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In this paper, we establish the existence of solutions of a nonconvex second order differential inclusion of
the following type:

Z (t) € F(x(t),z (t)) a.e, z(0) =20 € K, 2 (0) =g € Q,

such that z(t) € K, where K is a closed subset and  is an open subset of R*. When K is in addition
convex, we introduce the contingent cone Tk to prove the existence of solutions of the differential inclusion:

i () € G(a(t), @ (1) ae, z(t) € K and @ (£) € Ti((t))
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set
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1. Introduction

Let K be a nonempty closed subset of R*. We shall denote by dk/(.) or d(., K) the distance
to K, by Tk(z) the contingent cone at z, by gr(Tk) the graph of the multifunction
x — Tk (z) and by Ag(z,y) the second-order contingent set to K, i.e

d ty+ L
Ag(z,y) = {zeR” im jng K E T+ 52) :0}

t—0t 12

where (z,y) € K x R*. For more on properties of the second-order contingent set, we
refer to [4, 5, 8, 9].

In the present paper, we are concerned with Ag(z,y) in the case where the set K is, in
addition, convex. More precisely, for all (z,y) € gr(Tk), we prove that Ax(z,y) and the
second-order contingent set

t—0+ 12

Ck(z,y) = {z € R": lim
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coincide with Tk (x).

As application, we establish in a special case where K is defined by constraint equalities
that the Aubin’s contingent derivative set D(Tk)(z,y)(y) at (z,y) in direction y is equal

Another application consists of studying the existence of second-order viable solution for
a class of multivalued differential equation with nonconvex right-hand side.

Throughout this paper, we denote by (2 a nonempty open subset of R, by D a nonempty
closed convex subset of R™, by gr(Tp) the graph of the multifunction Tp(.), by C(R™) the
collection of all nonempty compact subsets of R* and by F' and G two C(R")- continuous
multifunctions defined on K x  respectively. Let (xo,vp) be an element of K x Q or
gr(Tp). Consider the problems:

z (t) € F(z(t),z (1)) a.e on [0, 77,
z(0) = zg, z (0)) = vy, (1.1)
o(t) € K vt € [0, 7.

and

z (t) € G(z(t),z (t)) a.e on [0,77,
zo, Z (0)) = vy, (1.2)
(x(t),z (t)) € gr(Tp) vVt € [0,T].

By a solution of (1.1) or (1.2) we mean (7,z(.)) where T > 0 and = : [0,7] — R" is
an absolutely continuous trajectory for which z (.) is also absolutely continuous, which
satisfies (1.1) or (1.2).

Similar problems were investigated by [4, 6]. In the present paper we study problem (1.1)
(resp. (1.2)) under the assumption H; : V (z,y) € K x Q, F(z,y) C Ck(x,y) (resp. Hy :
V (z,y) € gr(Tp), G(z,y) C Tk (x)).

2. Notations, definitions and main results

Let X, Y be two metric spaces, R be a closed valued multifunction from X to Y. We
denote by gr(R) the graph of R. We say that R is lower semi-continuous if for any open
subset V of Y the set {x € X : R(z) NV # 0} is open. Let (C(Y), h) be the collection
of all nonempty closed subsets of Y equipped with the Hausdorff distance h defined by
h(A, B) = max{e(A, B),e(B, A)}, where e(A, B) = sup{d(z,B) : = € A}. A C(Y)-
valued multifunction R defined on X is continuous if the mapping R : X — (C(Y),h) is
continuous.

For any vector normed space S and a nonempty subset A of S, we denote by cl A,co A, x4
the closure, the convex hull and the characteristic function of A. For all z € S, 7ma(x)
stands for the set of all y € A for which ||z — y|| = d(z, A).

For r > 0, we denote by B(z,r) the closed with center at x and radius 7.
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Assumption H;

Let K be a nonempty closed subset of R”, {2 be a nonempty open subsets of R* and F be a
multifunction from K x {2 to the space of all nonempty subsets of R*. Let (xg,v9) € K x €.
On F' we make the following hypotheses:

- Fis continuous with compact values.
- VY(v,y) € K xQ, F(z,y) C Ck(z,y).

Assumption Hy

Let D be a nonempty closed convex subset of R*, G be a multifunction from gr(Tp) to
nonempty subsets of R". Let (xq,v9) € gr(Tp). Suppose that:

- (@ is continuous with compact values.
- V(m,y) EgT(TD)aG(‘Tay) CTD(‘T)'
- gr(Tp) is closed.

Here are the main results.

Theorem 2.1. Assume that Hy is satisfied, and let (xg,v9) € K x 0, then there ezists
To > 0 and an absolutely continuous function x(.) : [0,Ty] — R for which = (.) is also
absolutely continuous such that:

Z(t) € F(x(t), (1) a.e on [0, Ty
z(0) =zo 2(0)) =g
o(t) € K vt € [0, Ty

Theorem 2.2. Assume that Hy is satisfied and let (zo,v9) € gr(Tp), then there ezists
T, > 0 and an absolutely continuous function u(.) : [0,T] — R* for which u (.) is
absolutely continuous and such that:

u (t) € G(u(t-,u (1) a.e on (0,71
(u(t),u (t)) € gr(Tp) vVt € [0, T3]

To prove Theorem 2.2, we need the following result:

Theorem 2.3. Let C be a nonempty closed convex subset of R*. Then, the second-order
contingent set Ac(z,y) at (z,y) € gr(Tc) coincides with the contingent cone Te(x).

3. Preliminary results
In this section, we state some definitions and results collected in Aubin and Cellina [1].

Proposition 3.1. Let A be a nonempty closed convex subset of R* and x € A. Then
1
Ta(z) = cl { Unso E(A — 1)

For the proof see [1, p.174].

Proposition 3.2. The multifunction D — 28"z — Tp(z) is lower semi-continuous.
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Proof. See Aubin and Cellina [1, Th.1, p.220]. O]

Lemma 3.3. Let () be a lower semi-continuous multifunction from a metric space X to
the space of nonempty subsets of a metric space Y. Then for all ¢ > 0, the set

{z e X :Q(x) C Q(z)+ B(0,¢)}

1S open.

The proof is straighforward and is omitted.

Definition 3.4. Let I be a bounded interval of R, recall that a function f : I — R" is
called absolutely continuous if there exists an integrable function g : I — R" such that

for all s,t € I we have f(t) = f(s) + f: g(7)dr, where g is denoted f.

Proposition 3.5. Let z,y € R", ¢(.) a mapping with values in R™ such that e(h) — 0 as
h — 0. Then

lim inf% ldp(x + h(y +£(h))) = dp(2)] < d(y, To(rp(x))).

h—0t

For the proof, see [1, Prop.1, pp. 202 or Prop.3, pp. 178-179].

Corollary 3.6. Let I be a bounded interval of R and f : I — R" be a lipschitz function.
Set g(t) = dp(f(t)). Then g is absolutely continuous and for almost every t € I

g (1) < d(f (), To(mp(f(1)))-

Proof. Let t € I and h be sufficiently small such that ¢ + h € I. We have
t+h
F(t+h) = £(2) +/ j (7). (3.1)
t
Without loss of generality, we may assume that

h
%/H f (s)ds —f (t) when h — 0.
t

Then (3.1) implies that

f(t+h) = f@t) +h(f () +e(h)), (3-2)

where €(h) — 0 as h — 0. By using Proposition 3.5, from (3.2) we obtain

g = nminf%(gmh)— a(8),

h—0t+

— Timinf + [do(f() + h(F(®) +e(R)) — do(F(2))],

h—0t h

d((f (£), To(mp(f(2)))-

IN
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Definition 3.7. Let J be an interval of R, z(.): J — R" be a bounded function. We
define the oscillation of z(.) on J by

ws(2(.)) = sup {[le(t) —x(t)|| : 1,82 € J}

Let I be an inteval of R and B(Z,R") the space of all bounded functions from I to R"
and H be a nonempty subset of B(Z,R").

Definition 3.8. We say that H is equioscillating if Ve > 0, J a finite partition of I into
subintervals J; (1 < k < r) such that

V() e H,Vk € {1,...,r},wy (z(.)) <e.
Theorem 3.9. Assume that H is equioscillating and for all t € I the set H(t) =
{z(t) : z(.) € H} is precompact. Then H is precompact in B(Z,R").
For the proof, see Aubin and Cellina [1, Th.5, p.15]

4. Proof of the main results

To begin with, let us prove:
V(z,v) € gr(Tp), Ap(z,v) = Cp(z,v) = Tp(z).
Proof. Let z € Ap(z,v). Since D is closed and convex, there exists =, € D, t, — 0 as
n — +oo and a function &(.) with £(¢t) — 0 when ¢ — 07 such that:
t2
Tp =T+t v+ E"z +t2e(t,), Vn €N,

hence

n - tn
z " T = Ez—i-tne(tn), Vn € N. (4.1)

Since v belongs to Tp(x) which is a closed cone using the Proposition 3.1, we deduce from
(4.1) that z € Tp(x).

Conversely, let z € Tp(z). For t > 0, set f(t) =z + tv + %z By Corollary 3.6, we have
that

d(f(t),D)§/0 d(v+ 72, To(mp(f(7)))) dr,
so that

tlzd(f(t),D) < % /0 Ldtw + 72, To(mn(£(7)))) dr, (4.2)

T

by using Proposition 3.1, it is easy to check that for any 7 > 0

Ld(o + 2, To(mp(F(T)))) = d(=v + 2 To(rp(F(r)))).

T T
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1

Let ¢ > 0. Since mp(.) is continuous and z + —v € Tp(z), V 7 > 0, by Proposition 3.2
T

and Lemma 3.3, there exists ¢, > 0 such that

Aot 2 To(rp(F(5)) <&, Vs <ty ¥r >0, (4.3)

T

thus by combining (4.2) and (4.3) it follows that

1

This implies that z € Cp(z,v).
Hence Ap(z,v) = Cp(z,v) = Tp(x). This completes the proof. O
Remark 4.1. If C' a nonempty compact subset of gr(Ap), then

1 12
t—QdD(x-l—ty—i—Ez) —0ast— 0"

uniformly on C.

As application, let us explicit the Aubin’s notion of contingent derivative of 77, at point
(29, vg) in direction vy defined by

D(Ty) (g, v0)(vg) = {w eR" : (zg,w) € Tgr(TL)(Z‘O,UO)} ,

where L is a set defined by constraint equalities. More precisely, suppose that:
L={ze€Q: fi(r)=0,Vi=1,..,m},

where the f; are real-valued functions defined and C? on an open subset R". Suppose
that the gradients (V fi(2o))i=1,..,m are linearly independent. Then, it has been proved
respectively in [5, Prop.9] and [6, Prop.2.2] that

AL(xO,UO) = {w € Rn: <sz(.’130),’w> + <V2fi($0)’l)0,’l}0> = Oa Vi = 15 am}

and
D(Tr)(z0, v0)(v0) = AL(o, o),

where V?f;(zq) denotes the Hessian matrix at zo. Hence if L is in addition convex, then
by virtue of Theorem 2.3, we have

D(Tr)(xo,v0) (v0) = T1(x0).

We are able to give the proof of Theorem 2.1.

Proof. Let ry > 0 be such that B(vgy,r) C §2. Let wy € F(xg,vp). Set

r="0 Ky=B((z,v),r) N (K x B(u,)).
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Since F' is continuous with compact values, there exists M > max(1, ||vg|| + r) such that

h(F(z,y),{0}) <M -1 V(z,y) € K. (4.4)

Set
K = (Ko x B(0,M —1)) N gr(Cx), T = %
and r

Since Ky and K, are compact there exists hy, d; such that

: M — |lvoll — 7‘}
max {hg, 0} < min<r,2——— & 4.5
(i <min 2 )
and for all (z,vy), (z',y') € Ko and (u,v,w) € K; one has
h(F(z,y), F&,y)) < % V(' y') € B((x,y), 5%), (4.6)
and
£ Tk 42
For any number k, choose an integer nj such that ng,; > n, and
MT MT)T
max{ : (lvoll + ) } < min{hg, 0y }. (4.8)
24 2mi
Set
T k . n
lk_QTk’ ti—llk,k—o,...,Qk.
Observe that
Vi €{0,..2"}, 35 € {0,...,2".}, titt =5 (4.9)

Let us define a sequence of polygonal approximate solution of the problem (1.1). Indeed,
let us consider

tk?
Y E Tk (xo—l—t’fvo—i-(l?) w()),

and
ok Y —Tg — t’fvo
z, (0)=2—F——
1 ( ) (tllc)g

On [0, ], define

2

e ..
.’Ellc(t) =X +t’Uo =+ 5 33]; (0),
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then z%(t¥) € K. Moreover for all s € [0,t¥[ we have that

&8 ) = wo| = [ ©) —wi,

< % ‘y — Zo — lpvo — (l;)Qwo )

< %dK(xo + lyvo + (lg)Qwo).
Then by (4.7), for all s € [0, t}[ it follows that

‘if(s)-umH < %f, (4.10)
and
(i (0), F(a5(0),35 (0)) < |2} (0) = w,
< T

Hence

HO| < s h(Fy),0)+ %

< M.

Consequently, relation (4.8) implies

|

ﬁ(ﬂ—vw < M,

< O, Vte [O,tllc]

On the other hand, from (4.5) and (4.8) we deduce

tk2
<t ool + E
< Mi
<

SVt e [0,t"]

|21(2) = o]

Thus (a4 (t), 3} ()) € Ko.

For each integer p > 1 and ¢ € [0, 77, set s,(t) to be the initial point of the p-th partition
to which ¢ belongs. At each nodal point ¢ let us define a piecewise function z(.) on [0, ¢
with the following properties:

(i)  2%(.) is a continuous function with z?(0) = zy, 2} (0) = vy and its second derivative

z; (.) is constant on each interval (85,651, 5 =0,.ii— 1.
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(ii) At each nodal point ¢ € [0,#[, o7 (t}) € K and (for ¢ < t7)

i (1) € F(2().47 (1) + B(0,1).

. P
(i) max{la7 (&) — zoll , |27 () — vo[} < 7

(iv) At each nodal point ¢5 € [0,#], ||Z7 ()~ Z; (sp—1(t9))| < 7.

Since s,_1(t]) = 0, it is clear that z}(.) verifies the previous properties. By induction,
assume that has been constructed a function zf(.) on [0,#] with i € {0,...,2™ — 1}
satisfying (i)—(iv). Set s = s,_1 (). Since |s — t¥| < I, we have by (4.8)

27 (&) — w7 ()l < (MT + lvoll ) &y,

< Op,
and
|45 ()= 47 ()] < M,
< Op.

Hence relation (4.6) implies

h(F (2} (8), a7 (), F(af(s), 27 (s))) < % (4.11)
Moreover, by assumption (ii)

(i, (), F(}(s),37 (5))) < &, (4.12)

so that by (4.11), (4.12) and the compactness of the values of F', there exists w €
F(z?(#?), 2} () such that

27 (s) —w|| < T2 4 T, (4.13)
3 3
and therefore, assertion (iii) and triangular inequality imply that

Tl Tl tf
— < =4 =4 —. 4.14

Since t; < T = 47 and by the choice of 7, and M, we have
lw —wyl| < 7, (4.15)
hence (z(&), % (), w) € K;.

On the other hand, given y € mg (22 (&) + 1, 2} () + %w) and consider

y — 27 () — b 7 (1)

(p)?

(1) =2
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For ¢t € [t},t},,], set
p4D P\ P (4D 1 P\2 5P (4D
Yp(t) = 2 (7)) + (t = t7) z; (ti)+§(t_ti) z; (87).

Observe that y,(t), ;) € K. Moreover
d(@y (&), F (a7 (), 27 (1)) < ||77 (&) —w],

()

2 .
Tadr (@ (8) + b & () + 5 -w), (4.16)

~ (1)
Ip

< —.
3

Hence the function
zp = 27 ()X, (-) + Yp (X2 z+1]( )
satisfies (i) and (ii). Let us prove that z, verifies (iii) and (iv).

2p(2y1) — 20| = lwp(t?) — x|,

1,)% .
< 1) = oll + 4y (1ol + 207) + &5 32 ).

Since MT =r and [, < 2%, then

17 l
Hzp(tfH) - :v0|| = % + %)’

N

(4.17)

| /\
:L
t

Furthermore
zp (£7) :Qf ) + 1, xf (). (4.18)
Therefore

125 (1) —wol| < ]3] (87) — wo| + M,

rt? ri,

T T
< rtfH
- T

<

Hence, relations (4.15) and (4.17) imply (iii). About (iv), we have
125 (&)= % ()| = |12 (&)= &3 (s)]].
from that we obtain by using (4.13) and (4.16)
”ép (tf)_ Zp (S)H < M-
Thisimplies (iv). O
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Consequently, there exists a sequence {u,,(.)} of absolutely continuous functions on [0, 7]
satisfying (i)—(iv).

Claim 4.2. The sequence {i, (.)} is equioscillating.

Proof. Let p € N and I = [t},# [ an interval of the p-th partition of [0,T]. Let ¢ > p
and tg be a nodal point of I. For i =0, ...,p, set s = s,_;08,_4410...0 5, It is clear that

th = s(t]), s*(t]), ..., s*(t]) =t} are in I. We wish to compute the oscillation of iy, (.) on
I. It m < p then the oscillation is zero. Hence consider m > p. Let ¢ € I and t7* be the

initial point of the m-th partition to which ¢ belongs. Since Uy, () = Uy, (tJ') then by
(iv) we have that:

)] < s
it (8™ (7)) = i, (5™ 2(E)]| < Dt

Consequently
it ()= i ()| < D
i=p
1
< op—1
1

On the other hand, since
|iim )| <M and iy, ()| < MT +|lv|l, VmeN, Vte I,

then by Theorem 3.9, {i,, (.)} converges uniformly to a function w(.), so that {u,(.)}
and {t,, (.)} converge uniformly to functions u and v respectively. The functions u, v
and w are related by the formula

v(t) = u (t) and w(t) =u (t) a.e on [0,T]

Let t € [0,71], for each m we denote by ¢ the initial point of the m-th partition to which
t belongs. We have
d(w(t), F(u(t),v(t))) < |[w(t)— i H
+ [iim (8)= i (67
+ d(tm, (tm) F(un ("), tm (£7))
+ h(F (um ("), U (15")), F(um(t), 1
+ h(F (um (1), U (1)), F(u(t), v(t)).
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Since {iy, (t)} converges to w(t), U, (t) equals i, (¢{7), U (") belongs to the set
F (™), U () + 50m B(0,1), un(.), u(.), Un (.) and u (.) are lipschitzean, {¢" :
m € N} converges to t and F' is continuous, the right-hand side of the above inequality

converges to zero, since F' have closed values, we deduce that

u (t) = w(t) € F(u(t),u (t)) a.eon [0,7T].

On the other hand

d(u(t), K) < [lum(t) — w()[| + [lum(t) — um ()] + d(um(E"), K),

hence
u(t) € K,Vt € [0,T].
Finally
u (t) € F(u(t),u (t)) a.e on [0,7]
U(O) = Xy, U (0) =g € TK(.T())
u(t) € K vVt € [0,T]

To prove Theorem 2.2, by the same reasoning we construct an approximate solution
{um(.)} satisfying at each nodal point ", i, (t7%,) € Tp(um(t]"))-

Relation (4.18) implies that

Uppy, ( ;11) = U, (t;n) + i U (t;n)
= 2 (o () — (1))

Im
Since y € D, then by Proposition 3.1

(U (8, U, (7)) € gr(Tp), VYVm €N

Since gr(Tp) is closed then by passing to the limit there exists an absolutely continuous
function z : [0,7] — R for which z is also absolutely continuous which is a solution of
the problem (1.2). This completes the proof of Theorem 2.2. O
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