This prompts us to define

Definition 3.4. For z* € X*,
(bw*-e-liy fi)(z*) := inf{a € R | (2", ) € bw*-limsup epi [} }. (3.3)

V=W

It then follows that

epi, (bw*-e-liy_, fiy) C bw*-limsup epi f; C epi (bw*-e-liy,_ fy) - (3.4)

v—w

Thus bw*-e-li,_,, f; is essentially a variational limit in the sense of [6] or [21]. The next
lemma is a modification for the bounded-weak* topology of a result in [6, page 290].

Lemma 3.5. Let X be normed, W topological, and {f,}vew be a family of closed proper
convex extended-real-valued functions on X. Then

e-lsyyufo > (bw*-e-liyy, fy)".

Proof. Write U := bw*-e-liy,_,,, f; V = e-Is, fy. We show that U* <V on X. Let
z € X. If V(z) = 400 or U = +00, (so U* = —o0) there is nothing to prove. We then
give a proof in the case where V(z) < 400 and U not identically +occ on X*. Let z* € X*
with U(z*) < +oo. Let o, § € R with a > V(x) , § > U(2*). Then (z,a) € epiV,
(z*,8) € epiyU C bw*-limsup,_,, epi f;, so there are nets v, — w, ¥} — z* (weak"),
B, — B, with (xfy, By) € epi f;‘7 for each v and the z7, uniformly norm-bounded. Also,
(z,a) € liminf, ,, epi f,, and so there exists (z,,,)(€ epif, ) — (z,a). For each 7,
ay + By > fy (23) + fu,(2y) > (z,,273) by the Fenchel inequality. As a result, passing to
the limit, o + 8 > (z,2"). (This is permissible as the z are norm-bounded and z, — z
strongly). Rearrange to obtain a > (x,z*) — 3. Since the o > V(z) and 8 > U(z*)
are arbitrary, we conclude that V(z) > (z,z*) — U(z*), and since z* € domU is also
arbitrary, it follows that V(z) > U*(x) as claimed. O

The next result provides bounds which will be used repeatedly in subsequent proofs.

Lemma 3.6. Let {f,}vew be a family of proper closed conver extended-real-valued func-
tions on a normed space X. Suppose that { f, }vew is strongly epi-u.s.c. with respect to f,,.
Then for each M > 0,

AV € N(w))(Fu € R)(Vv € VI)(V[[z™[| < M)(f;(z") = p). (3.5)

Proof. Let M > 0 and suppose the assertion false. Then there are nets vg — w, ||z3]| <
M such that limg fy (v3) = —oco. Taking a weakly” convergent subnet zj — =7, it
follows for any real A\, that (z*,\) € bw*-limsup,_,,, epifi C epi(bw*-e-li,,fy), SO
(bw*-e-liy_s f¥) (2*) = —o0, which in turn implies via Lemma 3.5, that f, > e-ls, ., fy >
(bw*-e-liy ., f)* = 400, contradicting the properness of f,,. O

Definition 3.7. A family {f,},ew of R-valued functions on a normed space X converges
as v — w in the epi-distance (or Attouch-Wets) topology if for each K > 0 and € > 0 we
have a neighborhood V' of w such that for all v € V

epi f, N B(0, K) C epi f, + B(0,¢) (3.6)
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and
epi f, N B(0, K) C epi f, + B(0,¢) . (3.7)

where the balls are in the box-norm on X x R.

We can define Attouch-Wets convergence of sets in C'(X) in an analogous manner. It is
known to be equivalent to the convergence of the corresponding indicator functions. It
is an elementary exercise to show that the epi-distance convergence f, — f,, implies the
(norm-)epi-convergence of f, to f,, where the latter denotes the norm-ls.c. hull of f,.

Let X be a normed linear space with continuous dual X* and let I'(X) (resp. I'*(X*))
denote the set of proper, lower-semicontinuous (resp. weak* lower semicontinuous) convex
functions on X (resp. X*). Then it is well known [22] that the Young-Fenchel transform
f +— f* is an order-reversing bijection of I'(X) onto I'*(X*). In [9] it was shown that the
Young-Fenchel transform is a homeomorphism from (I'(X), 74) to (I'*(X*),74) where 74
is the epi-distance topology.

4. Epi-distance Convergence of Sums

Here we prove sufficient conditions for epi-distance convergence of a sum of parametrized
convex functions in a general Banach space. Beer [12] has recently deduced epi-distance
convergence for a sum of functions in a general normed space from the epi-distance con-
vergence of the constituent functions, under the condition (intdom f) Ndomg # (. In
[8] a condition which is equivalent to 0 € int (dom f — dom g) is used to deduce a similar
result, in Banach spaces (although metric estimates are obtained as well, under a more
technical assumption). The result proved here in Banach spaces use a strong quasi relative
interiority condition more in the spirit of that found in duality theory.

Lemma 4.1. Suppose that W is topological and that {f,}vew and {g,}vew are families
of proper closed convexr extended-real-valued functions on a Banach space X, which are
epi-distance convergent (as v — w) to f,, and g, respectively.

(i) If 0 € core(dom f,, — dom g,,), then there exists V € N(w) such that for v € V
we have 0 € core(dom f, — domg,). In particular if p > inf{||(z, )| | (z,@) €
epi f, Nepigy} we have a fized § > 0 such that for allv € V,

B(0,6) € {f, <p}nB(0,p) — {9, < p} N B(0,p) .

(ii)  Suppose 0 € sqri(dom f,, —dom g,,). Place X, = span(dom f, — dom g,) forv e W.
Then for each € > 0, p > 0 there is some V' € N (w) for which

B(0,p)N X, C X, + B(0,¢) forveV'

If also for each p > 0 (sufficiently large) there exist V' e N(w), n > 0 such that
for allv € V", we have

B(0,n) N X, C{f, <p}NB(0,p) — {9 < p} N B(0, p) (4.1)

then { X, }vew epi-distance converges to X,,.
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Proof. (i) By Proposition 2.6 we have 0 € core(dom f,, — domg,) if and only if 0 €
int(dom f,, — dom g,,). By Corollary 2.7 it follows that

0Eint({fwgp}ﬂg(ovp_é)_{gw Sp}ﬂ?(o,p—é))

for § > 0 sufficiently small that p—§ > inf{||(z, )| | (z, @) € epi f,Nepigy,}. Take § > 0
sufficiently small so that

B(0,30) C {fw < p}NB(0,p—6) = {gw < p} N B(0,p - 9). (4.2)

By proposition 7.1.7 of Beer [14] we have the epi-distance convergence of the level-sets of
both {f, }vew and {g,}vew and so for v € V € N (w) we have both

{fu <P} NB(0,p—6) C{f, < p}NB(0,p) + B(0,5) and
{gw < p} N B(0,p —6) € {g, < p} N B(0, p) + B(0, ). (4.3)
Combining this with (4.2) we obtain

B(0,0) +B(0,20) € {fu <p}NB(0,p) —{go < p} N B(0,p) + B(0,2),

which implies  B(0,8) C {f, < p}NB(0,p) — {g, < p} N B(0, p)

by the Radstrom cancellation lemma [14]. The argument is completed by noting that the
interior of {f, < p} N B(0, p) — {g, < p} N B(0, p) coincides with that of its closure by
ideal convexity (Proposition 2.5).

(i) Since 0 € corex, (dom f,, — dom g,,), then for p > 0 as defined above, an argument
analogous to that in the proof of Proposition 2.6 gives that X,, = cone({f, < p} N
B(0, p) — {94 < p} N B(0, p)), which implies that for some n > 0,

B(0,7) N Xy € {fuw < p} N B(0,p) = {gw < p} N B(0, p). (4.4)

Put K = £ and let € > 0 be arbitrary. In general we have A C A+ B(0,6) so apply (4.3)
with § = 3% to get for v € V'

B(0,n)N Xy € {fu <p}—{g9 <p}+B(0,2)
C {fo <n} — {9 < p}+ B(0,30)
C span ({f, < p} — {9, < p}) + B(0,36)

implying  B(0, Kn) N X,

K (B(0,n) N X,) C K (X, + B(0,39))
X, + B(0,3K9)
or B(0,p))NX, C X,+B(0,e) forveV' eN(w).

|

Using the symmetry in the definition of epi-distance convergence we have for v € V" that
B(0,p)nX, C X, + B(0,¢€) by a parallel argument, which utilized the uniform value of n
along V" in (4.1) to replace (4.4). Combining both for V= V"NV’ we get the result. O

Note that in the case of 0 € core (dom f,, — dom g,,) then it follows that X, = X for all
v € V. Thus we have a trivial kind of convergence of the spaces generated in this case.
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Lemma 4.2. Suppose that {f,}vew and {g,}vew are families of closed proper convex
functions which epi-distance converge to f, and g, respectively (as v — w). Assume
that

0 € sqri (dom f,, — dom g,,) .
Place
X, = span (dom f,, — dom g,)

for v € W, and suppose additionally that the algebraic complement Y,, of X, is closed,
with X, 'Y, = {0} for all v near w. Then X, epi-distance converges to X,, as v — w.
Further, there is V € N(w) and § > 0 such that for allv € V,

B(0,6) € X, N B(0,1) +Y,, and 0 € sqri(dom f, — dom g,).

Proof. We show that for each p > 0 (sufficiently large) there exist V € N (w) and n > 0
such that (4.1) holds for all v € V. The convergence X, — X, will then follow from
Lemma 4.1(ii). Place

Ay ={f, <p} N B(0,p) — {9, < p} N B(0, p).

where p > inf{||(z, @)|| = max{||z||,|a|} | (z,a) € epif, Nepig,}. By an argument
analogous to that in the proof of Corollary 2.7, we have A, generating the subspace X,
(i.e. X,y = cone A,) and hence 0 € corex, A, = inty, A, since A, is closed in the
Banach space X,,.

By the epi-distance convergence of level-sets [14, Proposition 7.1.7], and by [14, Theorem
7.4.5], both B, := {f, < p}NB(0, p) and C, := —{g, < p} N B(0, p) epi-distance converge
to By, and C,, as v — w and therefore, by two applications of [14, exercise 7.4.7], follow
in turn the convergence of A, = B, + C,, to A,, = B,, + C,, and hence that of A, + Y, to
Ay + Y.

Additionally, 0 € int(A4,+Y,). Indeed, there is x> 0 such that B(0, x)NX,, C A,. Since
the map from X,, X Y;, to X taking (z,y) to z + y is a continuous linear surjection, the
Open Mapping Theorem provides 6’ > 0 such that B(0,6") C X,NB(0, u)+Y, C Ap+Yy.

Combining the latter interiority with the convergence A, + Y,, — A, + Y, the Radstrom
cancellation lemma [14, Chapter 7| yields, for any A satisfying 0 < A < ¢’, a neighborhood
V of w with B(0,)\) C A, +Y,, for all v € V, and so, from the ideal convexity of A, + Y,
and Proposition 2.5, we have B(0,\) C A, + Y,,. (Note this implies that X, + Y,, = X).
Hence, choosing V sufficiently small that also X, NY,, = {0}, we obtain for such v,

B(0,A) N X, C (Ay+ Y) N X, C Ay + X, N Y, = A,

Taking 0 < 7 < A now yields (4.1), as required. Thus follows the epi-distance convergence
X, = X,. Also, from B(0,)\) C A, + Y, C X, N B(0,2p) + Y,, we obtain, on taking
§ := \/2p, that B(0,8) C X, N B(0,1) + Y, which is the second assertion of the lemma.
Furthermore, since {f, < p}NB(0, p) —{g, < p}NB(0, p) is by Proposition 2.5 an ideally
convex subset of X, it is also likewise as a subset of the Banach space X,, so its interior
in X, is the same as that of its (X,-)closure A, and we obtain that X, = cone({f, <
p} N B(0,p) — {9, < p} N B(0, p)) so 0 € sqri(dom f, — dom g,). O
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Recall from Lemma 4.2 that for some neighborhood V' of w we have for all v € V that
X, N B(0,1) + Y, contains a d-ball at 0. If for such v we also have X, NY, = {0}, then
at once X = X, @ Y,,. Thus we can form natural extensions of functionals on X, to X
by the following scheme:

Definition 4.3. For v € W, z* € X, define an extension z* € X* by demanding that it
vanish identically on Y,,, and extending by linearity.

Remark 4.4. For all v € V, where V is small enough that the assumptions and conclu-
sions of Lemma 4.2 are satisfied thereon,

~ 1 i 1, .
sup <.Z'*,.’E) =3 sup <.’E ,£C> = g”x |
2€B(0,1)NXy+Yy z€B(0,1)NX,

SN

~ 1 ~
||| = < sup (z*,z) <
z€B(0,0)

Note that the bound % is uniform in v € V. We may assume ¢ < 1.

Lemma 4.5. Suppose the family { X, }}vew of closed subspaces of X satisfy the following:
(i) limsup,_,,, X, C Xy;
(ii) X, has finite codimension.

Then X, N'Y, = {0} for all v in a neighborhood of w, where Y,, denotes the algebraic
complement of X,,.

Proof. Suppose the result false. Then there exist nets v, — w and z, # 0 in X, NY,,.
Normalize so that x, has unit norm for all . By the compactness of the unit ball
in Y, extracting a convergent subnet if necessary, we may assume that z, has a limit
r €Y, NB(0,1). Then x # 0, for if otherwise, z, — 0, contradicting the normalization.
Also, z € limsup,_,,, X, € X, and we have 0 # z € X,, NY,,, a contradiction. O

Remark 4.6. In the context of Lemma 4.2, it should be noted that the condition that
X,NY,, = {0} locally in v, is in fact equivalent to the epi-distance convergence X, — X,
as is seen from the following lemma.

Lemma 4.7. Let X, be closed subspaces of a Banach space X, with X, epi-distance
converging to X,,. Let X,, have closed algebraic complement Y. Then X, NY = {0} for
all v near w.

Proof. Since X,, — Y = X, [8, Corollary 2.9] implies the epi-distance convergence X, N
Y - X, NY = {0}. Hence, if 0 < € < 1, then for all v in a neighborhood of w, the
unit ball in the space X, NY is contained in the e-ball at the origin in X. This forces
X, NnY ={0}. O

We now introduce the following notation:

Hi (X7, 0) = {(a],23) € X* x X* | fi(a]) + g,(3) < K, [la] + z3]| < K},
Hy (X, 0) = {(a7,23) € Xy x X | (folx,)"(27) + (90]x,)"(23) < K,
27 + 23]l x; < K},

where in the latter expression, the conjugation operation is with respect to the subspace
X,.
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Also, place
Hy(X;,v) = {('%{75;;) | (z1,23) € Hr(X;,v)} € X* x X7,

where again the tilde denotes the extension operation of Definition 4.3.

Lemma 4.8. Assume that W is topological and that { fu }vew and {g,}vew are families of
proper closed conver extended-real-valued functions on a Banach space X, which are epi-
distance convergent (asv — w) to fy, and g, respectively. Assume that 0 € sqri(dom f,, —
dom g,,) and that for all v in a neighborhood of w, we have the following:

(i)  at least one of dom f,, dom g, intersects the subspace X, := span(dom f, —dom g,);
(ii)  The algebraic complement Y,, of X, is closed, and satisfies X, N'Y,, = {0}.

Then for each sufficiently large K > 0, there exist V € N(w) and v > 0 such that for all
veV,

—_—

Hi (X, v) € B*(0,7).

Proof. Since X, is a subspace for each v, it follows from (i) that both dom f,, and dom g,
are contained in X,. As frOg: = (fu + gw)* € T*(X*) by Proposition 2.11, and is
therefore proper, there is K, such that B*(0, Ky) N epi(fiOgk) # 0. From the epi-
distance convergence (see [9]) f¥ — fr and g} — g7, follows the lower-semicontinuity (at
w) of v — epi f and v — epig} (with respect to the norm on X*), so by Lemma 2.13,
and the exactness of the inf-convolution f;OgZ (Proposition 2.11),

epi(f,0g,,) = epi f,, + epig,, C liminf (epi f; + epig,) C lim inf epi(f;Tlgy)

Hence the map v +— epi fOg; is (norm-)lower-semicontinuous at w, so B*(0, Kp) N
epi fiOg: # 0 for all v in some neighborhood V; of w. Let K > K,. Since 0 €
corex, (dom f,|x, — dom g,|x,) from the strong quasi relative interiority, we have by
Lemma 2.12 that Hg (X}, w) is norm-bounded in X} x X . (Note that Hy (X}, v) is
nonempty for each v € Vj, for if (z*, ) € epi(f:Og;) N B*(0,K) # (), then from the
definition of the inf-convolution there is y* € X* such that f*(y*) + g:(z* — y*) < K and
so (y*, z* —y*) € Hg(X*,v). Taking restrictions to X, then yields elements of Hg (X}, v),
since X, contains both dom f,, and dom g,). For K > K, define 4(K) € R by

Y(K) = sup{||7jllx; | i =1,2; (27, 23) € Hr (X, w)}. (4.5)
Place
3. K
v = g(v(g +1)+1), (4.6)

where 0 < § <1 is provided by Lemma 4.2 (see also Definition 4.3 and Remark 4.4).

Let M > max{y,1} be large enough that Hg(X* w) N B*(0, M) # 0. By appro-
priate shrinkage of V; we may assume, from the epi-distance convergence of X, to X,
(Lemma 4.2) that for all v in V; we have additionally:

— 1 — 1
C — C — :
X,NB(0,1) C X, + B(0, 2M), and X, N B(0,1) C X, + B(0, 2M), (4.7)
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as well as (see Lemma 3.6) for some y € R,

(Vo € Vo)(Vllz™[| < M)(f;(z") = p and g, (") > p) (4.8)

Let 8 > max{|u|, |5 — pu[, M}, v € Vy, and (27,23) € Hix (X*,v) N B*(0,M). Then

@) +gi(xs) < X, |[(z3,23)|] < M, so from (4.8), have that p < gi(a3) < X — fr(z}) <
K — juso |g3(23)| < 5 and hence

(23, 9,(x3)) € epig, N B*(0, 3).

Similarly,

(z1, fy (27)) € epi f; N B*(0, B).

By the epi-distance convergence fX — fr gf — g, there is a neighborhood V' of w such
that for all v € V',

epig, N B*(0, 5) € epig, + B*(0,1/3),

and similarly for the f¥, so for v € Vo NV’ and (z7,23) € H%(X*,v) N B*(0, M), we
obtain that (z3, f¥(z%)) € epi f} + B*(0,1/3) and (z3, g}(x3)) € epig} + B*(0,1/3). There
then exist 3, T5, B1, Bo with: ||Z] — zf|| < 1/3 (i =1,2); B1 > fi(Z)); B2 > g5(T3), with
also

|6y — fo (@) <1/3;5 |82 — gy(3)] < 1/3,

so that

K
@) + (33) < Br+ Bo <1/2+ f1(a]) +1/2+ g (a5) < & +1.

Also, ||Z; +75|| < ||lzf+=3]|+1 < 5 +1 and we have (z},z}) € H%H(X*,w)-i-B*(O, 1/3).
It has now been proved that there exists V' € N (w) such that for all v € V'

Hie(X*,0) 0 B*(0, M) C Hx (X", w) + B*(0,1/3). (4.9)

By another contraction of Vj, if required, we can ensure that (4.9) is also satisfied on V5,
as well as all the conclusions of Lemma 4.2.

Let v € Vp and (yf,y3) € Hx(X?,v) N B*(0,M). Then by Remark 4.4, ||lyf + y3|| <
sllyilx, + v3lx,llx; < K/, so by (4.9),

(1.93) € Hie (X*,0) 0 B*(0,M) € Hic (X", w) + B*(0,1/3).

=[x

Taking restrictions to X,,, we obtain

* * K
17 x> 92 lx0)llxg, <A(5+1)+1/3,

J

since (y7|x,,¥5|x,) is within distance 1/3 of Hx (X7, w) in X7 x X, and from (4.5)
the latter set is norm-bounded by 4(%¥ + 1).
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For each v € V;, there are 7y, T, in B(0,1) N X, such that ||(y],v3)|x,[|x: < U5, T1) +
(y5,T2)+ 1, and from (4.7) there are g1, 7o in X, within ﬁ of T, Ty respectively, so that

(75 93), (@1, 22) — (91, )| < (T wa) | (120 — Gl + (|22 — 22]) < 1.

Thus
N vs) x, llx: < (ui,21) + (y5, T2) + 1
< (Wi, 93), (F1,%2) — (T1, T2))| + (W5, 1) + (¥3,72) + 1
. \ . ) 1
< 24 3||(¥] | x0s ¥a|x0) || xz  since [|7i]] <1+ 5 S 3/2
K K
< 24 3(&(3 +1)+1/3) = 3(&(3 +1)+1)

——~

and since y; = y/|x,, we obtain (on recalling the definition (4.6) for )

* * 1 * * 3 2 K
7, 95)1 < 51075l < S G0 + 1) +1) =7,

Hence it has been shown for v € Vj, and v and M > v as above, that

o~

Hic(X;,v) 1 B*(0,M) € B*(0,7). (4.10)
This implies that

Hy(X;,v) N B*(0, M) = Hx(X;,v) N B*(0,7),

and further, by convexity, whenever EZ(X;*, v) N B*(0, M) is nonempty, that

—~——

HK(X:aU) g B*(OvM)a
for if Hx(X?,v) contains points outside B*(0, M) then we can join these with line-
segments to points of ﬁ;(X;j, v)NB*(0, M) = EE(X;, v) N B*(0,7), yielding elements of
ﬁ;(X;, v) N B*(0, M) of norm greater than +y, contradicting (4.10).

To complete the proof of our result, then, we need to demonstrate for all v in some
neighborhood V"’ of w, that Hx (X}, v) N B*(0, M) is indeed nonempty. Once this is done,
it will follow that for all v € VN V7,

Hwx(X*,v) C B*(0, M),

so from (4.10),

Hy (X, v) C B*(0,7).

We now attend to this final task. From the choice of M, recall that Hg(X*, w) N
B*(0, M6) # (0. We first show that for every v in some neighborhood V,

Hy(X*,0) 1 B*(0, M8) £ 0, (4.11)
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from which the required result will follow, on taking restrictions to X,. Set N := My,
and take (x%,x3) € Hg(X*,w) N B*(0,N). Since the f} strongly epi-converge to f, as
do the g} to gy, there follows

K > fo(@l) + g5(23) = (esoswf)(@]) + (e-1svmugy) (23)
= sup limsupinf f; + sup limsup infg]
UieNs(zy) vow U1 UseNs(ay) v—ow U2
> limsup inf f; + limsup inf g
VW U1 v—w U,

for any (strong) neighborhoods Ui, U, of z3 and z3 respectively. Select these neighbor-
hoods to be so small that ||zt + z5|| < K and ||(z%, z3)|| < N whenever (z},z3) € Uy x Us.
Thus, since neither limsup,_,,, infy, f; nor limsup,_,,, infy, g; equals +o0o, there is V' €
N (w) such that for each v € V, infy, fF # 400, infy, g # +oo, and

lim sup inf f; + limsup inf g; > lim sup [inf fo + i(IJlf gZ] .
2

vow U1 vow U2 v(eV)—w LU

Hence there is V' C Vj such that K > sup,cy [infy, fi + infy, ¢7], that is, for each v € V7,
there is (Z7,z5) € Uy x Uy such that f)(Z7)+¢: (%) < K, so from the choice of U;, we have
(737,73) € He(X*,v)NB*(0, N) and so (4.11) is proved. For such (z}, z}) we immediately
have (:Z.ﬂxvvj;'Xv) € HK(X;;U) and ||(3_7T7:E;)‘Xv| X3 < ||(j>{73—7;)” < N7 so that

(Tt ]x., T3|x,) € Hi(X:,v) N B*(0, N/6) = Hy(X:,v) N B*(0, M),

proving nonemptiness of the latter set. O

We are now in a position to prove the main result of this paper.

Theorem 4.9. Assume that W is topological and that { f,}vew and {g,}vew are families
of proper closed convexr extended-real-valued functions on a Banach space X, which are
epi-distance convergent (as v — w) to f, and g, respectively. Moreover suppose that

(i) 0 € sqri(dom f,, — dom g,,),
(ii)  the algebraic complement Y, of Xy, is closed and X, N'Y, = {0} for all v near w,
where X, := span(dom f, — dom g,).

Then {f, + g fvew 18 epi-distance convergent to fy, + gu as v — w.

Proof. We first prove the result under the additional assumption that for all v in a neigh-
borhood of w, at least one of dom f,, dom g, intersects the subspace X, := span(dom f, —
dom g,), which in fact implies that X, contains both dom f, and dom g,. Subsequently
we will discard this assumption.

By Lemma 4.2, 0 € sqri(dom f, — dom g,) for all v in a neighborhood of w, so by Propo-
sition 2.11, fr*Og; is exact and fiOgr = (f, + g,)* € I'*(X*). If we assume that the
family of functions {f0g}},cw epi-distance converge (as v — w) to f;Ogy then since
epi-distance convergence 7, renders Young-Fenchel conjugation f — f* a homeomorphism
from (I'(X),74) to (I'*(X™*),74) (see [9]) we may argue as follows:

- Um(f, +¢,) = 74 Um(f,;0g,)* = (174 lim f;0g;)*
v—>w V=W v—w
= (fu89,)" = fu + gu-
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The required task is then to prove the epi-distance convergence of f;Clg; to fr[g:. To
establish this, we first derive (3.7) (for fOg}), then as a corollary of that argument we
shall obtain (3.6) also.

As argued in the proof of Lemma 4.8, the map v — g’ is (norm-)lower-semicontinuous
at w. Let Ky be such that B*(0, Ko) Nepi(f:0gk) # 0. Then the semicontinuity implies
that for all v in some neighborhood V; of w, B*(0, Ko) Nepi f0g: # 0. Let K > Ko,
e > 0. We now shrink V; further so that additionally, the indicated hypotheses of the
theorem hold thereon, along with the conclusions of Lemmas 4.8 and 4.2.

Let v € Vj and (2%, «) € epi(f;Og;)NB*(0, K). From the exactness of the inf-convolution
there exists y* € X* such that (f;Og¢})(z*) = fi(y*) + gi(z* —y*) < a < K. Thus
(y*,2* — y*) € Hg(X*,v). Let z7 denote the extension (in the sense of Definition 4.3) of
y*|x, to X. Place z} := z* — x7 (so z} + x5 = 2*). Since X, contains both dom f, and
dom g,, there follows that

fr(@)) + g,(23) = f7 (") + g, (¢ —y*) < .

——~——

Let 2* := z}|x, (the extension of z}|x, € X¥). Then since

27 ]x, + 2%, llx; = (21 + 23)Ix. llxp < ll27 + 25 = [l27] < K

and
(folx,)" (@7 x,) + (9ol x,) " (@5]x,) = fo(z]) + g5(23) <a< K,
we have o o -
(z1,2") = (¥*|x., 3 x,) = (27 ]x,, 75|x,) € Hx(X,,v).

Hence, from Lemma 4.8 follows that ||z5]| < ||(z7, 2*)|| < (where 7 is defined in the said
Lemma, and is independent of v € Vj, but dependent on K), and so ||x3|| < [|z*||+]|z5]] <
K + v :=#4. Thus we have

(x3,25) € Hg(X*,v)NB*(0,7) and (4.12)
(@",0) = (27,0 —gy(23)) + (23, 9;(23)) € epi fy N (Bx-(0,7) x R)
+ epi g; n (BX* (Oa’_Y) X R)a (413)

where Bx-(0,7) denotes the open ball of radius 7 in X*. We now need to find bounds
on the g;(z3). From Lemma 3.6, we may contract Vj if necessary so that for some real
constant u we have

(Vo € Vo) (Vllz3ll < 7)(g5(23) > w).
To obtain an upper bound, define, for v € V,
F, :={z; € X* | 3z} € X*such that (z7,23) € Hx(X",v) N B*(0,7)}.

Note for each v € V;, that F, # () since from (4.12), Hx(X*,v) N B*(0,7) is nonempty.
We claim now that

(FV' € N(w))(Ep € R)(Vo € V')(Vz; € F)(g;(x3) < p). (4.14)
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To see this, suppose the contrary. Then there are nets vz — w (in V}), z3 s € F,, with
limg g, (23,) = +oo. If zj is such that (z7,,23) € Hg(X",v5) N B*(0,7), then as
|z1,]l <7, we may, by taking a weak*-convergent subnet if necessary, assume that it has
a weak® limit, to be denoted by z7.

Let A € R Then eventually g; (25,) > K — A so for such 3, fy (z1)) < K —g; (z3,) <A.

Thus (z7,A) € bw*-limsup,_,,, epi fi C epi(bw*-e-li,_,, ) and as A € R is arbitrary,
(bw*-e-liy_s f) (27) = —00, so by Lemma 3.5, as f, strongly epi-converges to f,,

fuw > (bw*-e-liy 4 f2)* = +o0 0on X,

contradicting the properness of f,,. This proves (4.14).
Hence, if Vj € N (w) is taken small enough, we have also for some p > 0 (dependent on
K, €) that

(Vv € Vo) (Vs € F)(lg,(23)] < p).-

Combining this with (4.13), it follows for all v € V4, that
epi(fOg¥) N B*(0, K) C epi £ N B*(0, K) + epi g* N B*(0, K) (4.15)

where K(K,€) := K + max(p, 7).

Finally, by the epi-distance convergence f; — f, and g; — g as v — w, there is
Vi € N(w) so that for all v € Vi, epi f N B*(0, K) C epi f + B*(0, ¢/2) and similarly for
the ¢ at w. It then follows, for all v € V, NV, that

epi(f;0g;) N B*(0, K) epi f; N B*(0, K) + epig; N B*(0, K)

C
C epify +epig; + B*(0,¢).

This yields (3.7). To finish, we verify (3.6). This follows immediately from (4.15) at v = w
and the epi-distance convergence f,; — f. and g, — g., since for all v in a neighborhood
of w,

C epi fi N B*(0,K) + epig} N B*(0, K)
C epif, +epig, + B*(0,¢/2) + B*(0,¢/2)
€ epi(f;0g;) + B*(0,€) .

epi(f;0g;) N B*(0, K)

We now have proved the result, under the additional assumption that for each v, at
least one of dom f, or dom g, intersects X,. We will now remove this assumption. Take
p > infx f,. From the epi-distance convergence of level-sets [14, Proposition 7.1.7] we have
v = {f, < p} non-empty and lower-semicontinuous at w. Thus on taking z,, € {f, < p}
we have some z, € {f, < p} strongly converging to z,. Place f,(-) := f,(- + z,) and
Gv(+) == gy(- + x,). Then {fv}veW and {g,}yew epi-distance converge to fuw and Gy,
respectively.

As 0 € dom fv and X, = span(dom fUA— dom gv),A we may apply the previous argument to
infer the epi-distance convergence of f, + g, to fu + gu. Translating the sum by —z,, we
get fu + 9o = (fo + Gv) (- — x,) epi-distance converging to fy, + gu- O
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In [8] we find a rather complicated condition ensuring epi-distance convergence of a
sum (see condition (1) in Proposition 4.10 below). The form of these conditions fa-
cilitates estimation of the epi-distance metrics. Putting aside the issue of these esti-
mates we observe that this condition is equivalent to an interiority condition. Place
A(X) = {(z,z) | x € X}. We note that the mapping P : X x X — X defined by
P(z,y) =y — z is open, as is P!

Proposition 4.10. Let f and g be proper closed convez functions on a Banach space X .
Then the following are equivalent:

(i)  there existst > 0, 7 > 0 and s > 0 such that
(B(0,5))" C AX) N (B(0,r))" = {f <1} x {g <r} N (B(0,1))*; (4.16)
(ii) 0 € int (dom f — dom g).
Proof. Clearly (4.16) implies 0 € int (A(X) — dom f x dom g). Then
0 € intP(A(X)—dom f x domg)
= int P{(z,z) — (u,v) |z € X, u € dom f, v € dom g}

= int{(z—v)—(z—u)|z€ X, uecdomf, v €domg}
= int(dom f — domg).

For the converse we use Corollary 2.7 to deduce from 0 € int (dom f — dom g) that
0 €int ({f <t} N B(0,t) — {g <t} N B(0,1))

for some ¢ > 0. Define D := A(X) — {f <t} x {g <t} N (B(0,))*. Then PD = {f <
t} N B(0,t) — {g <t} N B(0,t) so 0 € int PD and hence 0 € int P"!PD. But since

P7'PD = D+kerP =D+ A(X)
AX)—{f <t} x{g<t}n(B(0,t))> + A(X) =D,

it follows that 0 € int (A(X) —{f<tyx{g<t}n (F(O,t))Z). As A(X) and {f <

t} x {g <t} n (B(0, t))2 are closed convex sets they may be viewed as the domains of
their indicator functions. Thus applying Corollary 2.7 again we get for some r > 0 that

0 € int (A(X) N (B0,7))? — {f <t} x {g <t} n (B0, 7"))2) .

5. Saddle-point Convergence in Fenchel Duality

Convex-concave bivariate functions are related to convex bivariate functions through par-
tial conjugation (i.e. conjugation with respect to one of the variables). In this context we
are led to the introduction of equivalence classes of saddle-functions which are uniquely
associated with concave or convex parents (depending on the which variable is partially
conjugated). We direct the reader to the excellent texts of Rockafellar [22] and [23] for a
detailed treatment of this phenomenon. Two bivariate functions are said to belong to the
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same equivalence class if they have the same convex and concave parents. Such members
of the same equivalence class not only have the same saddle-point but so do all linear
perturbations of these two functions. Thus when discussing the variational convergence
of saddle-functions one is necessarily led to the study of the convergence of the equiva-
lence class. When referring to a saddle-function (or convex-concave bivariate function)
we are by association referring to its equivalence class via the selection of a member. The
following is taken from [7] from which we adapt results and proofs.

Definition 5.1. Suppose that (X,7) and (Y,0) are two topological spaces and {K" :
X xY — R, n € N} is a sequence of bi-variate functions. Define:
er/ho-lsn 50 K™ (2,y) =  sup inf limsup K™ (zy, yn)
{yn—°y} {zn—="2} nooo
ho/e:-lin oo K™ (x,y) = inf  sup liminf K™(z,,y,) -

{zn—"x} {yn—oy} MO

Definition 5.2. Suppose that (X, 7) and (Y,0) are two topological spaces and {K" :
X xY — R, n € N} is a sequence of bivariate functions.

(1)  Wesay that they epi/hypo-converge in the extended sense to a function K : X xY —
R if
cy(er/holsnsoe K™) < K < ol (hy/€-lin 0o K™)
where cl,; denotes the extended lower closure with respect to = (and therefore w.r.t.
7) for fixed y and cl’ denotes the extended upper closure with respect to y (and
therefore w.r.t. o) for fixed z, (where generally, clf := —cl(—f)).

(2) A point (Z,7) is a saddle-point of a bivariate function K : X x Y — R if for all
(z,y) € X xY we have K(Z,y) < K(Z,9) < K(z,7).

The interest in this kind of convergence stems from the following result (see [7, Thm 2.4]).
Proposition 5.3. Let us assume that {K", K : (X,7) x (Y,0) — R, n € N} are such
that they epi/hypo-converge in the extended sense. Assume also that (Zy,y;) are saddle
points of K™ for all k and {ny} is an increasing sequence of integers, such that Z, 5z

and gy, % §*. Then (Z,7*) is a saddle point of K and
K(z,y") = lim K™ (T, J;) -
k—o0

The next result from [7] uses sequential forms of the epi-limit functions, as per the fol-
lowing

Definition 5.4 ([7, p. 541]). Let (X, 7) be topological, f, : X — R. Then

(T-seq-e-ls, 500 fr) () 1= inf limsup f,(z,)
(T-seq-e-lip 00 fr) () := inf liminf f,(z,)

It can be shown that these reduce to the usual (topologically defined) forms if (X, 7)
is first-countable, and that the above infima are achieved. We will need these alternate
forms, for generally weak topologies on normed spaces are not first-countable.
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Definition 5.5. Let (X, 7) and (X*,7*) be topological vector spaces. We shall say they
are paired if there is a bilinear map (-,-) : X x X* — R such that the maps z* — (-, z2*)
and z — (z,-) are (algebraic) isomorphisms such that X* = (X,7)* and X = (X*, 7%)*
respectively.

It is readily checked that if (X, 7) and (X*, 7*) are paired, and so are (Y, 0) and (Y*,0%),
then (X x Y, 7 X o) is paired with (X* x Y* 7* x ¢*), with the pairing

((z,9), (", y%)) = (z,2") + (y,¥"),

and similarly for other combinations of product spaces.

For any convex-concave saddle function K : X xY* — R, that is, where K is convex in the
first argument and concave in the second, we may associate a convez- and concave-parent.
These play a fundamental role in convex duality (see [22]) and are defined respectively as:

F(z,y) = supy-ey«[K(2,y") + (y,y")]
G(z*,y") = infzex[K(z,y*) — (z,z%)).

(In Fenchel duality we have F'(z,y) = f(z) + g(z +vy)). One can show that for any closed
convex function F : X x Y — R, if G := —F* relative to the natural pairing of X x Y
with X* x Y* (these yielding the primal objective F(-,0) and dual objective G(0,—-)),
we have an interval of saddle functions (all equivalent in the sense that they possess the
same saddle points) given by

[K,K]:={K: X xY*— R| K convex-concave, K < K < K on X x Y*},
where

(iﬁ,y*) = Supz*eX* [G(x*a y*) + <£C,.’L'*>]
(z,y") = infyey[F(z,y) — (y,y")] -

==

The following result is taken from [7] and requires no additional assumption.
Proposition 5.6. Let (X, 7), (X*,7%) and (Y, 0), (Y™, 0%) be paired topological vector spa-
ces, with the pairings sequentially continuous; let {F™",F : X xY — R, n € N} be a
family of bivariate (1 X o)-closed conver functions. Then, if K™, K are members of the
corresponding equivalence classes of bivariate convez-concave saddle functions,

(i)

(T X 0)-seq-e-18 0o F™ F onXxY

implies  cl,(e;/he--1s K")

==

(7" X 0%)-seq-e-18 5, 00 (F™)* (F)" on X XY
implies K < o’ (hyJe,li K™ .

IN
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Proposition 5.7. Suppose that X is a Banach space and { f,, f}>2, and {gn, 9}, be two
families of proper closed, convex extended-real-valued functions epi-distance convergent to
f and g, respectively. Then

K"(z,y") = yig)f([fn(x) + gz +y) — (¥, y")]

epi/hypo-converges (in the extended sense) to
K(z,y") = inf[f(2) + g9(z +v) = (v, 57)]
with respect to the strong topology on X and the weak* topology on X*.

Proof. Define proper closed convex functions on X x X by fn(z,y) := fo(z) and gn(z, y)
= gn(z + y), and similarly define f and g. Then we have the epi-distance convergence
fn — f and g, — g on X x X. Note that domf =dom f x X and dom§ = P 'domg
(and similarly for f,, g,), where P : X x X — X is the addition operation. Consequently,
dom f —dom § = X x X = dom f, —dom g, for all n, so from Theorem 4.9 (or [8]) follows
the epi-distance convergence

B ::fn+gn_)F::f+g-
Thus also obtains [9] the epi-distance convergence (F™)* — F*. From the resultant strong

epi-convergence on X X X and on X* x X*,

n and

F > (s x s)-elsp 0 F" = (s % s)-seq-e-ls, , F
F* > (8" x s%)-e-lsp 500 (F™)* = (8" X s%)-seq-e-Is,,_, o (F")*
> (w* x w*)-seq-e-ls, . (F")*,
where s and s* stand for the respective norm topologies on X and X*. Now apply
Proposition 5.6. ]

We note the following for future reference. For u € X, write

p(u) == inf{f(2) +g(z +u)} = (fO7)(w), (5.1)

~

and similarly for ¢,, where for any function v, 1(z) := 1(—z). Note that domy =

dom g — dom f and similarly for ¢,. The operation 1 — ’QZ commutes with conjugation
and with epi-distance limits; the verification of this is an elementary exercise. From [22]
we have the following: Calling infx(f + g) the primal problem, and infx(f, + g,) the
approximate problems, then —¢* and —¢7 are the associated dual objective functionals,
and:

(Z,7%) is a saddle-point of K iff
p(0) = (f+9)(@) =f(f+9) = sup —¢" = —"(¥"),

and similarly for ¢, and the saddle-points (Z,, 7;) of K. On taking conjugates of ¢, we
obtain

on=(0Gn) = (i + ") = fi +9n
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and so the dual problem becomes

sup —p, == (fa0g,) (0) = — inf (f3(=y") +gn(y")) - (5.2)

y*eX*

The next result tackles the problem of finding convergent sequences of dual variables.
(Note that Proposition 5.3 makes no claim about such existence). There are well-known
criteria for the convergence of the primal solutions z,,— for instance, if f, + g, epi-distance
converges to f + g, and the latter satisfies a well-posedness condition [14, Section 7.5] and
[13]. From [19] we know that 0 € sqri(dom f — dom g) is a sufficient condition for strong
duality to hold.

Corollary 5.8. Suppose that X is a separable Banach space and { fn, f}52, and {gn, 9},
be two families of proper closed, conver extended-real-valued functions epi-distance con-
vergent to f and g respectively. Let K™, K be the associated saddle-functions as in Propo-
sition 5.7. Assume also the following:

(i) 0 € sqri(dom f — dom g);
(ii))  The algebraic complement Y of the subspace M = cone(dom f—dom g), is closed and
M, NY = {0} eventually, where M, denotes the subspace Span(dom f, — dom g,).

Then if (Tn,ys) are saddle-points of K™ for each n and a subsequence of the Z, has
a strong limit x, and the saddle-values along this subsequence are bounded below, then

K has a saddle-point (Z,y*) that is a (s x w*) -limit of saddlepoints (T, (¥%)|m,) of a
subsequence of the K™, with K (Z, §*) the limit of the corresponding saddle-function values.

—_—

(Here ‘s’ stands for the norm topology on X and (3})|m, is the extension to X* of the
restriction of g} to M, as defined in Definition 4.3).

—_—

Proof. The proof follows from Propositions 5.7 and 5.3, on showing that the (g;)|x, are
norm-bounded in X*, so that weak*-convergent subsequences are available and are the
required dual variables.

As in the proof of Theorem 4.9, there are x,, € dom f, converging to some x € dom f.
Place f,(-) == fu(@n + ), Gn(-) = gn(z, + -), with analogous definitions for f and § as
translates by z. Then 0 € dom f,,, dom f, and hence these functions satisfy the hypotheses
of Lemma 4.8.

Let ¢, be the value function corresponding to fn and g, via (5.1). Similarly, denote the
corresponding saddle function by K™. Then we immediately observe that ¢; = ¢, from
which follows that

(Zn,7") is a saddlepoint of K™ iff (%, — z,,7") is a saddlepoint of K™,

since (Z,, 7;) are an optimal pair for the primal and dual problems if and only if (Z,, —
Tn,Y) are optimal for the problems based on the translated functions fus Gn- Evidently the
optimal values are not affected by this translation, so we also obtain that K "(Tp—Tn, Ul) =
K™(Zy,3"). Hence the saddle-values of K" are also bounded below. As M, contains both
dom f, and dom g, (recall this follows from 0 € dom f,), we obtain

——~
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which follows from @ () = fi(=y3) + 32(0n) = Fr(=vsla) + 35Wsla) = @5 (0s1a,),
since M, contains the domains of an and §,. Letting —a € R be a lower bound for the
saddle-values of K™ (and hence of K™), we have for all n large, that

—_——

(=5 |at U las,) € Ho(Mp, )
(where the latter set is defined relative to the translated functions s Gn), since
(fal )" (=Fnla) + (Gnlan)* @5 Ias) = Fi (=) + 05(5) = —K" (@0 — 20, 93) < @

so that (=95 |u,, U|m,) € Ha(My,,n). By Lemma 4.8, there is v > 0 such that ||g/;;|\];n|| <

—_—~—

v for all large n. Then Zz} := y*|y, € X* is norm-bounded and hence has a weakly*
convergent subsequence z: — z*. For each n, (z, — z,, %) a saddlepoint for K", so
(Zn, Z7) is one for K™. By Propositions 5.7 and 5.3, (Z, z*) is a saddlepoint for K, with

value the limit of the saddle-values along the sequence. O

Remark 5.9. A case in the above result where the saddle-values are bounded below,
occurs for instance when the sum f + g of the limit functions has bounded level-sets, for
from the epi-distance convergence f, +¢, — f+¢ (Theorem 4.9), and from [14, Corollary
7.5.3], the infima of f,, + g, converge to that of f + g, which is finite by properness, and
these correspond to the saddle-values.
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