On the Second-Order Contingent Set and Differential Inclusions

Brahim Aghezzaf

Département de mathématiques et d'informatique, Faculté des Sciences Aïn Chock, BP: 5366 Maarif, Casablanca, Maroc. e-mail: aghezzaf@facsc-achok.ac.ma

Saïd Sajid

Département de mathématiques, F.S.T.M, BP. 146, Mohammadia, Maroc. e-mail: saidsajid@uh2m.ac.ma

Received May 4, 1998 Revised manuscript received December 9, 1999

In this paper, we establish the existence of solutions of a nonconvex second order differential inclusion of the following type:

$$\ddot{x}(t) \in F(x(t), \dot{x}(t)) \text{ a.e. } x(0) = x_0 \in K, \dot{x}(0) = v_0 \in \Omega,$$

such that $x(t) \in K$, where K is a closed subset and Ω is an open subset of \mathbb{R}^n . When K is in addition convex, we introduce the contingent cone T_K to prove the existence of solutions of the differential inclusion:

$$\ddot{x}(t) \in G(x(t), \dot{x}(t))$$
 a.e, $x(t) \in K$ and $\dot{x}(t) \in T_K(x(t))$

Keywords: Continuous multifunctions, compact multifunctions, contingent cone, second-order contingent set

1991 Mathematics Subject Classification: 34A60

1. Introduction

Let K be a nonempty closed subset of \mathbb{R}^n . We shall denote by $d_K(.)$ or d(., K) the distance to K, by $T_K(x)$ the contingent cone at x, by $gr(T_K)$ the graph of the multifunction $x \to T_K(x)$ and by $A_K(x, y)$ the second-order contingent set to K, i.e

$$A_K(x,y) = \left\{ z \in \mathbb{R}^n : \liminf_{t \to 0^+} \frac{d_K(x + ty + \frac{t^2}{2}z)}{t^2} = 0 \right\}$$

where $(x, y) \in K \times \mathbb{R}^n$. For more on properties of the second-order contingent set, we refer to [4, 5, 8, 9].

In the present paper, we are concerned with $A_K(x,y)$ in the case where the set K is, in addition, convex. More precisely, for all $(x,y) \in gr(T_K)$, we prove that $A_K(x,y)$ and the second-order contingent set

$$C_K(x,y) = \left\{ z \in \mathbb{R}^n : \lim_{t \to 0^+} \frac{d_K(x + ty + \frac{t^2}{2}z)}{t^2} = 0 \right\}$$

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

184 B. Aghezzaf, S. Sajid / On the second-order contingent set and differential inclusions

coincide with $T_K(x)$.

As application, we establish in a special case where K is defined by constraint equalities that the Aubin's contingent derivative set $D(T_K)(x, y)(y)$ at (x, y) in direction y is equal to $T_K(x)$.

Another application consists of studying the existence of second-order viable solution for a class of multivalued differential equation with nonconvex right-hand side.

Throughout this paper, we denote by Ω a nonempty open subset of \mathbb{R}^n , by D a nonempty closed convex subset of \mathbb{R}^n , by $gr(T_D)$ the graph of the multifunction $T_D(.)$, by $\mathcal{C}(\mathbb{R}^n)$ the collection of all nonempty compact subsets of \mathbb{R}^n and by F and G two $\mathcal{C}(\mathbb{R}^n)$ - continuous multifunctions defined on $K \times \Omega$ respectively. Let (x_0, v_0) be an element of $K \times \Omega$ or $gr(T_D)$. Consider the problems:

$$\begin{cases} \ddot{x}(t) \in F(x(t), \dot{x}(t)) & \text{a.e on } [0, T[, \\ x(0) = x_0, \dot{x}(0)) = v_0, \\ x(t) \in K & \forall t \in [0, T[. \end{cases}$$
(1.1)

and

$$\begin{cases} \ddot{x}(t) \in G(x(t), \dot{x}(t)) & \text{a.e on } [0, T[, \\ x(0) = x_0, \dot{x}(0)) = v_0, \\ (x(t), \dot{x}(t)) \in gr(T_D) & \forall t \in [0, T[. \end{cases}$$
(1.2)

By a solution of (1.1) or (1.2) we mean (T, x(.)) where T > 0 and $x : [0, T] \to \mathbb{R}^n$ is an absolutely continuous trajectory for which \dot{x} (.) is also absolutely continuous, which satisfies (1.1) or (1.2).

Similar problems were investigated by [4, 6]. In the present paper we study problem (1.1) (resp. (1.2)) under the assumption $H_1: \forall (x,y) \in K \times \Omega$, $F(x,y) \subset C_K(x,y)$ (resp. $H_2: \forall (x,y) \in gr(T_D)$, $G(x,y) \subset T_K(x)$).

2. Notations, definitions and main results

Let X, Y be two metric spaces, R be a closed valued multifunction from X to Y. We denote by gr(R) the graph of R. We say that R is lower semi-continuous if for any open subset V of Y the set $\{x \in X : R(x) \cap V \neq \emptyset\}$ is open. Let $(\mathcal{C}(Y), h)$ be the collection of all nonempty closed subsets of Y equipped with the Hausdorff distance h defined by $h(A, B) = \max\{e(A, B), e(B, A)\}$, where $e(A, B) = \sup\{d(x, B) : x \in A\}$. A $\mathcal{C}(Y)$ -valued multifunction R defined on X is continuous if the mapping $R: X \to (\mathcal{C}(Y), h)$ is continuous.

For any vector normed space S and a nonempty subset A of S, we denote by $\operatorname{cl} A$, $\operatorname{co} A$, χ_A the closure, the convex hull and the characteristic function of A. For all $x \in S$, $\pi_A(x)$ stands for the set of all $y \in A$ for which ||x - y|| = d(x, A).

For r > 0, we denote by B(x, r) the closed with center at x and radius r.

Assumption H₁

Let K be a nonempty closed subset of \mathbb{R}^n , Ω be a nonempty open subsets of \mathbb{R}^n and F be a multifunction from $K \times \Omega$ to the space of all nonempty subsets of \mathbb{R}^n . Let $(x_0, v_0) \in K \times \Omega$. On F we make the following hypotheses:

- F is continuous with compact values.
- $\forall (x,y) \in K \times \Omega, F(x,y) \subset C_K(x,y).$

Assumption H₂

Let D be a nonempty closed convex subset of \mathbb{R}^n , G be a multifunction from $gr(T_D)$ to nonempty subsets of \mathbb{R}^n . Let $(x_0, v_0) \in gr(T_D)$. Suppose that:

- G is continuous with compact values.
- $\forall (x,y) \in gr(T_D), G(x,y) \subset T_D(x).$
- $gr(T_D)$ is closed.

Here are the main results.

Theorem 2.1. Assume that H_1 is satisfied, and let $(x_0, v_0) \in K \times \Omega$, then there exists $T_0 > 0$ and an absolutely continuous function $x(.) : [0, T_0] \to \mathbb{R}^n$ for which x(.) is also absolutely continuous such that:

$$\begin{cases} \ddot{x}(t) \in F(x(t), \dot{x}(t)) & a.e \ on \ [0, T_0[\\ x(0) = x_0 \quad \dot{x}(0)) = v_0 \\ x(t) \in K & \forall t \in [0, T_0[\end{cases}$$

Theorem 2.2. Assume that H_2 is satisfied and let $(x_0, v_0) \in gr(T_D)$, then there exists $T_1 > 0$ and an absolutely continuous function $u(.) : [0, T_1] \to \mathbb{R}^n$ for which \dot{u} (.) is absolutely continuous and such that:

$$\begin{cases} \ddot{u}(t) \in G(u(t), \dot{u}(t)) & a.e \ on \ [0, T_1[\\ u(0) = x_0, \quad \dot{u}(0)) = v_0\\ (u(t), \dot{u}(t)) \in gr(T_D) & \forall t \in [0, T_1[\end{bmatrix}$$

To prove Theorem 2.2, we need the following result:

Theorem 2.3. Let C be a nonempty closed convex subset of \mathbb{R}^n . Then, the second-order contingent set $A_C(x,y)$ at $(x,y) \in gr(T_C)$ coincides with the contingent cone $T_C(x)$.

3. Preliminary results

In this section, we state some definitions and results collected in Aubin and Cellina [1].

Proposition 3.1. Let A be a nonempty closed convex subset of \mathbb{R}^n and $x \in A$. Then

$$T_A(x) = \operatorname{cl}\left(\bigcup_{h>0} \frac{1}{h}(A-x)\right)$$

For the proof see [1, p.174].

Proposition 3.2. The multifunction $D \mapsto 2^{\mathbb{R}^n}, x \to T_D(x)$ is lower semi-continuous.

Proof. See Aubin and Cellina [1, Th.1, p.220].

Lemma 3.3. Let Q be a lower semi-continuous multifunction from a metric space X to the space of nonempty subsets of a metric space Y. Then for all $\varepsilon > 0$, the set

$$\{x \in X : Q(x_0) \subset Q(x) + B(0,\varepsilon)\}$$

is open.

The proof is straighforward and is omitted.

Definition 3.4. Let I be a bounded interval of \mathbb{R} , recall that a function $f: I \to \mathbb{R}^n$ is called absolutely continuous if there exists an integrable function $g: I \to \mathbb{R}^n$ such that for all $s, t \in I$ we have $f(t) = f(s) + \int_s^t g(\tau)d\tau$, where g is denoted f.

Proposition 3.5. Let $x, y \in \mathbb{R}^n$, $\varepsilon(.)$ a mapping with values in \mathbb{R}^n such that $\varepsilon(h) \to 0$ as $h \to 0$. Then

$$\liminf_{h \to 0^+} \frac{1}{h} \left[d_D(x + h(y + \varepsilon(h))) - d_D(x) \right] \le d(y, T_D(\pi_D(x))).$$

For the proof, see [1, Prop.1, pp. 202 or Prop.3, pp. 178-179].

Corollary 3.6. Let I be a bounded interval of \mathbb{R} and $f: I \mapsto \mathbb{R}^n$ be a lipschitz function. Set $g(t) = d_D(f(t))$. Then g is absolutely continuous and for almost every $t \in I$

$$g(t) \leq d(f(t), T_D(\pi_D(f(t))).$$

Proof. Let $t \in I$ and h be sufficiently small such that $t + h \in I$. We have

$$f(t+h) = f(t) + \int_{t}^{t+h} \dot{f}(\tau) d\tau.$$
(3.1)

Without loss of generality, we may assume that

$$\frac{1}{h} \int_{t}^{t+h} \dot{f}(s) ds \to \dot{f}(t) \text{ when } h \to 0.$$

Then (3.1) implies that

$$f(t+h) = f(t) + h(\dot{f}(t) + \varepsilon(h)), \tag{3.2}$$

where $\varepsilon(h) \to 0$ as $h \to 0$. By using Proposition 3.5, from (3.2) we obtain

$$\dot{g}(t) = \liminf_{h \to 0^{+}} \frac{1}{h} (g(t+h) - g(t)),
= \liminf_{h \to 0^{+}} \frac{1}{h} [d_{D}(f(t) + h(f(t) + \varepsilon(h))) - d_{D}(f(t))],
\leq d((\dot{f}(t), T_{D}(\pi_{D}(f(t)))).$$

Definition 3.7. Let J be an interval of \mathbb{R} , x(.): $J \to \mathbb{R}^n$ be a bounded function. We define the oscillation of x(.) on J by

$$\omega_J(x(.)) = \sup \{ \|x(t_1) - x(t_2)\| : t_1, t_2 \in J \}$$

Let I be an inteval of \mathbb{R} and $\mathcal{B}(\mathcal{I}, \mathbb{R}^n)$ the space of all bounded functions from I to \mathbb{R}^n and \mathcal{H} be a nonempty subset of $\mathcal{B}(\mathcal{I}, \mathbb{R}^n)$.

Definition 3.8. We say that \mathcal{H} is equioscillating if $\forall \varepsilon > 0$, \exists a finite partition of I into subintervals J_k $(1 \le k \le r)$ such that

$$\forall x(.) \in \mathcal{H}, \forall k \in \{1, ..., r\}, \omega_{J_k}(x(.)) \leq \varepsilon.$$

Theorem 3.9. Assume that \mathcal{H} is equioscillating and for all $t \in I$ the set $\mathcal{H}(t) = \{x(t) : x(.) \in \mathcal{H}\}$ is precompact. Then \mathcal{H} is precompact in $\mathcal{B}(\mathcal{I}, \mathbb{R}^n)$.

For the proof, see Aubin and Cellina [1, Th.5, p.15]

4. Proof of the main results

To begin with, let us prove:

$$\forall (x, v) \in gr(T_D), A_D(x, v) = C_D(x, v) = T_D(x).$$

Proof. Let $z \in A_D(x, v)$. Since D is closed and convex, there exists $x_n \in D$, $t_n \to 0$ as $n \to +\infty$ and a function $\varepsilon(.)$ with $\varepsilon(t) \to 0$ when $t \to 0^+$ such that:

$$x_n = x + t_n v + \frac{t_n^2}{2} z + t_n^2 \varepsilon(t_n), \quad \forall n \in \mathbb{N},$$

hence

$$\frac{x_n - x}{t_n} - v = \frac{t_n}{2}z + t_n \varepsilon(t_n), \quad \forall n \in \mathbb{N}.$$
 (4.1)

Since v belongs to $T_D(x)$ which is a closed cone using the Proposition 3.1, we deduce from (4.1) that $z \in T_D(x)$.

Conversely, let $z \in T_D(x)$. For t > 0, set $f(t) = x + tv + \frac{t^2}{2}z$. By Corollary 3.6, we have that

$$d(f(t), D) \le \int_0^t d(v + \tau z, T_D(\pi_D(f(\tau)))) d\tau,$$

so that

$$\frac{1}{t^2}d(f(t), D) \le \frac{1}{t} \int_0^t \frac{1}{\tau}d(v + \tau z, T_D(\pi_D(f(\tau)))) d\tau, \tag{4.2}$$

by using Proposition 3.1, it is easy to check that for any $\tau > 0$

$$\frac{1}{\tau}d(v + \tau z, T_D(\pi_D(f(\tau)))) = d(\frac{1}{\tau}v + z, T_D(\pi_D(f(\tau)))).$$

188 B. Aghezzaf, S. Sajid / On the second-order contingent set and differential inclusions

Let $\varepsilon > 0$. Since $\pi_D(.)$ is continuous and $z + \frac{1}{\tau}v \in T_D(x), \forall \tau > 0$, by Proposition 3.2 and Lemma 3.3, there exists $t_0 > 0$ such that

$$d(\frac{1}{\tau}v + z, T_D(\pi_D(f(s)))) < \varepsilon, \qquad \forall s \le t_0, \forall \tau > 0, \tag{4.3}$$

thus by combining (4.2) and (4.3) it follows that

$$\frac{1}{t^2}d(f(t), D) < \varepsilon, \qquad \forall t \le t_0.$$

This implies that $z \in C_D(x, v)$.

Hence $A_D(x, v) = C_D(x, v) = T_D(x)$. This completes the proof.

Remark 4.1. If C a nonempty compact subset of $gr(A_D)$, then

$$\frac{1}{t^2}d_D(x+ty+\frac{t^2}{2}z)\to 0 \text{ as } t\to 0^+$$

uniformly on C.

As application, let us explicit the Aubin's notion of contingent derivative of T_L at point (x_0, v_0) in direction v_0 defined by

$$D(T_L)(x_0, v_0)(v_0) = \left\{ w \in \mathbb{R}^n : (x_0, w) \in T_{qr(T_L)}(x_0, v_0) \right\},\,$$

where L is a set defined by constraint equalities. More precisely, suppose that:

$$L = \{x \in \Omega : f_i(x) = 0, \forall i = 1, ..., m\},\$$

where the f_i are real-valued functions defined and C^2 on an open subset \mathbb{R}^n . Suppose that the gradients $(\nabla f_i(x_0))_{i=1,\dots,m}$ are linearly independent. Then, it has been proved respectively in [5, Prop.9] and [6, Prop.2.2] that

$$A_L(x_0, v_0) = \left\{ w \in \mathbb{R}^n, \langle \nabla f_i(x_0), w \rangle + \langle \nabla^2 f_i(x_0) v_0, v_0 \rangle = 0, \ \forall i = 1, ..., m \right\}$$

and

$$D(T_L)(x_0, v_0)(v_0) = A_L(x_0, v_0),$$

where $\nabla^2 f_i(x_0)$ denotes the Hessian matrix at x_0 . Hence if L is in addition convex, then by virtue of Theorem 2.3, we have

$$D(T_L)(x_0, v_0)(v_0) = T_L(x_0).$$

We are able to give the proof of Theorem 2.1.

Proof. Let $r_0 > 0$ be such that $B(v_0, r_0) \subset \Omega$. Let $w_0 \in F(x_0, v_0)$. Set

$$r = \frac{r_0}{2}$$
, $K_0 = B((x_0, v_0), r) \cap (K \times B(v_0, r))$.

Since F is continuous with compact values, there exists $M > \max(1, ||v_0|| + r)$ such that

$$h(F(x,y),\{0\}) \le M-1 \quad \forall (x,y) \in K_0.$$
 (4.4)

Set

$$K_1 = (K_0 \times B(0, M-1)) \cap gr(C_K), T = \frac{r}{M}$$

and

$$\eta_k = \frac{r}{2^k} \quad \forall k \in \mathbb{N}.$$

Since K_0 and K_1 are compact there exists h_k , δ_k such that

$$\max\{h_k, \delta_k\} < \min\left\{r, 2\frac{M - \|v_0\| - r}{\|w_0\| + r}\right\},\tag{4.5}$$

and for all $(x, y), (x', y') \in K_0$ and $(u, v, w) \in K_1$ one has

$$h(F(x,y), F(x',y')) < \frac{\eta_k}{3}, \quad \forall (x',y') \in B((x,y), \delta_k),$$
 (4.6)

and

$$d_K(u+tv+\frac{t^2}{2}w) < \frac{\eta_k}{6}t^2, \quad \forall t \in [0, h_k].$$
 (4.7)

For any number k, choose an integer n_k such that $n_{k+1} > n_k$ and

$$\max \left\{ \frac{MT}{2^{n_k}}, \frac{(\|v_0\| + MT)T}{2^{n_k}} \right\} < \min\{h_k, \delta_k\}.$$
 (4.8)

Set

$$l_k = \frac{T}{2^{n_k}}, \quad t_i^k = il_k, \ k = 0, ..., 2^{n_k}.$$

Observe that

$$\forall i \in \{0, ... 2^{n_k}\}, \ \exists j \in \{0, ..., 2^{n_k}.\}, \quad t_i^{k+1} = t_j^k.$$
 (4.9)

Let us define a sequence of polygonal approximate solution of the problem (1.1). Indeed, let us consider

$$y \in \pi_K \left(x_0 + t_1^k v_0 + \frac{(t_1^k)^2}{2} w_0 \right),$$

and

$$\ddot{x}_1^k(0) = 2\frac{y - x_0 - t_1^k v_0}{(t_1^k)^2}.$$

On $[0, t_1^k]$, define

$$x_1^k(t) = x_0 + tv_0 + \frac{t^2}{2} \ddot{x}_1^k(0),$$

190 B. Aghezzaf, S. Sajid / On the second-order contingent set and differential inclusions then $x_1^k(t_1^k) \in K$. Moreover for all $s \in [0, t_1^k[$ we have that

$$\begin{aligned} \left\| \ddot{x}_{1}^{k} \left(s \right) - w_{0} \right\| &= \left\| \ddot{x}_{1}^{k} \left(0 \right) - w_{0} \right\|, \\ &\leq \frac{2}{l_{k}^{2}} \left\| y - x_{0} - l_{k} v_{0} - \frac{(l_{k})^{2}}{2} w_{0} \right\|, \\ &\leq \frac{2}{l_{k}^{2}} d_{K} \left(x_{0} + l_{k} v_{0} + \frac{(l_{k})^{2}}{2} w_{0} \right). \end{aligned}$$

Then by (4.7), for all $s \in [0, t_1^k[$ it follows that

$$\left\|\ddot{x}_{1}^{k}\left(s\right) - w_{0}\right\| < \frac{\eta_{k}}{3},$$

$$(4.10)$$

and

$$d(\ddot{x}_{1}^{k}(0), F(x_{1}^{k}(0), \dot{x}_{1}^{k}(0)) \leq \left\| \ddot{x}_{1}^{k}(0) - w_{0} \right\|, < \frac{\eta_{k}}{3}.$$

Hence

$$\|\ddot{x}_{1}^{k}(0)\| \leq \sup_{(x,y)\in K_{0}} h(F(x,y),\{0\}) + \frac{\eta_{k}}{3},$$

 $\leq M.$

Consequently, relation (4.8) implies

$$\left\| \dot{x}_{1}^{k}\left(t\right) - v_{0} \right\| \leq M l_{k},$$

$$< \delta_{k}, \quad \forall t \in [0, t_{1}^{k}].$$

On the other hand, from (4.5) and (4.8) we deduce

$$||x_1^k(t) - x_0|| \le t_1^k ||v_0|| + \frac{(t_1^k)^2}{2} ||w_0||$$

$$\le M l_k$$

$$< \delta_k \quad \forall t \in [0, t_1^k]$$

Thus $(x_1^k(t_1^k), \dot{x}_1^k(t_1^k)) \in K_0$.

For each integer p > 1 and $t \in [0, T[$, set $s_p(t)$ to be the initial point of the p-th partition to which t belongs. At each nodal point t_i^p let us define a piecewise function $x_i^p(.)$ on $[0, t_i^p]$ with the following properties:

(i) $x_i^p(.)$ is a continuous function with $x_i^p(0) = x_0$, $\dot{x}_i^p(0) = v_0$ and its second derivative $\ddot{x}_i^p(.)$ is constant on each interval $[t_j^p, t_{j+1}^p[, j=0,, i-1.$

(ii) At each nodal point $t_i^p \in [0, t_i^p]$, $x_i^p(t_i^p) \in K$ and (for $t_i^p < t_i^p$)

$$\ddot{x}_i^p(t_j^p) \in F(x_i^p(t_j^p), \dot{x}_i^p(t_j^p)) + \frac{\eta_p}{3}B(0, 1).$$

- (iii) $\max\{\|x_i^p(t_i^p) x_0\|, \|\dot{x}_i^p(t_i^p) v_0\|\} < \frac{rt_i^p}{T}$
- (iv) At each nodal point $t_j^p \in [0, t_i^p], \|\ddot{\ddot{x}_i^p}(t_j^p) \ddot{\ddot{x}_i^p}(s_{p-1}(t_j^p))\| < \eta_p$.

Since $s_{p-1}(t_1^p)=0$, it is clear that $x_1^p(.)$ verifies the previous properties. By induction, assume that has been constructed a function $x_i^p(.)$ on $[0,t_i^p]$ with $i\in\{0,...,2^{n_p}-1\}$ satisfying (i)–(iv). Set $s=s_{p-1}(t_i^p)$. Since $|s-t_i^p|< l_p$ we have by (4.8)

$$||x_i^p(t_i^p) - x_i^p(s)|| \le (MT + ||v_0||) l_p,$$

 $< \delta_p,$

and

$$\|\dot{x}_i^p(t_i^p) - \dot{x}_i^p(s)\| \leq M l_p, < \delta_p.$$

Hence relation (4.6) implies

$$h(F(x_i^p(t_i^p), \dot{x}_i^p(t_i^p)), F(x_i^p(s), \dot{x}_i^p(s))) < \frac{\eta_p}{3}.$$
 (4.11)

Moreover, by assumption (ii)

$$d(\ddot{x}_p(s), F(x_i^p(s), \dot{x}_i^p(s))) < \frac{\eta_p}{3}, \tag{4.12}$$

so that by (4.11), (4.12) and the compactness of the values of F, there exists $w \in F(x_i^p(t_i^p), \dot{x}_i^p(t_i^p))$ such that

$$\|\ddot{x}_{i}^{p}(s) - w\| \le \frac{\eta_{p}}{3} + \frac{\eta_{p}}{3},$$
 (4.13)

and therefore, assertion (iii) and triangular inequality imply that

$$||w - w_0|| \le \frac{\eta_p}{3} + \frac{\eta_p}{3} + \frac{t_i^p}{3}.$$
 (4.14)

Since $t_i^p \leq T = \frac{r}{M}$ and by the choice of η_p and M, we have

$$||w - w_0|| < r, (4.15)$$

hence $(x_i^p(t_i^p), \dot{x}_i^p(t_i^p), w) \in K_1$.

On the other hand, given $y \in \pi_K(x_i^p(t_i^p) + l_p \dot{x}_i^p (t_i^p) + \frac{(l_p)^2}{2}w)$ and consider

$$\ddot{x}_i^p(t_i^p) = 2 \frac{y - x_i^p(t_i^p) - l_p \ \dot{x}_i^p(t_i^p)}{(l_p)^2}.$$

192 B. Aghezzaf, S. Sajid / On the second-order contingent set and differential inclusions For $t \in [t_i^p, t_{i+1}^p]$, set

$$y_p(t) = x_i^p(t_i^p) + (t - t_i^p) \dot{x}_i^p(t_i^p) + \frac{1}{2}(t - t_i^p)^2 \ddot{x}_i^p(t_i^p).$$

Observe that $y_p(t_{i+1}^p) \in K$. Moreover

$$d(\ddot{x}_{i}^{p}(t_{i}^{p}), F(x_{i}^{p}(t_{i}^{p}), \dot{x}_{i}^{p}(t_{i}^{p})) \leq \|\ddot{x}_{i}^{p}(t_{i}^{p}) - w\|,$$

$$= \frac{2}{(l_{p})^{2}} d_{K}(x_{i}^{p}(t_{i}^{p}) + l_{p} \dot{x}_{i}^{p}(t_{i}^{p}) + \frac{(l_{p})^{2}}{2} w),$$

$$< \frac{\eta_{p}}{3}.$$

$$(4.16)$$

Hence the function

$$z_p = x_i^p(.)\chi_{[0,t_i^p]}(.) + y_p(.)\chi_{[t_i^p,t_{i+1}^p]}(.)$$

satisfies (i) and (ii). Let us prove that z_p verifies (iii) and (iv).

$$||z_{p}(t_{i+1}^{p}) - x_{0}|| = ||y_{p}(t_{i}^{p}) - x_{0}||,$$

$$\leq ||x_{i}^{p}(t_{i}^{p}) - x_{0}|| + l_{p}(||v_{0}|| + MT) + \frac{(l_{p})^{2}}{2} ||\ddot{x}_{i}^{p}(t_{i}^{p})||.$$

Since MT = r and $l_p < 2 \frac{M - ||v_0|| - r}{M}$, then

$$||z_{p}(t_{i+1}^{p}) - x_{0}|| \leq \frac{rt_{i}^{p}}{T} + \frac{rl_{p}}{T},$$

$$\leq \frac{rt_{i+1}^{p}}{T}.$$
(4.17)

Furthermore

$$\dot{z}_p(t_i^p) = \dot{x}_i^p(t_i^p) + l_p \ddot{x}_i^p(t_i^p). \tag{4.18}$$

Therefore

$$\begin{aligned} \left\| \dot{z}_{p} \left(t_{i+1}^{p} \right) - v_{0} \right\| & \leq \left\| \dot{x}_{i}^{p} \left(t_{i}^{p} \right) - v_{0} \right\| + M l_{p}, \\ & \leq \frac{r t_{i}^{p}}{T} + \frac{r l_{p}}{T}, \\ & \leq \frac{r t_{i+1}^{p}}{T}. \end{aligned}$$

Hence, relations (4.15) and (4.17) imply (iii). About (iv), we have

$$\left\|\ddot{z}_{p}\left(t_{i}^{p}\right) - \ddot{z}_{p}\left(s\right)\right\| = \left\|\ddot{x}_{i}^{p}\left(t_{i}^{p}\right) - \ddot{x}_{i}^{p}\left(s\right)\right\|,$$

from that we obtain by using (4.13) and (4.16)

$$\left\|\ddot{z}_p\left(t_i^p\right) - \ddot{z}_p\left(s\right)\right\| \le \eta_p.$$

This implies (iv). \Box

193

Consequently, there exists a sequence $\{u_m(.)\}$ of absolutely continuous functions on [0, T] satisfying (i)-(iv).

Claim 4.2. The sequence $\{\ddot{u}_m(.)\}$ is equioscillating.

Proof. Let $p \in \mathbb{N}$ and $I = [t_i^p, t_{i+1}^p[$ an interval of the p-th partition of [0, T]. Let q > p and t_j^q be a nodal point of I. For i = 0, ..., p, set $s^i = s_{q-i} \circ s_{q-i+1} \circ ... \circ s_q$. It is clear that $t_j^q = s^0(t_j^q), s^1(t_j^q), ..., s^p(t_j^q) = t_i^p$ are in I. We wish to compute the oscillation of \ddot{u}_m (.) on I. If m < p then the oscillation is zero. Hence consider m > p. Let $t \in I$ and t_j^m be the initial point of the m-th partition to which t belongs. Since \ddot{u}_m (t) = \ddot{u}_m (t) then by (iv) we have that:

$$\|\ddot{u}_{m}(t_{j}^{m}) - \ddot{u}_{m}(s^{m-1}(t_{j}^{m}))\| \leq \eta_{m},$$

$$\|\ddot{u}_{m}(s^{m-1}(t_{j}^{m})) - \ddot{u}_{m}(s^{m-2}(t_{j}^{m}))\| \leq \eta_{m-1},$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\|\ddot{u}_{m}(s^{p-1}(t_{j}^{m})) - \ddot{u}_{m}(t_{i}^{p})\| \leq \eta_{p}.$$

Consequently

$$\|\ddot{u}_m(t_i^p) - \ddot{u}_m(s)\| \le \sum_{i=p}^m \eta_i,$$

$$\le \frac{1}{2^{p-1}}.$$

$$\omega(\ddot{u}_m(.)) \le \frac{1}{2^{p-1}} \quad \forall m \in \mathbb{N}.$$

On the other hand, since

$$\|\ddot{u}_m(t)\| \le M$$
 and $\|\dot{u}_m(t)\| \le MT + \|v_0\|$, $\forall m \in \mathbb{N}$, $\forall t \in I$,

then by Theorem 3.9, $\{\ddot{u}_m(.)\}$ converges uniformly to a function w(.), so that $\{u_m(.)\}$ and $\{\dot{u}_m(.)\}$ converge uniformly to functions u and v respectively. The functions u, v and w are related by the formula

$$v(t) = u(t)$$
 and $w(t) = u(t)$ a.e on $[0, T]$

Let $t \in [0, T]$, for each m we denote by t_i^m the initial point of the m-th partition to which t belongs. We have

$$\begin{aligned} d(w(t), F(u(t), v(t))) &\leq \left\| w(t) - \ddot{u}_{m}(t) \right\| \\ &+ \left\| \ddot{u}_{m}(t) - \ddot{u}_{m}(t_{i}^{m}) \right\| \\ &+ d(\ddot{u}_{m}(t_{i}^{m}), F(u_{m}(t_{i}^{m}), \dot{u}_{m}(t_{i}^{m})) \\ &+ h(F(u_{m}(t_{i}^{m}), \dot{u}_{m}(t_{i}^{m})), F(u_{m}(t), \dot{u}_{m}(t)) \\ &+ h(F(u_{m}(t), \dot{u}_{m}(t)), F(u(t), v(t)). \end{aligned}$$

Since $\{\ddot{u}_m(t)\}$ converges to w(t), $\ddot{u}_m(t)$ equals $\ddot{u}_m(t_i^m)$, $\ddot{u}(t_i^m)$ belongs to the set $F(u_m(t_i^m), \dot{u}_m(t_i^m)) + \frac{1}{3}\eta_m B(0,1)$, $u_m(.)$, u(.), $\dot{u}_m(.)$ and $\dot{u}(.)$ are lipschitzean, $\{t_i^m: m \in N\}$ converges to t and F is continuous, the right-hand side of the above inequality converges to zero, since F have closed values, we deduce that

$$\ddot{u}(t) = w(t) \in F(u(t), \dot{u}(t))$$
 a.e on $[0, T]$.

On the other hand

$$d(u(t), K) < ||u_m(t) - u(t)|| + ||u_m(t) - u_m(t_i^m)|| + d(u_m(t_i^m), K),$$

hence

$$u(t) \in K, \forall t \in [0, T[.$$

Finally

$$\begin{cases} \ddot{u}(t) \in F(u(t), \dot{u}(t)) & \text{a.e on } [0, T[\\ u(0) = x_0, \dot{u}(0) = v_0 \in T_K(x_0) \\ u(t) \in K & \forall t \in [0, T[\end{cases}$$

To prove Theorem 2.2, by the same reasoning we construct an approximate solution $\{u_m(.)\}$ satisfying at each nodal point t_i^m , \dot{u}_m $(t_{i+1}^m) \in T_D(u_m(t_i^m))$.

Relation (4.18) implies that

$$\dot{u}_m (t_{i+1}^m) = \dot{u}_m (t_i^m) + l_m \ddot{u}_m (t_i^m) = \frac{2}{l_m} (y - \dot{u}_m (t_i^m) - u_m (t_i^m)).$$

Since $y \in D$, then by Proposition 3.1

$$(u_m(t_i^m), \dot{u}_m(t_i^m)) \in gr(T_D), \quad \forall m \in \mathbb{N}.$$

Since $gr(T_D)$ is closed then by passing to the limit there exists an absolutely continuous function $x:[0,T]\to\mathbb{R}^n$ for which x is also absolutely continuous which is a solution of the problem (1.2). This completes the proof of Theorem 2.2.

References

- [1] J. P. Aubin, A. Cellina: Differential Inclusions, Springer-Verlag, 1984.
- [2] J. P. Aubin, H. Frankowska: Set-Valued Analysis, Birkhäuser, 1990.
- [3] A. Auslender. R. Cominitti: A comparative study of multifunction differentiability with applications in mathematical programming, MOR 16(2) (1991) 240–258.
- [4] A. Auslender, J. Mechler: Second Order Viability Problems for Differential Inclusions, Academic Press Inc., 1994.
- [5] A. Ben-Tal: Second order theory of extremum problems, in: Extremal Methods and System Analysis, Lecture Notes in Economics and Mathematical Systems 174, (A. V. Fiacco, Kortanek, eds.), Springer-Verlag, New-York, 1980, 336–356.

- [6] B. Cornet, G. Haddad: Théorème de viabilité pour les inclusions différentielles du second ordre, Isr. J. Math. 57(2) (1987) 225–238.
- [7] G. Haddad: Monotone trajectories of differential inclusions and functional differential inclusions with memory, Isr. J. Math. 39 (1981) 83–100.
- [8] H. Kawasaki: Second order necessary conditions of the Kuhn-Tucker type under new constraint qualifications, J. Optmization Theory Applications 57(2) (1988).
- [9] R. T. Rockafellar: Pseudo-differentiability of set-valued mappings and its applications in optimization, in: Analyse non Linéaire, H. Attouch, Gautier-Villars (1989) 449–482.