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We consider an operation on subsets of a topological vector space which is closely related to what has
been called the inverse addition by R.T. Rockafellar. Applied to closed convex sets, it appears as the
operation corresponding to the addition under polarity. However, our study is not limited to the convex
case. Crucial tools for it are the gauges one can associate with a subset. We stress the role played by
asymptotic cones in such a context. We present an application to the calculus of conjugate functions
for one of the most fruitful dualities for quasiconvex problems. We also present an extension of the
well-known rule for the computation of the normal cone to a convex set defined by a convex inequality.
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1. Introduction

The use of gauges for the study of convex sets is well established after the work of
Minkowski during the first decade of this century (see classical monographs on functional
analysis and convex analysis) and the recent works of Barbara-Crouzeix ([4]), Rubinov
and his co-authors ([21]-[24]). It is the purpose of the present paper to show the useful-
ness of such a tool for the study of an operation on the family of subsets of a topological
vector space which is akin to the operation called the inverse sum (see [18], [19]). Here
we modify the formula defining the inverse sum in order to get a closed subset when the
given sets are closed. To reach this aim one needs to take into account the asymptotic
cones or some substitutes. This aim has been achieved by Ioffe-Tikhomirov [6], Rockafel-
lar [18] and Rubinov-Yagubov [24] when the sets are closed, convex and contain 0 (or are
star-shaped). Here we consider more general cases by using explicitly asymptotic cones.
Moreover, we also modify the classical definitions of the gauges associated with a subset
in order to obtain semicontinuity properties. In the particular case of closed shady (or
star-shaped at infinity [8], [9], [22]) convex subsets not containing 0 (and even for a larger
class of subsets) our proposals coincide with the functions obtained via regularization in
[4]. The simultaneous uses of these modifications enable one to get pleasant relationships
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between the set-theoretical operation of inverse sum (or rather its variant considered here,
we call the harmonic sum) and sums of gauges. These relationships are especially useful
when considering duality questions.

The terminology we use is justified by the following simple case of two closed intervals
A:=g,a], B:=[bb] with0<a<a@<ooand0<b<b< oo; then the inverse sum
A+#B and the harmonic sum ACB are given by

A#B = AOB = (' +b7) @' +07")7"].
For A :=[a, 00|, B := [b,b] one has
A#B =@’ +b7)78, AOB=[a +b7)7E].

This simple example shows one has to modify the definition of the inverse sum in order
to get a closed set even when A and B are closed convex subsets.

As an application, we show that the harmonic sum enters in the computation of the
conjugate of a quasiconvex function for one of the most important duality schemes of
quasiconvex analysis (see [5], [10], [12], [14], [15], [31]...). In general, explicit formulae for
such conjugates are not easy to obtain. Here our computation strongly relies on a convex
duality result. A by-product of this duality result is a refined form of the representation
theorem for the normal cone to a convex set defined by a convex inequality under a Slater
condition.

Let us note that the formulae we obtain for this quasiconvex conjugate show that it is
useful to consider gauges of sets which are neither shady nor star-shaped. Another such
situation appears in the calculus of the classical subdifferentials specific to quasiconvex
functions. This question (which motivated the present study) is considered in the paper
[16].

Acknowledgements. We are indebted to an anonymous referee for the suggestion of putting
apart the contents of the present paper from [16] and for several references related to the subject.
We are also indebted to another referee for pointing out the links of the present paper with a
previous study by A. Seeger ([25]). There the harmonic sum is included in a general spectrum
of operations on convex sets containing the origin; that paper also contains such operations
on real-valued functions and applications are given to second order subdifferentials of convex
functions and to network connections.

2. Gauges

Henceforth we consider X to be a topological vector space. In the sequel, we say that
a subset A of X is star-shaped with respect to 0, or in short is star-shaped, if 0 € A
and |0,1]- A :={ta | 0 <t < 1,a € A} C A. We say that A is shady if [1,00[A C A
(see [8], [9], [22], [23]). For a nonempty subset A of X we use the convention that
0-A=04=0%A:=limsup,,, tA, the asymptotic cone of A, i.e. the set of limits of nets
of the form (%;a;),c; with (¢;)ier — 0, t; € P :=]0,00[, a; € A for each i € I. We observe
that this convention ensures that [0,7] - A is closed for every v € R, := [0, 00[ when A is
closed. If A = () we consider that 0t A = {0}, as in [20]. In the sequel, for the empty set
in R, we use the familiar conventions inf ) = +oo and sup ) = —oc.
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Note that, when 0 € A, Ioffe-Tikhomirov [6] and Rubinov [21, p. 296] took 0 - A as being
NMasoAA; if A is a closed and star-shaped set, one obtains again the asymptotic cone of A.

Recall that the Minkowski gauge functional of a subset A of X is given by

inf{t > 0|z e€tA} ifz#0,

:X%E, ) =
pia palx) {0 if o =0,

where R := RU {—o0, +00}. Here we do not suppose 0 € A as it is done usually; we will
see in Proposition 5.2 that there are natural situations in which 0 ¢ A.

Another functional associated to A, considered and studied by Barbara-Crouzeix in [4]
under the name of concave gauge function, is given by

sup{t >0 |z € tA} ifx #0,

va: X =R, wvalz) = {0 fe0

Note that up < pa and vy < vp for A C B, pass = pa A pp := min (4, 4g), Vaup =
vaVvp :=max (va,vg). Also note that 4 = po13.4 = pavgoy and va = va\(o} = V1,00 A-

Example 2.1. Note that it may happen that ys and —v4 are not lower semicontinuous,
even if A is closed and convex. For example, if A = {(r,s) € R? | r,s >0, rs > 1}, then

a(r, 5) = {0 if (r5) €P7U{0,0}, o {\/Fs if (r,5) € P2U {(0,0)},

oo otherwise, —oo otherwise.

The preceding example justifies the introduction of the following functionals (in the defi-
nition of which we use the above convention about 0A):

as: X =R, au(z) :==inf{t > 0 | z € tA},
Ba: X =R, Ba(z) == sup{t > 0|z € tA}.

Thus, the domains of 4 and —v4 are PAU{0}, where PA =: cone A is the cone generated
by A. Let us observe that the functions ps and a, differ only on 07 A\ (0;7A U {0}),
where 07 A == [1,.(]0,7]A is the radial asymptotic cone of A and the functions v4 and
Ba are different only on 07 A \ PA. Let us also note that in the definition of v4(z) (resp.
Ba(z)) the supremum is attained when it is finite and A is centrally closed in the sense
that for any x € X, (t,) — 1, one has © € A whenever t,x € A for each n. A similar
observation can be made for p4(z) and a(z).

Of course, if A C B then ap < ay, 84 < #g. Note that B4, as well as v4, does not take
the value +00 if 0 ¢ clA or if 0 ¢ A and A is centrally closed.

The following relations, in which v € [P, are obvious:

{z € X [pa(z) <y} C (10,79]- A)U{0} C {z€ X |pa(z) <}, (2.1)
{r e X |valz) >y} C [y,00[A C {z € X |va(x) >~} (2.2)

The four functions are positively homogeneous and if A is convex, p4 is sublinear and,
when the cone PA is pointed, —v4 is sublinear, too. When A is a closed convex subset,



98  J.-P. Penot, C. Zalinescu / Harmonic sum and duality

then a4 is convex, hence sublinear, and if moreover R, A is pointed, 34 is concave. Here
we use the familiar convention from convex analysis (+00) + (—00) = +00. The preceding
discussion can be subsumed in the following statement which completes results in [22],
[24].

Proposition 2.2. The set of centrally closed convex subsets of X not containing 0 s
in bijection with the set of pairs (u,v), where u and —v are extended real-valued sub-
linear functions on X, such that domp = dom(—v) and 0 < p < v on dompu. The
inverse of the mapping A — (a,va) is the mapping which assigns to (u,v) the set
A={re X ulz)<1<v(r)}.

When one restricts one’s attention to the family St(X) of centrally closed star-shaped
subsets of X or to the family Sh(X) of centrally closed convex shady subsets of X not
containing 0, it suffices to use A — 4 or A — vg4, respectively (see [22], [24]).

For star-shaped subsets and shady subsets nice characterizations of the asymptotic cone
in terms of the gauges introduced above are available. For A closed convex containing
0, the relation 07 A = 1" (0), obtained from part (a) (taking assertions (c) and (d) into
account) of the following proposition, is well known (see [20] p. 101 for example).

A relationship between p4 and a4 is given in the following proposition. For an extended
real-valued function f on X we denote by f the lower semicontinuous (Isc) hull of f and
by f the upper semicontinuous (usc) hull of f.

Proposition 2.3. Let A be a subset of X. Then:

(a) @a=opi4a =0apa and 0T A= {2z € X | as(z) = 0};
(b)  for each vy € [0,00] one has

0,7]-AC {zx € X | as(z) <~} C[0,7]-clA. (2.3)

Thus, if A is closed one has [0,7] - A= {z € X | aa(zr) <~} and ay is Isc;

(¢) aaa<aa<paand fig =04 = Qq
(d) If A=10,1]A # 0 one has Ga = paa- Moreover,

cddA=c{r e X | pa(z) <1} =clf{zr € X | pa(z) <1} (2.4)
In particular, if A is closed and star-shaped, then ps = as and A = py'([0,1]).

Proof. (a) For the first equalities it is sufficient to observe that 0t A = 07 (]0, 1]A) =
07 ([0,1]A). The inclusion 0*A C «};'(0) is obvious. Conversely, given x € a;'(0), for
each n € N* there exist t,, € [0,1/n] and a,, € A such that z = t,a,. If t, = 0 for some n
then z € 0T A. If ¢, > 0 for every n € N, then z € 0T A.

(b) The first inclusion in relation (2.3) is obvious. Let x be such that ¢ := aa(z) < 7.
Then there exists a sequence (t,) € [0, 00[ converging to ¢ such that z € t,A for each
n € N. If t = 0, as above, we have that x € 074 C [0,7] - A. If ¢ > 0 we have
(t,'z) = t 'z, whence z € tcl A C [0,7] - cl A. Therefore (2.3) holds. Moreover, when A
is closed, equalities hold in (2.3) and since [0, 7] - A is closed for every v € [0, 00| in view
of our convention, we obtain that a4 is l.s.c.

(c) The inequalities ag a4 < ag < pa are obvious. It follows that aga < @x < 4. Let
z € X and v := aga(z) € Ry U{oo}. If v = oo there is nothing to prove. In the contrary
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case, by (2.3), there exists ¢ € [0,7] such that z € tcl A. If t = 0 then z € 07 (cl A) = 0T A.
Therefore there exist nets (¢;) — 05 and (a;) C A such that (t;a;) — . Since p4(t;a;) <t
for every i, we get that f4(z) < liminf;er pa(t;a;) < liminfiert; =0 < . If ¢t €]0, 00,
since t 'z € cl A, there exists a net (a;) C A converging to t 'z, i.e. (ta;) — z. As above,
we obtain that 7z (z) < liminf;e; pa(ta;) <t <. Therefore agas = fia.

(d) Taking (2.1) into account, (2.4) can be reduced to the inclusion u;'([0,1]) C
clpy'([0,1]). So, let z € p;'([0,1]). Then pa(iz) < 1, whence z € clp,' ([0, 1]).
Finally, in order to prove that s = paqa when A =]0,1]A # 0, since g = aqa, it
suffices to show that when B is closed and star-shaped one has ap = pug. These two
functions coincide on X \ 0" B. Now, for x € 0*B = (,,,tB one has ag(z) = 0 and
up(x) =0 as z € tB for every ¢t > 0. O

In the following statement we use the radial tangent cone at 0 to a subset A of X which is
the set 17 (A, 0) := (1,57, 00[4, and the usual tangent cone (or contingent cone) to A at

0, T(A,0) :=,50 cl([7, 00[A). We note that Bt (00) =T7(A,0) and that when 0 ¢ cl A

the cones T7(A,0) and T'(A,0) are empty. They also coincide when A is a polyhedral

convex set or when there exists a neighborhood V' of 0 such that ANV is polyhedral.

Proposition 2.4. Let A C X. Then:

(a) [0,00[A={r € X |8 (x) >0}, PA={r e X |Ba(z) >0} and 0* A\ PA =
A1 ({0});

(b)  for each vy € [0,00[ one has
[v,00[-A C {z € X | Ba(z) >~} C [y,00[ cl A. (2.5)

Moreover, if A is closed and T(A,0) = T"(A,0), in particular if 0 ¢ A, then
Ba = Bli,cof.a and B4 is upper semicontinuous;
()  Baa>Ba>wva, Baa = Pa=va and for each v € [0, 00[ one has

c([y,0[A) = cl(]y,00[A) ={z € X | Ba(z) >}, (26)
cl(PA)\ P (cl([1,00[4)) = {z€ X | Balz)=0}. (2.7)

Moreover, if T(A,0) = T"(cl A,0) then vy = Ba = Baa-

Proof. (a) The first two equalities are obvious; they entail the third one.

(b) The first inclusion of relation (2.5) is obvious. For v = 0 the second inclusion of
relation (2.5) follows from (a). Let v > 0 and let x € X be such that ¢ := Sa(z) > 7.
Then there exists a sequence (t,) in |0, oo converging to ¢ and such that x € t, A for each
n € N. If ¢t # oo we have (t,'z) — t~'z, whence z € tcl A C [y,00[-cl A. If t = co then
t, > 7y for some n € N, and so z € [ry,00[-A C [, 00| cl A.

Suppose that A =cl A and T(A,0) =T"(A,0). Given v € Ry, using the relation
cl ([77 OO[B) = ([’Yv OO[ CIB) U T(B7 0)7

valid for any subset B of X, we get that [y, 00[-A is closed. Thus, because (54 takes its
values in {—oo0}UJ0, co], B4 is upper semicontinuous. Moreover, since A C [1,00[-A, B4 <
Br1,00[-4- For the converse inequality, consider € X and v € R such that f oopa(z) > 7.
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Then there exists ¢ > max(0,7y) such that z € ¢ ([1,00[-A). If ¢ > 0 then x € [t,00[-A and
thus Ba(z) >t > . If t = 0 then z € 07 ([1,00[-A). Therefore there exist (¢;) — 0,
(si) C [1,00[ and (a;) C A such that (t;s;0;) — z. Then x € cl ([0, 00[-A) = [0,00[A as
observed above. Thus B4(z) > 0 > 7. Therefore 84 = B 00 4-

(c) The inequalities ¥4 < B4 < Baa are obvious. Therefore v4 < B4 < Baa. Let us
show that Bqa < va. Let z € X and v € R be such that v < Bga(z). There exists
t € [max(7,0),00[ such that z € tclA. If t =0 (and so vy < 0), x € 07 (clA) = 0T A.
Therefore there exist nets (¢;) — 04 and (a;) C A such that (¢;a;) — . Since v4(t;a;) > t;
for every i, we get that va(x) > limsupv(t;a;) > limsupt; = 0 > . The case ¢ € |0, 00|
is similar but simpler. Thus 3 4(z) < v4(z) for every x € X. Therefore f4 = B4 = va.

Given v € R, , the definitions and the inequalities 84 > 34 > v, yield the inclusions

lv,00[A C{z € X |va(z) > 7}
C [y,00[AC{z € X | Ba(x) > v} C{r € X | Ba(x) > 7}.

Consider z € X such that ¢ := [4(z) > 7. By definition, there exists a net (z;);c; — =
such that (84(z;));c; — t. If there exists a cofinal subset J of I such that Ba(z;) > v
for each j € J then z; €]y, 00[A, whence z € cl(]y,00[-A). Thus, we may suppose that
v/2 < Ba(z;) < 7 foreach i € I, and so, t = 7. If y =0, then x; € 0 A for each i € T
and so z € 01 A; therefore, there exist nets (tx)rex — 04 and (ag)rex in A such that
(trag)rex — x and so z € cl(]y, 0o[-A). If v > 0, consider (¢,)nen — 0 with &, €]0,v/2][.
Then, for every n € N and ¢ € I, there exists t;,, €|Ba(x;) — €, 7] such that z; € t; ,A.
It follows that (t;,) — v and z;, = t; (v + €5)2; €]7y,00[-A. Since (z;,) — = one has
x € cl(]y,00[-A). The proof of relation (2.6) is complete. Taking into account the fact
that cl([y, oo[-A) = v cl([1, oo[-A) for v > 0, relation (2.7) follows from (2.6). Taking into
account the fact that cl([y,o00[-A) = vcl([1, 00[-A) for v > 0, relation (2.7) follows from
(2.6).

When T"(cl A,0) = T(A,0), from (b) we obtain that (4 is usc and so vy = (4
ﬁclA-

Note that S4 and (i ;.4 may be different if T'(A4,0) # T7(c1 A,0) (fi. A= {(z,y) e R* |
22 +y*> < 2y}) or if A is not closed (fi. A={(z,y) e R | z,y >0,z +y=1}).

Also note that 34 is usc at 0 if and only if 0 € A or 0 ¢ cl A.

Moreover, if X is a normed space and if 0 € cl(A\{0}) then v4(0) = +oo. In fact, if (a,) is
1/2

|

a sequence of A\{0} with limit 0, for r,, := ||a,|| "/ and =, := r,a, we have va(z,) > 7y,
hence v4(0) = +00. We will see that if one assumes that 0 ¢ cl A the situation is much
improved. Some duality observations will be useful for such a purpose and for other aims.

We do not intend to give a complete treatment of the operations with gauges and sets.
Let us however consider some important cases, at least for ;4 and v.

Proposition 2.5. Let X, Y, Z be vector spaces, A C X, BCY andT : X —- Y a
linear operator.

(a) For everyy €Y one has ppay(y) = inf{pa(z) | Tz = y}.

(b) If0 € B then for every x € X one has pr-1p)(z) = ps(T'z).

(¢c) IfC and D are two starshaped subsets of Z then pcnp = pc V pp-
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(d) If A and B are star-shaped then for all z € X, y € Y one has
paxp(®,y) = pa(@) V ps(y). (2.8)

Proof. (a) The conclusion is obvious for y ¢ Im7 and for y = 0. Let y € Im7T \ {0}.
If z € X is such that y = Tz, then {t > 0 | 2z € tA} C {t > 0| y € tT(A)}, whence
pray(y) < pa(z). Hence pray(y) < inf{ua(x) | Tx = y}. Let now v € R be such that
pray(y) < v. Then y € tT(A) = T(tA) for some t €]0,7[. It follows that there exists
x € tA with y = Tx. Since pa(z) <t < 7, we obtain that inf{us(z) | T2 = y} < . The
conclusion follows.

(b) The proof is simple; just use the definition and the fact that ker T C T—!(B).

(c) The inequality pcnp > pe V pp is obvious, while for the reverse one use that C, D are
star-shaped.

(d) Apply (c) for Z =X xY,C = AxY, D= X x B and (b) for the two projections. [

As a consequence of the preceding proposition we have the following result about the
gauge of a sum which differs from a formula suggested in [7] p. 17. Here we deal with
the sublevel convolution (or level convolution or level sum) f<Og of two functions f, g, as
used in several recent works (see [3], [17], [26], [29], [30] ...).

Corollary 2.6. Let A, B C X be star-shaped sets. Then for every x € X,
parp(x) =inf{us(u) Vug() |u,ve X, z=u+v} = (ualusz) (x).

Proof. Consider T : X x X — X defined by T'(u,v) := u + v. Using points (a) and (d)
of the preceding proposition, for each x € X we have that

par(x) = praxe)(r) =inf{paxp(u,v) |u,v € X, u+v =z}
= inf{ua(u) vV ps) |u,v € X, z=u+v}.

O

Although the conditions are different for v, the proofs are similar, so that we skip them.

Proposition 2.7. Let X, Y, Z be vector spaces, A C X, BCY andT : X - Y a
linear operator.

(a) For everyy € Y \ {0} one has vy (y) = sup{va(z) | Tz = y}. If ANker T C {0},
the preceding formula holds for y = 0, too.

(b)  For every x € (X \ kerT) U {0} one has vp-1(p)(z) = vp(Tx).

(¢c) IfC and D are two shady subsets of Z then venp = ve A Vp.

(d) If A and B are shady then for all x € X \ {0}, y € Y \ {0} one has

vaxs(z,y) = va(z) Avp(y). (2.9)
Note that, in the framework of the preceding proposition, if x € ker T\ {0} then vp-1(p) ()
= 0o when 0 € B and vp-1(p)(z) = —oc when 0 ¢ B, while sup{va(z) | Tz =0} > 1>
0 = vpa)(0) if ANkerT ¢ {0}.

The next result is a counterpart to Corollary 2.6.
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Corollary 2.8. Let A, B C X be shady sets. Suppose that 0 ¢ AU BU (A + B). Then
for every v € P(A+ B)U (X \ (PAUPB)) one has

varp(x) =sup{va(u) Avg(v) |u,v € X, x =u+v}. (2.10)
In particular, if PAUPB C P(A + B), the above formula holds for every x € X.

Proof. Note first that (2.10) holds for z = 0 since 0 ¢ P(A + B) = PA + PB. So, we
may suppose © € X \ {0}. Consider T : X x X — X defined by T'(u,v) := v+ v. In our
hypotheses (A x B) Nker T = (). So, from Proposition 2.7 (a) and (d) we have that

Va+B(T) = vraxp)(x) = sup{vaxp(u,v) | u,v € X, u+v =z}
= max (sup{va(u) Avg(v) | u,v € X \ {0}, u+v==12},vax5(2,0),v4x5(0,2))
=sup{va(u) Avg(v) | u,v € X\ {0}, u+v ==z},
(2.11)

since vaxp(x,0) = vaxp(0,2) = —00, as 0 ¢ AU B.

If - € P(A+ B) = PA + PB, then x = u + v for some u € PA, v € PB, whence
va(u) Avg(v) > 0 > va(z) A vg(0), va(0) A vg(z). Using relation (2.11) we obtain
that (2.10) holds in this case. Suppose now that z ¢ PA UPB. Then v4(z) A vg(0) =
v4(0) Avg(xz) = —oo, and so the conclusion follows again using (2.11). O

Note that for z € (PAUPB) \P(A+ B) one has v4;p(z) = —0o and sup{v4(u) Avg(v) |
u,v € X, =u+v}=0.

Example 2.9. Consider the following subsets of R? : A; = {(z,y) | y > max(|z|, 1)},
Ay ={(z,y) |y > va? + 1} and B = {(z,y) | 7,y > 0, zy > 1}. Then PA, ¢ P(4, + B)
and PA, UPB C P(A4, + B).

Similar results could be given for the gauges o and 3 but would involve conditions on the
asymptotic cones of images, sums and intersections which are outside the scope of this

paper.

3. Harmonic sum and gauges

It is the purpose of the present section to study a variant of the operation of inverse
addition of two subsets A, B of a vector space introduced by Rockafellar ([18], [19, p. 21])
as being

A#B:=| |J Mn@-NB|u({o}nB)uU(An{0}).
A€]0,1]

This operation plays an important role in the study of the Plastria’s subdifferential of
the sublevel-convolution of two functions which will be undertaken in the paper [16]. We
give a direct definition; alternatively, for certain cases, the gauges described above may
be used in a way similar to what is done in [24] (in the case of continuous gauges).
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For two subsets A, B of X we introduce their harmonic sum, denoted by A<CB, as being
A#B, but with the convention made above:

A0B:=| ) Mn(@1-XNB|U(0TANB)U(AN0"B).
A€]0,1]

This definition has been introduced by A. Seeger for convex sets containing 0. It also
appears as a special case of an operation studied in [21] in the general framework of c2-
lattices, at least for closed star-shaped subsets. Note that, if A is a closed cone, then
AOB = AN |0, 1]B. Other examples are described and drawn in [24] or are given below.

Let us note that AOB is convex when A and B are closed convex subsets. The following
result has been obtained by A. Seeger [25], Prop. 4.2 for convex sets containing 0, in
which case our assumption PA N PB # () is automatically satisfied.

Lemma 3.1. Let A, B be two closed subsets of X.

(a)  Then the set AOB is closed and contains A#B.
(b)  Moreover, if A, B are convex and PANPB # 0, or if A, B are star-shaped, then

AOB=cl| | J Mn(@-NB| =d(A#B). (3.1)
A€ 10,1]

Proof. (a) The first assertion follows from the inclusion, valid for any subsets E, F' of
X

?

d(E#F)C | |J AdEN(1L=M)ecF | U(0"ENcF)U (lENOTF),

A€]o,1]

so that the closure of C':= (Jy¢}9,; AAN (1 —A)B is contained in (07 AN B)U(AN0TB)U
C = AOB. As 0 € 0™ D for any subset D of X, the inclusion A#B C ACB is immediate.

(b) It is sufficient to show that AOB C clC, or even that 0TAN B C clC.

Suppose first that A and B are convex and PA NPB # (), or equivalently, C' # 0, i.e.
there exist a € A, b € B and r €]0,1[ such that ra = (1 — r)b. Let z € 0"AN B.
Then for each n > 1, for ¢, := nr(nr —r +1)! €]0,1[, we have a, := a + nz € A,
by := (1 — t,)b + tpx € B and M\ya, = (1 — \p)by, for A, := r(nr + 1)~ €]0,1[. Since
(Anan) = x as n — oo, we get = € clC.

Suppose now that A, B are star-shaped. Again, let z € 0* AN B. Since 074 = ,.,t4,
it follows that z, := (1 — 2)z = L[(n — 1)z] € ZAN (1 — +)B C C for every n > 1. Since
(xn) = x, z €clC. O
Example 3.2. Observe that the relations (3.1) are not valid for non closed sets (even

if they are convex and star-shaped); consider the subsets of R?, A = [0,1] x [0,1] and
B =] — 00,0[x]0, 00[ U{(0,0)}. Then A#B = {(0,0)} and AGB = {0} x [0, 1].

They may fail if A and B are closed non star-shaped subsets; take for example the subsets
of R%, A= {(z,2?) | x € R}, B = {0} x [0,00[. They may also fail if A and B are closed
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and convex but PA NPB is empty. Take for example A = {(z,y) |z > 0,y > 0,2y > 1},
B =[0,00[x{0}; then C =0, A#B = {0} and AOB = B.

Lemma 3.3.

(a)  For any subsets A, B of X one has 0" (AOB) C 0TANO0*B.

(b) If A and B are closed convex subsets and ACB # 0, or if A and B are star-shaped
and one of them is closed, then

0TANO0TB =0t (AOB). (3.2)

Proof. (a) Let z € 07 (AOB); there exist nets (¢;)ier — 04, (w;)ier in ACB and (A;)ser
in [0, 1] such that (t;w;)ier — = and w; € AN (1 — X)B. If A; = 0 for j in a cofinal
subset of I, then t;w; € 0TAN¢;B so that © € 0YAN0TB. The case A\; = 1 for
j in a cofinal subset of I is similar. So, we may suppose that \; €]0,1[ for every i.
Then w; = Na; = (1 — \;)b; for some a; € A, b; € B for each i € I; it follows that
(b) Suppose A and B are closed convex subsets and ACB # (). Let zp € ACB and
z € 0FANO0TB. There exists A € [0,1] such that zp € AA N (1 — A\)B. Consider first
the case A €]0,1[. Then 2y = Azg = (1 — A)yp for some zyp € A and yo € B. It
follows that zo + vz = Mz + A71y2) = (1 = N)[yo + (1 — X\)"!vz], with zp + A\"1yz € A
and yo + (1 — A\)"'yz € B for every v > 0, whence zy + 7z € AOB for every v > 0.
Therefore z € 07 (AOB). Suppose now that A = 0; then 2, € 0" AN B. Tt follows that
20 +7vz € 0tAN B C AOB for every v > 0, whence, once again, z € 07 (ACB).

Suppose now that A and B are star-shaped sets, A being closed. In this case 0T A =
(isotA and 0B = 07 (cl B) = (,5otcl B. So, if x € 0P AN 0" B then tx € ANO0TB C
AOB for every t > 0, whence x € 07 (ACB). O

Example 3.4. Counter-examples for (3.2):

The sets A, B are convex and closed but AOCB=0: A= {(z,y) e R? | z,y > 0, zy > 1},
B={(z,y) eR |z <0, y>0, vy < —1}; here 0" AN0*B = {0} x R, .

The sets A, B are closed but are not star-shaped and ACB # 0: A = {(z,2*) e R? |z >
0}, B={(z,2%) € R? | x < 0}; here AOB = {(0,0)} and 0*4A =0"B = {0} x R,..

The sets A, B are star-shaped (even convex cones), but none of them is closed: A =
{(z.y) e R [ 2,y > 0} U{(0,0)}, B={(z,y) e R? |2 <0, y >0} U{(0,0)}.

Let us note that for A, B C X,

(10,1]- A) # (10,1] - B) =10,1] - (A#B), ([1,00[-A) # ([1, 00[-B) = [1, o0[- (A#B).

In particular, if A, B are star-shaped (shady) then A#B is star-shaped (shady). However,
similar relations for the harmonic sum do not hold without additional assumptions. More
precisely,

([0,1]- A) & ([0,1] - B) = [0,1] - (AOB) « 0+(AOB) = 0" AN 0" B.

Since for a shady set B we have that 0"B = ConeB := cl(cone B), we have that
0" ([1,00[-A) = coneA. Using this relation we obtain easily that

[1,00[-(A0B) C ([1, 00[-4) © ([1, 00[-B),
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the reverse inclusion being valid if 0T A = GoneA and 07 B = coneB or if A, B are closed
and 0 ¢ AU B.

Proposition 3.5. Let A, B C X. Then pia+pp = pragp and ax+ap < opop. Moreover,
xpA+ OB = Qpop & 0+(A<>B) =0+Aﬂ0+B. (33)

Proof. We give the proof for a only; the proof for p is similar and even simpler.

Let z € X and v €]0,00[ be such that asop(r) < . Then there exists t € [0,7]
such that z € t- (ACB). If t = 0 then z € 07(ACB). Using Lemma 3.3 we see that
aa(z) +ap(zr) =0 <. If t > 0 then t~'z € AOB; therefore t7'z € AAN (1 — \)B with
A €0,1]. Soxz € MAN (1 —MNtB, whence as(z) + ag(z) < X+ (1 —-Nt =t <. It
follows that aa(x) + ag(z) < ason().

The implication “=" of (3.3) follows easily from Proposition 2.3 (a). So suppose that
0t (ACB) = 0"AN0"B and take x € X and v €]0, oo[ such that as(z) + ag(z) < 7.
There exist 71,72 € R such that v = v, + 7, and as(z) < 71, ag(zr) < 2. So there exist
t1 € [0,71], t2 € [0,72] such that x € ttANt,B. If t; + 15 = 0 then z € 0TAN 0T B,
whence, by hypothesis, x € 07(ACB); thus asop(z) = 0 < v. If t; + t2 > 0, then

x € (t1 + t9) ( h_An L B) C (t1 + t2)(AOB). Therefore asop(x) < t1 + 1ty < 7. It

t1+t2 t1+t2
follows that aaop(r) < aa(z) + ap(x). As the converse inequality is true always, we
obtain that oy + ap = asoB. O

Examples illustrating the way the harmonic sum and gauges operate are given in [24] in
the case the gauge p is continuous; next, we give an example in which this assumption is
not satisfied.

Example 3.6. Let A = {(z,y) € R? | 2 +y> < 1} and B = {(z,y) € R? | y > 2?}.
Then

A<>Bz{(x,y)€]R2 |y >0, y\/:v2+y2+x2§y}.

Indeed, pa(z,y) = au(z,y) = /22 + 32 and

”;—2 if y >0,
[LB(.’E,y):O!B(.’E,y): 0 lf.I:y:O,

4o ify<O0ory=0, z#0.
Since 0T AN0TB C 0T A = {0}, it follows from Propositions 2.3 and 3.5 that
AOB = cl(A#B) = {(z,y) € R’ | aa(z,y) + ap(z,y) < 1}

= {(x,y)ERZIyZO, y\/fc2+y2+x2§y}-

We observe that, since 0 is in the interior int A of A, A#B C int A, but the point (0, 1)
of AOB belongs to the boundary of A.

A similar result holds for v and .
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Proposition 3.7. Let A, B C X. Then, with the convention that (—oo) + (+00) = —o0,
one has vy + vp = vagp and Baop < Ba + Bp. Moreover,

Ba+ Bp = Baos = 0TAN0TB C [0, 00[-(AOB). (3.4)

In particular B4 + B = Bacp whenever 0TAN0TB =07 (AOCB).
If A and B are closed, shady and do not contain 0, then 07 (AOB) = [0, 00[-(ACB), and

Ba+ B =Pacs & 0T(AOB)=0"AN0TB.

Proof. Again, the proof for v is similar to the proof for 3. Let x € X and v € R be such
that Saop(x) > 7. Then there exists t > max(0,~) such that z € t- (ACB). If t =0
then z € 07(AOB). Since 07(ACB) C 0TAN 0T B, we obtain that B4(x), Bs(z) > 0,
and so (a(z) + Be(z) > 0 > ~. Consider now the case ¢ > 0. Then t~'z € AOB;
therefore t7'z € MA N (1 — \)B with A € [0,1]. So z € MAN (1 — \)tB, whence
Ba(z) + Br(x) > M+ (1 =Nt =t>~. It follows that Sacr(z) < Ba(z) + Br(z).

Suppose that 84+ 05 = Bacp and take x € 0T ANOTB. Then Bacp(z) = fa(x)+Br(x) >
0, whence, by Proposition 2.4, x € [0, co[-(AOB).

The proof of the implication “<” of (3.4) is similar to the corresponding one in (3.3),
and so is omitted.

Assume now that A and B are shady; then ACB is also shady. As for a closed shady set
C not containing 0 one has 07C = cl(PC) = R, C, the conclusion follows. O
4. Harmonic sum and polarities

In the sequel we assume that the space X is an Hausdorff locally convex space and X* is
its topological dual. Throughout, for a function f, df and f* denote the subdifferential
and the conjugate of f in the sense of convex analysis.

Let us consider the polar and anti-polar of A C X defined by

A% = {z* e X*"|(z,2") <1Vze A},
AV = {r*e X*|(x,2")>1Vaxec A},

with A° = AY = X* if A = (). Here we use the notation of [1] and [2]; for other uses of
the anti-polar set, see [4], [9], [11], [27], [28]. We will use the following obvious relations:

A° = (eo(AU{0})° = (€3(10,1]4))°, AV = (eo([L, 00[A))" .
Let us note that since A° is closed, convex and contains 0, one has
0"A°=A" ={2* € X* | (z,2%) <0 Vzx € A},
while if AY # ()
0"AY = AT :={z* € X* | (x,2%) >0 Vz € A}

Taking the last relation into consideration, in this section we consider that 0- AY = AT,
even if AV = (). Note that if A is non-empty and convex, then by an easy separation
argument one has AY = () if and only if 0 € cl A (see also [4]).
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In the sequel we denote by (¢ the indicator function of a subset C of X given by tc(z) = 0
if x € C', +00 else. In the following lemma we use the well-known fact that the conjugate
h* of a positively homogeneous function i : X — R U {400} is the indicator function of
H :={z* € X* | 2* < h} and, when h(0) = 0, H = 0h(0), the subdifferential of h at 0.
The relation (pua)* = 140 of the next lemma is given in [6] Proposition 1.6 and in [19]. It
implies that the support function of A° is (p4)**; when A is convex and contains 0, this
last function is 77z and one gets connections with section 6 of [25] which is devoted to
support functions of direct and inverse additions of convex sets.

Lemma 4.1. Let A C X be a non-empty set. Then (ua)* = (@a)* = tao, (—va)* =
(—=Ba)* = t_av and

A° = 8uA(0) :8(1,4(0), (41)
AV = —0(—va)(0) ={z* € X* | z* > Ba} = {z* € X* | 2" > Ba}. (4.2)

In particular, if A is convex, then B4(0) = 0 if and only if 0 ¢ cl A; in such a case one
has 0(—B4)(0) = —AV.

Proof. We prove the assertions dealing with 34 and v4, the proof of those concerning a4
and p4 being similar. Moreover, the equalities (—v4)* = (—(34)* = t_4v are consequences
of (4.2) and of the observation preceding the statement. Given z* € AV let us prove that
(x,2*) > va(z) for every x. We may suppose x # 0. Let A < wa(x); there exists
t > max(\,0) such that 'z € A, whence (t7'z,z*) > 1, i.e. (z,x*) >t > . Hence
(z,z*) > va(x). Conversely, suppose that (z,z*) > va(z) for every z € X. If x € A,
(z,2*) > va(x) > 1. Hence z* € AV. Thus the first equality in (4.2) holds. The other
ones follow from v4 = 4 (by Proposition 2.4) and a passage to the limit superior.

Suppose now that A is convex. If 0 ¢ cl A, then AV is nonempty, whence, from (4.2)
B4(0) < 0. Therefore, 84(0) = 0. Conversely, if 34(0) = 0 then 0 ¢ cl A and 3, is usc at

0, with 54(0) = 0. The relation 9(—34)(0) = —AV then follows from (4.2). O
Lemma 4.2. Let A C X be a non-empty convez set. Then A*° =¢o(AU{0}). If0 ¢ clA
then (AV)* =coned = (0T AV)" and AVY = cl([1,00[-A); if 0 € cl A then AVY = X.
Proof. The first relation is the well-known bipolar theorem.

Suppose that 0 ¢ cl A; as mentioned above, AV # (). Of course, using also Proposition
2.4, we have that

AcC A c (AY)* = (comeAY) " = (07 AY)".

Therefore coneA C (AV)". Let o ¢ coneA. By a separation theorem, there exists
zy € X* such that (zq,z5) < 0 < (z,z5) for every z € A. Take 27 € AV; then for every
A > 0 we have that (x,z] + Az}) > 1 for every z € A, whence 2} + Az} € AV for every
A > 0. As (zg, 2] + Az}) < 0 for sufficiently great A, we obtain that zo ¢ (AY)™.

The last part can be found in [4]. O
We are ready to deal with the harmonic sum of two sets. The formula given below eases

the proof of the following well-known result (which can be deduced from Proposition 2 of
[32] or from a separation theorem).
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Recall ([32]) that if f,g : X — R are proper lower semi-continuous sublinear functions,
then

O(f +9)(0) = cL(9£(0) + 9g(0)) , (4.3)
the closure being taken with respect to the weak* topology.

Note that the above formula may not be valid if one of the functions is not Isc; just take
f=1tpand g = 1p, where P =R% and Q = {(0,0)} U {(z,y) e R? |z <0, y > 0}

Taking into account that 0T A° = A=, A° C (0T A4)° and 0t AY = AT, it is easy to obtain
the following inclusions for any non-empty subsets:

A°OB° C (A+ B)°, cl(A° + B°) C (AOB)°, (4.4)
AYVOBY C (A+ B)Y, cl(AY + BY) C (AOB)V. (4.5)

The following proposition completes [25] Theorem 6.1; the second part of its assertion (a)
is given in [6] Theorem 1.2°. There the harmonic sum is even considered for an arbitrary
finite number of convex subsets containing 0. Here we only consider two sets; however,
given a family Ay, ..., A, of subsets of X one can set

A0+ OAy = (s141 N+ N spdy)

seS

where S is the canonical simplex of R", i.e. the set of s := (s1,...,5,) € R such that

s$1+ -+ 8, = 1. When Ay, ..., A, are closed convex subsets of X containing 0 (or, more
generally, if PA; N---N PA, # (), this set coincides with ((4;0A42)< -+ +) OA,.

Proposition 4.3. Let A, B be two non-empty closed convex subsets of X.

(a) IfAOB # 0 then (AOB)° = cl(4° + B°). If0 € AN B then A°OB° = (A + B)°.
(b)  If AOB # 0 then (AOB)Y = cl(AY + BY).
(¢) If A and B are shady then AVOBY = (A+ B)V.

Proof. (a) A direct proof can be given along the lines of the proof of (c) presented below.
As a short variant, use Lemma 4.1, Propositions 2.3, 3.5 and relations (4.3), (4.4) to get

(AOB)O = 804,403(0) = 8(aA + 013) (0) =cl (801,4(0) + aaB(O)) =cl (AO —+ Bo) .

The second formula follows from the above one applied for A° and B°, and the bipolar
theorem.

(b) If0 € A then 0 € 1AN0OB C AOB and AY = (). Tt follows that (ACB)Y = () = cl(AV +
BY). Thus we may assume that 0 ¢ A U B; then the sublinear functions —(3,4 and — 3z
are Isc and take the value 0 at 0 by Proposition 2.4; moreover, (—f84) + (—088) = —Bacsn
by Proposition 3.7 and Lemma 3.3. Thus —fB405(0) = 0 and by Lemma 4.1

—(AOB) = 8(~Baos) (0) = <l (9 (~B4) (0) + 8 (—Bs) (0)) = cl (—AY — BY) .

(c) Let z* € (A+ B)V; thus (z,2*) + (y,2*) > 1 forallz € A, y € B. Since A =[1,00[-A4
and B = [1,00[-B, we have that r := infyca (z,2*) > 0, s := infyep (y,2*) > 0 and
r + s > 1. Suppose first that r,s > 0; there exist r’,s’" > 0 such that r > 7', s > &
and r' + s’ = 1. It follows that z* € AV N s'BY ¢ AVOBY. Suppose now that r = 0.
Then z* € AT NBY =0-AVN1-BY Cc AVOBY. Using relation (4.5), we obtain that
AVOBY = (A + B)Y. 0
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Example 4.4. Note that the formulae (ACB)° = cl(A° + B°), (AOB)Y = cl(AY + BY)
may not hold when AOB = (). Take for instance A = —B = [1,00[xR. Then AOB =
f, A°=—B° =]—00,0]x{0} and AY = —BY = [1,00[x{0} so that A°+B°> = AV+BY =
R x {0}.

5. Computation of the flat and sharp conjugates of a function

A number of conjugacies adapted to quasiconvex functions are known. In most cases the
computation of the conjugate of a function is not obvious. It is the purpose of this section
to present some cases for which an explicit expression of the conjugate can be given.

We start with the flat and the sharp conjugacies which have proved to be useful, especially
for Hamilton-Jacobi equations (see [5], [31], [10]). They are defined on X* x R by

fz*,s) = sup{{z,2*) |z € X, f(z) < s},
fP(z*,s) = sup{(z,z*) |z € X, f(z)<s}.

Note that f#(z*,s) = f’(z*,s) if s > inf f and f is convex because in this case {z €
X | f(z) < s} Cc{z € X | f(x) < s}; this equality also holds for many quasiconvex
functions.

Let us first give a slight extension of [31] Proposition 15 which deals with the flat conjugate
of a function of the form f := ¢ o ||-||, where ¢ : R, — R is nondecreasing. Here we
consider the case of a function of the form f := ¢ o g, where ¢ : R — R is nondecreasing
and g : X — R is sublinear.

e

As in [31] we use the lowest quasi-inverse ¢° and the greatest quasi-inverse " of ¢

introduced in [13] by

©°(s) = sup{reR|p(r)<s}=inf{teR|s<¢p(t)},
o"(s) = sup{reR|p(r)<s}=inf{teR|s<o(t)},

which are characterized, respectively, by the implications

o(ry<s=r<¢s) and t<¢(s)= ¢(t) <s,
o(r) < s=r<¢'(s) and t< ¢"(s) = ¢(t) <s.

In order to obtain formulae for (¢ o g)’ and (o g)* with ¢ nondecreasing and g sublinear
we need the following result which completes Theorem 13.5 of [19] in asserting that the
infimum is attained when finite in the formula (5.1) below.

Lemma 5.1. Let g: X — R be a proper convex function, v > inf g and z* € X*. Then,
g(@*,7) = ¢*(«*,7) = min{ Ay + h(z*, A) | A > 0}, (5.1)
where

Ag*(A7tz*) if A >0,

h(z*,A) = (Ag)*(z*) = {sup{(m,ﬂf*) | z € domg} if A=0.
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Proof. Consider

—(z,z*)y if g(z) <7+t

F:XxR—)R F(:r,t):{ )
+00 otherwise.

It is obvious that F' is a convex function and Pg(dom F') D |inf g —, oo[, where Pk is the
projection from X X R onto R. Therefore 0 € int Pr(dom F'). Applying the fundamental
duality theorem in the case of a finite dimensional parameter space (see for example
[33, Th. 2.6.5]) we have that inf,cx F(z,0) = maxyeg (—F*(0, A)), in the sense that the
supremum is attained when it is finite, or equivalently,

* < — : * _
sup{(z,27) | g(z) < 7} = min F7(0, =A).
But

F*(0,-)X) = sup{-X+(z,2%) |z € X, teR, g(z) <t+~}
= Ay +sup{=Ar+ (z,2%) | (x,7) €Eepig}.

It is obvious that F*(0,—A) = oo if A < 0 and F*(0, —A) = sup{(z,2*) | z € domg} if
A =0. Let A > 0; then

F*(0,—A) = Ay +sup{{z, 2*) — A\g(z) | € dom g} = Ay + Ag*(\ '2*).
The conclusion follows. O

When g is sublinear, we obtain formulae involving the gauges studied above which will
be used in our paper [16].

Proposition 5.2. Let g : X — R be a proper sublinear functional, Isc at 0, and let
x* € X*. Then for every v > inf g one has

v - aag)(x*)  if v >0,
gb(x*,f}/) = gﬂ(m*17) = L[O,oo[ag(O)(:r*) Zf7 = 0;
v - ﬂag(O) (x*) Zf'Y < 07

with apgo)(x*) and Bagoy(x*) attained when finite.

Note that here dg(0) is nonempty, as g is Isc at 0, and 07(9g(0)) = (domg) .

Proof. Recall that, since g is sublinear, dom g is a convex cone and g* = t4(0). In our
conditions the function A introduced in Lemma 5.1 is given by

0 if A >0, 2* € A\dg(0) or A =0, z* € (domg)~,
+o00  otherwise,

h(z*, \) = {

and so

{z* € X" |3IXA >0, h(z",)) < 00} = [0, 00[-0¢(0). (5.2)
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Let v > 0. It is obvious that ¢*(z*,7v) > 0 in this case. From relations (5.1) and (5.2),
we have that ¢*(z*,7) = aag0)(z*) = oo if 2* ¢ [0,00[-0g(0). If z* € (domg)~ then
h(z*,0) = 0, and so, from (5.1), ¢*(z*,7) = 0 = Yy (z*). Suppose now that z* €
10, 00[-0g(0) \ (dom g)~. Applying again the preceding lemma we have that ¢*(z*, ) < oo
so that

g*(a*,7) = min{Xy + h(z", A) | A > 0} = Xy + h(z", N)

for some A > 0. Since * ¢ (domg)~, A # 0, and so A > 0 and z* € X - 9g(0). It follows
that

g'(z*,7) = min{hy [ A >0, z* € Ag(0)} = Ay = yag()(z").

Suppose now that inf g < 0.
For v =0, from (5.1) and (5.2), we have that ¢*(z*,0) = ¢jo,c0[a9(0) (Z*)-
Let v < 0. As above, if z* ¢ [0,00[-0¢(0) then ¢*(z*,7) = 7 - vogo)(z*) = oo. If
r* €]0, 00[-0g(0) then, from (5.1), g*(z*,v) < 0, and so

gHz*,y) = min{dy | A >0, z* € Adg(0)} = ymax{\ >0 | z* € Adg(0)}

= 7+ Bagoy(z") <0

with Bag(0)(#*) attained. If z* € (dom g)~\ ]0, 00[-0g(0) from (5.1) and (5.2) we get that
g*(z*,7) = 0. The proof is complete. O
The previous result can be extended to functions of the form ¢ o g with ¢ nondecreasing
and g sublinear. It has been obtained by Volle [31] when g is a norm on X.

Proposition 5.3. Let ¢ : R — R be nondecreasing and g : X — R be a proper convez
function. Consider f := pog and (z*,7) € X* x R. If ¢(r) €]inf g, oo[ then

fa*,r) =g (2%, ¢°(r)) = ¢* (2%, ¢°(r)) ,
and for o"(r) €]inf g, 00| one has
fi(at,r) = ¢ (o, 9" (r) = ¢’ (a7, " (r)).-
Moreover, when g is sublinear and lsc at 0, and ¢°(r) €]inf g, 00|,
@°(r) - cuag(o)(z) if *(r) >

fb(x*a T) = {[0,00[g(0) (SE*) Zf (pe(T)
©°(r) - Bag(oy(x*) if °(r) <

0,
0,
0,
similar expressions being valid for f*(z*,r) with ©°(r) replaced by ©"(r) €]inf g, oo

Proof. For the first assertions it is sufficient to observe that

{z]g(z) <¢*(r)} C {z]|flz)<r} C {z]g(x) <¢*(r)} Ccliz|g(z) <¢*(n)},
{zlg@@) <¢"(N} < {z|fl2) <r} C {z]gle) <"} Clfa]gla) <"}

while for the last ones it is enough to apply the preceding proposition. O
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Using Lemma 5.1 we also obtain the next formula for the normal cone to a sublevel set of
a convex function; note that such a formula is usually stated for finite convex functions.
Recall that the normal cone to a subset C' of X at zy € X is given by

N(C,zp) :={2" € X* | ("2 —x9) <OVz € C}.

Proposition 5.4. Let g : X — R be a proper conver function and zo € domg. If
g(xo) > inf g then

N([g < g(x0)], 7o) = [0, oc[-0g(wo),

with the convention that 0 - 0g(x¢) = 070g(x¢) = N(dom g, o).

Proof. The inclusion D is obvious. Let z* € N([g < g(z0)],x0) be fixed. Using the
definition of the normal cone and Lemma 5.1 with v = g(x,) we have

(zo,2") = sup{{z,2") | = € [g <]} = Ag(zo) + h(z", A)
for some A > 0. If A = 0 then (z¢,z*) = sup{{(z,2*) | z € domg}, and so z* €
N(dom g,x¢) = 0-9g(xg). If A > 0 then (xg, z*) = Ag(zo) + Ag*(A~1z*), whence A\~lz* €
0g(zo). The proof is complete. O
Remark 5.5. The relation 0 - dg(zy) = N(domg,x¢) is justified by the fact that

0%0g(x¢) = N(dom g, o) when dg(xq) # (0. Moreover, when P(dom g — x9) = X one has
N(domg, zo) = {0}.

Example 5.6. Let g : R — R be given by g(z) = —v/1 — 22 for |z| < 1, +0co otherwise.

Taking zo = 1, we observe that dg(zo) = 0 but N([g < g(x0)],20) = N(dom g, o) =
0 - 0g(zo)-
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