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We are concerned with integral functionals of the form

J(v) = /Bn [ (l=] [Vo(@)]) + A(|z], v(2))] de,

R

defined on W, ’1(BJ’L§,IR’”)7 where B is the ball of R” centered at the origin and with radius R > 0.
We assume that the functional J is convex, but the compactness of the sublevels of J is not required.
We prove that, under suitable assumptions on f and h, there exists a radially symmetric minimizer
vE WO1 1 (Bgr,R™) for J. Moreover, we associate to the functional J a system of differential inclusions of
the Euler-Lagrange type, and we prove that the solvability of these inclusions is a necessary and sufficient
condition for the existence of a radially symmetric minimizer for J.
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1. Introduction

In this paper we deal with integral functionals of Calculus of Variations of the form
J(v) = . [f (], [Vo(z)]) + h(lz|, v(z))] dz (1.1)
R

defined on W' (B%, R™), where B% is the ball of R” centered at 0 and with radius R > 0.
We consider convex functionals, but no assumptions are made concerning the compactness
of the sublevels of J. Our interest in this problem arises from its applications to physical
models for which the energy functional has the form (1.1) with Lagrangian not necessarily
superlinear with respect to Vv (see, e.g., the Appendix of [11]).

Since, under our assumptions, the functional J need not be coercive, the existence of a
C. . . 1.1 . .
minimizer in Wy (B%, R™) cannot be obtained by means of direct methods. However,
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thanks to the radial symmetry of the problem, it is possible to make a drastic simplifica-
tion: the vectorial minimization problem involving J can be reduced to a one—dimensional
problem, in the sense that J has a minimizer in W' (B%, R™) if and only if there exists
a solution to

min /0 1 [F (2, (1)) + h(t, u(e)] dt, (1.2)

ueEWw
where
W = {u € ACi,c(]0, R|,R™); u(R) =0, t — """ |[u'(t)] € L'(0,R)} (1.3)

(see Lemma 3.8 below). Nevertheless, problem (1.2) presents new nontrivial difficulties.
The first one is due to the fact that the set W is not a subset of AC([0, R], R™), which
is the classical framework for this kind of minimization problem. In addition, (1.2) is
not a Dirichlet problem, because no boundary conditions are given at ¢ = 0. Finally, our
regularity assumptions on f and h are very mild, hence it is not possible to adapt to (1.2)
the indirect methods developed in [2], [5], [6], and [9].

Minimization problems of the form (1.2), defined on scalar functions, were studied in [7]
and [8]. In particular, in [8] the existence of a minimizer is obtained by means of a fixed
point technique applied to a suitable multifunction. In this paper we adapt this technique
to functionals defined on vector-valued functions, obtaining that there exists at least one
solution to (1.2), and then a radially symmetric minimizer of .J in W, (B%, R™). More
precisely, we find two functions u € W and p € W*, where

W* = {p€ AC([0,R],R™) | p(0) =0, t" "|p'(t)] € L'(0,R)} , (1.4)

such that the pair (u, p) satisfies a system of differential inclusions of the Euler-Lagrange
type (see (3.8) and (3.9) below), and we show that this implies that u is a solution to
(1.2), as one has to expect due to the convexity of the functional.

The last part of the paper is devoted to the study of the Euler-Lagrange inclusions. Since
a minimizer v € W of (1.2) need not be an absolutely continuous function, we cannot
apply the classical necessary conditions (see [4], [14], [15], and the references therein).
Nevertheless, we show that for every solution u of (1.2) there exists p € W* such that
the pair (u,p) solves (3.8) and (3.9). These necessary and sufficient conditions for the
solvability of (1.2) are the basic tools for the study of non-convex problems, as we show
in the forthcoming paper [10].

2. Preliminaries
2.1. Notation

In what follows, (-,-) and |-| will denote the standard scalar product and the Euclidean

norm in R%, d > 1, while Bf C R? will denote the open ball centered at the origin and

with radius » > 0. We write R = R', and R =] — 0o, +0c]. The norm of a matrix
1/2

Q= (qzj)]zi%% is defined by |Q| = (Zu q%) .

We shall denote by A and intA respectively the closure and the interior of a set A. We

recall that the relative interior riA of a convex set A is defined as the interior of A regarded
as a subset of its affine hull.
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As is customary, LP(2,R¢) and W'P(Q,R?), 1 < p < +o0, will denote the Lebesgue and
Sobolev spaces of functions defined in an open set {2 and with values in R?. If d = 1 we
write LP(Q)) = LP(Q,R) and WhH?(Q) = WHP(Q,R). The usual norm in L?(Q, R?) will
be denoted by || - ||z», and B? C LP(2,R?) will be the ball centered at 0 and with radius
r>0. If Q=[0,R] C R, we set AC([0, R],R¢) = Wh([0, R],R%), while AC;,.(]0, R], R%)
will denote the set of all functions u such that u € AC([e, R],R?) for every 0 < ¢ < R.

2.2. Convex functions and subgradients

Given a function ¥: R? — R, we shall denote by Dom 1 its effective domain, defined as

{€ e R%;9(€) € R}, and by 9* its dual function, defined by ¢*(p) =supgcga {(p, &) — ¥(£)}
for every p € R?%. If 9 is a convex function, we define its subgradient at £ € Dom 1 by

(&) = {p e R ¥(n) > ¢(€) + (p,n— &), for every n € R?} . (2.1)

By definition, we set 0v(§) = () for every £ ¢ Dom 1. We recall that, if 1 is differentiable
at &, then 0y(§) = {Vy(§)}-

In the rest of the paper we shall deal with families of convex functions £ — ¥(t,€)
depending on a real parameter ¢, and 0t (¢, &) will denote the subgradient with respect to
the second variable.

A function 9 : [0, R] x [0, +oc[— R is said to be a convex integrand if the map & — (¢, |£]),
£ € R, is convex and lower semicontinuous for a.e. ¢t € [0, ], and there exists a Borel
function 1: [0, R] x [0, +oo[— R such that ¢(¢,-) = 9(t,-) for a.e. t € [0, R].

In the following proposition we collect some well known properties of the subgradient (see
[13]).
Proposition 2.1. Let ¢: R* — R be a convex function. Then the following properties
hold:

(i) if ¢ is bounded from above in a non—empty open set A, then 1) is locally Lipschitz
continuous in A;

(i)  for every & € R?, the set 0Y(€) (possibly empty) is convex and closed in R%;

(iii) if € € int Dom, then 0y (€) is a non-empty compact set;

(iv) if Y* # —o0, then p € 0 (&) if and only if & € OY*(p).

2.3. Set-valued mappings

Let X and Y be normed spaces. A multifunction U: X — 2Y is said to be upper
semicontinuous if ¥"1(A) is closed in X whenever A C Y is closed. It can be checked
that, if U has compact values, then ¥ is upper semicontinuous if and only if for every
sequence (zg)r C X converging to a point z € X and every ¢ > 0 there exists k. € N
such that U(zy) C ¥(z) + B.(0) for every k > k. (see [12], Proposition 1.1). We recall
that, if ¢v: X — R is a convex function, then the multifunction W(x) = Ov(x) is upper
semicontinuous.

The following fixed point theorem will be fundamental to our aims (see [12], Corol-
lary 11.3).

Proposition 2.2. Let X be a Banach space, D C X be a nonempty closed bounded
convex set, and W: D — 2% be a upper semicontinuous multifunction with closed convex
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values. Assume that W(D) C D, and ¥(D) is a compact subset of X. Then VU admits a
fized point, that is, there erists x € X such that x € V().

3. The existence result

Let us consider the minimization problem

min [f (||, [Vu(@)]) + h(lz],v(z))] dz = min  J(v) (3.1)

veWwy ! (BY,R™) J Bn veW, ! (B, R™)

where n,m > 1, and the maps f and h satisfy the following properties:

(H1) The map f: [0, R] x [0, +o0o[— R is a convex integrand.

(H2) The map x — f(|z|,0) is integrable on By, that is ¢ — t"~' f(¢,0) is integrable on
(0,R).

(H3) M =essinfycpo,r M(t) > 0, where M(t) = lim, o f(,5)/s.

(H4) For every p < M there exists a function ¢, belonging to L*(0, R) such that f(¢,s) >
ps —t'7"¢,(t) for a.e. t € [0, R] and every s > 0.

(H5) h:[0,R] x R™ — R is a measurable function such that h(t,-) is convex for every
t € [0, R], and t — t"h(t,0) € L'(0, R).

(H6) There exists a measurable function H: [0, R] — [0, +00] such that, for every u €
R™, Oh(t,u) C By, for ae. t € [0, R], and () = t""1H(t) € L}(0, R).

(H7) My = sup,epq g {tl’" [ (s) ds} <M.

Remark 3.1. From the definition of convex integrand given in Section 2.2, it follows
that, for a.e. t € [0, R], the map s — f(¢,s), s > 0, is monotone non-decreasing. We
remark that the same property also holds for the polar function f*.

Remark 3.2. From the convexity of h(t,-) and the definition of H we deduce that, for
every u € R™, |h(t,u)| < |h(t,0)| + H(t)|u| for a.e. t € [0, R], hence (H5) and (H6) imply
that the map ¢ — t"'h(t,u) belongs to L'(0, R).

Remark 3.3. If h does not depend on ¢, then in (H6) we can choose H not depending
on t, so that (H7) reduces to H < ¥

Remark 3.4. If f is a superlinear function, then M = +oo and (H7) is automatically
satisfied.

Remark 3.5. The following example shows that the existence of a solution to (3.1) may
fail if (H7) is not verified. Let n=m =1, R =1, h(t,u) = Au with A > 0, and

o . 3—\/57 1f8>1/4;
f(t.s) = fls) = {—1/4, if 0<s<1/4.

It is easy to see that f and h satisfy (H1)-(H6), with M = 1 and H(t) = A, so that
My = AR/n. We are going to show that, if (H7) does not hold, that is if A > n M/R =1,
then the variational problem (3.1) has no solution. Integrating by parts the term in
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u, (3.1) can be rewritten as

min )/_1 [F (' (@))) = Aoo/(@)] do (3.2)

ueWy(-1,1 1

It is easy to check that & — f(|€]) is continuously differentiable and f'(s) = 1 — s71/2/2
if s > 1/4, while f/(s) = 0if 0 < s < 1/4. By the classical Euler-Lagrange necessary
conditions, for every solution u € W,'(=1,1) to (3.2) there exists p € R such that
F(|lu'(z)]) signu' () = p+ Az for a.e. z € [~1,1]. On the other hand, since |f(s)| < 1
for every s, then the Euler-Lagrange conditions cannot hold for a.e. € [—1, 1] whenever
X > 1. Moreover, if A = 1, then it must be p = 0, so that u/(z) = sign(z) [4(1 — |z[)%]~"
for a.e. x € [—1,1]. Since v’ & L'(—1,1), u cannot be a solution to (3.1).

In order to simplify the notation, we introduce the function g: [0, R] x R™ — R defined
by ¢(t,&) = f(t, |£]), so that

3

of(t, —  if 0,
og(t,6) = g TS 53)
Bro(t)a lf |§| = Oa
p .
Of* (¢ o)L, if [p| £ 0,
84" (t.p) = _f ( |p\)|p| if |p| # (3.4)
By ), if [p| = 0,

where 7o(t) = f1(¢,0) and 7 (¢) = (f*)'.(¢,0).

The following lemma gives an a-priori bound on the selections of dg* which will be fre-
quently used in the rest of the paper.

Lemma 3.6. Assume that (H1)—-(H4) hold, and let My €]0, M| be fized. Then there
ezists a function U € L*(0, R) such that for every ¢ € L*([0, R],R™) with ||q|| . < Mo,
and for every measurable selection £(t) of the multifunction t — t"~'dg*(t, q(t)) one has
1E(t)| < U(t) for a.e. t € [0, R].

M — M
Proof. Let §y = TO, and let us define the function

- tnflf*(t’ MO + 50) - f*(t, 0) .

4o :

(3.5)

Notice that, by the very definition of M(¢) in (H3), one obtains that, for a.e. ¢t € [0, R},
Domf*(t,-) = [-M(t), M(t)], and then | — M, M[C Dom f*(t,-). Hence the function U is
well defined. In order to prove that U € L'(0, R), we show that the map ¢ — t"~1f*(¢, s)
is integrable on [0, R] for every s €] — M, M|[. Indeed, given s €] — M, M|, by (H4) and
the very definition of f* we deduce that there exists ¢, € L'(0, R) such that

—t" L f(,0) <At 5) < es(), a.e. t €0, R],

which implies, together with (H2), that the map ¢ — ¢"~' f*(¢, s), and hence U, is inte-
grable on [0, R].
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Let us fix ¢ € L®([0, R], R™) with ||¢||,« < My, and let £(¢) be a measurable selection
of the multifunction ¢ — #"~10g*(t, q(t)). For a.e. t € [0, R] such that ¢(¢) # 0 we have
|E(t)| € "D f*(t,|q(t)|), so that, thanks to the monotonicity of f*(¢,-),

"t Mo + 80) — f7(2,0)] = "7 [£7(t, Mo + do) — (¢, [a(t)])] >
> [&()] (Mo + 6o — |q(£)]) = 60 [£(2)] ,

whereas, if |¢(t)| = 0, from (3.4) we have [£(¢)] < " '(f*)'.(¢,0), which directly implies
that [£(t)| < U(t). O

As a first step, we reduce problem (3.1) to a minimization problem on the set W defined
n (1.3).
Remark 3.7. Notice that, if v € WOI’I(B}%, R™) is a radially symmetric function, that is

v(z) = u(|z|) for some function u: [0, R] — R™, then u belongs to W. Namely, it can
be easily checked that u belongs to ACj,(]0, R], R™), and, denoting by «,, the (n — 1)

dimensional Hausdorff measure of 0B},
< vle). |>‘dm</ Vo(z)| de,

R
an/ " (t)] dt:/
0 3

so that t"~!u'(¢)| € L'(0, R). Finally, since v(wR) = 0 for a.e. w with |w| =1, we obtain
u(R) = 0, hence u € W.

The following lemma, together with Remark 3.7, shows that problem (3.1) has a solution
if and only if problem

min/0 "L f (@, [ (2)]) + h(t,u(t))] dt = min F(u) (3.6)

uew ueWw

has a solution. The proof follows the lines of the analogue for problems defined in
Wy (B%), proved in [1].

Lemma 3.8. For every v € WOI’I(B}},R"L) there exists a radially symmetric function
& e Wy (BR, R™) such that J(7) < J(v).

Proof. Given v € W, (B3, R™), we define

- 1 /
v(r) = — v(w|z|) dw
(=) = " (wa])
Clearly v is radially symmetric, and
- 1 =z
Vi(z) = —— (Vi (w |z]),w) dw, a.e. r € By,

Qn |.I‘ lw]=1
for every i = 1...m (see [1]). Then, by the definition of ¢ and the estimate

Vi) < o [ I9ee kel do, (1)

Qi
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we deduce that & € W' (B%, R™). In order to prove that & € Wy (B%, R™), we consider
the functions

1
i (x) = —/ or(w|z))dw, zeBL, keN,
|w|=1

On

where (@), is a sequence of functions belonging to C2°(B%, R™) which converges to v in
the strong topology of Wh!(B%,R™). It can be easily checked that (@), converges to @
in the same topology, which implies that v € WO1 ’1(B§, R™). Finally, from the convexity
of f and h, and Jensen’s inequality, we conclude that J(9) < J(v). O

Now our aim is to find a solution to problem (3.6). Our starting point is the fact that,
even if we deal with functions not belonging to AC(]0, R], R™), it is possible to associate
to problem (3.6) a system of differential inclusions of the Euler-Lagrange type. More
precisely, if W and W* are the sets defined in (1.3) and (1.4) respectively, then the
following lemma holds.

Lemma 3.9. Assume that (H1) and (H5) hold, and suppose that the pair (u,p) € W x
W* satisfies the differential inclusions

p'(t) € t" TOh(t, u(t)), (3.8)
p(t) € " tog(t, v/ (1)), (3.9)

for a.e. t € [0, R]. Then u is a solution to problem (3.6).

Proof. The case m =1 is proved in [8], Remark 3.5. Although the general case does not
present new difficulties, we give here a sketch of the proof for the reader’s convenience.

Assume that the pair (u,p) € W x W* satisfies (3.8) and (3.9), let w € W be fixed, and
let z = w — u. From (3.8) and (3.9) we have that

F(w) = F(u) Z/O [(p(2), 2 () + (P'(1), 2(1))] dt . (3.10)

We claim that the functions (p(t), 2'(t)) and (p'(t), 2(¢)) belong to L' (0, R), and

/0 W(t), 2(t)) dt = — / (), £(0)) dt. (3.11)
so that, by (3.10), F(w) > F(u) for every w € W.

Given € > 0, we have that both z and p belong to AC([e, R],R™). Since z(R) = 0,
integrating by parts we get

| w0200 dt =~ )20 - [ i), 2(0) ar 3.12)

Moreover, z belongs to W, so that there exists £ € L!([0, R],R™) such that z(t) =
- ftR s17"¢(s) ds for every t €]0, R], whereas p belongs to W*, so that there exists ¢ €
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L'([0, R],R™) such that p(t) = [, s"'q(s)ds for every t € [0, R]. One can easily check
that

[P'(8), 2O < [I€ll lg )], Kp(®), 2" ()] < llall 2 [€E)]
|<p(t),Z(t)>\§||€||L1/O lq(s)] ds, vt €0, R].

Then we can pass to the limit in (3.12), obtaining (3.11). O
As a first step, we prove the existence of a minimizer of F' provided that h is a smooth

function with respect to w.

Theorem 3.10. Assume that (H1)-(H7) hold and that h(t,-) € C'(R™) for every t €
[0, R]. Then problem (3.6) admits at least one solution u € W.

In view of Lemma 3.9, our aim will be to find a pair (u,p) € W x W* satisfying (3.8)
and (3.9). This goal will be achieved by introducing a multifunction defined on a subset
of W, whose fixed points are solutions of (3.8) and (3.9) for a suitable p € W*.

Let U € L'(0,R) be the function defined in (3.5) corresponding to the constant M,
introduced in (HT7), and let V' be the set
V ={ve AC([0,R],R™) | v(R) =0, |v'(t)| < U(t) a.e. t € [0, R]} . (3.13)

For every v € V we define

t R
B,(t) = tl_"/ s"'Vh (s, —/ o' "™ (o) da) ds (3.14)
0 s

for t €]0, R], and B, (0) = 0. Notice that, by (H6) and (H7), we have that || B,||;. < Mo,
hence, from Lemma 3.6, for every v € V the set

®(v) = {u € AC([0, R],R™); u(R) =0, u'(t) € t"'0g*(t, By(t)) a.e. t} (3.15)
is well-defined and
lW'(t)| <U()  for every u € ®(v). (3.16)

In particular, the estimate (3.16) implies that ®(v) C V for every v € V. We want to
show that the multifunction ®: V' — 2" has a fixed point, that is there exists v € V such
that v € ®(v).

In order to apply Proposition 2.2, we have to investigate some convergence properties of
the subgradients of convex functions (see [8], Lemma 4.6).

Lemma 3.11. Let ¢4: [0,R] x R® — R, k € N, be a sequence of Borel measurable
functions such that, for a.e. t € [0, R|, ¥(t,-) is convex for every k € N, and there
exists a nonempty open set D(t) C (), Domy(t,-). Assume that, for a.e. t € [0, R], the
sequence (y(t,-)), converges pointwise on D(t) to a finite function (t,-).

Let q,: [0,R] - R™, k € N, be a sequence of measurable functions converging a.e. to
a function q, and assume that q(t) € D(t) for a.e. t € [0, R]. Furthermore, assume
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that there exists G € L'(0, R) such that, for a.e. t € [0, R], Ov(t,q(t)) N Bt # 0 and
sup {[pl; p € U, 9vx(t ax(t))} < G(1).

Let us define the sets Ly = {n € L'(0, R); n(t) € 0yx(t,qr(t)), a.e. t}, k €N, and L =
{n € L'(0,R); n(t) € 0v(t,q(t)) a.e. t}. Then, for every € > 0 there exists k. € N such
that Ly C L+ B! for every k > k.. Furthermore, if & € Ly for every k € N, and & — &
w-L', then € € L.

Lemma 3.12. For every v € V, ®(v) has nonempty conver compact values in
L*>([0, R],R™).

Proof. The convexity is trivial. Moreover, for every v € V, ®(v) is a nonempty rel-
atively compact subset of L*([0, R],R™). Namely, if £(¢) is a measurable selection of
the multifunction ¢ — ¢""'0g* (¢, B,(t)), then by Lemma 3.6, £ € L'([0, R], R™) and

u(t) = — ftR &(s) ds belongs to ®(v). Furthermore, from (3.16) we deduce that the set
{u'; u € ®(v)} is equiabsolutely integrable so that, by the Ascoli-Arzela theorem, ®(v) is
relatively compact in L>([0, R], R™) (see [3], 10.2.i).

It remains to prove that the set ®(v) is closed in the same space. Assume that (wy), is a
sequence in ®(v) converging to a function w strongly in L*°([0, R], R™). From (3.16) we
easily infer that w € AC([0, R],R™) and (w},), converges to w’ in the weak topology of
L'([0, R],R™). Hence, applying Lemma 3.11 to vy (t,-) = ¥(t,-) = t"'g*(¢,-), qx = By,
D(t) =] — M, M| for every t € [0, R], Ly = L = {u'; u € ®(v)}, & = w},, we obtain that
w € ®(v). O

Lemma 3.13. The multifunction ® is upper semicontinuous in the strong topology of
L*>([0, R],R™).

Proof. Since, by Lemma 3.12, the multifunction & has convex compact values, it is
enough to show that for every sequence (vi), C V converging strongly to v in L*([0, R},
R™), and for every ¢ > 0 there exists k. € N such that ®(v;y) C ®(v) + B> for every
k > k.. Since vy € V, we have that |v(t)] < U(t) a.e. in [0, R], which implies that (v},),
converges to v’ in the weak topology of L'([0, R],R™) (notice that the whole sequence
converges to v’ due to the fact that the sequence (vj), converges to v in L*°([0, R],R™)).
Hence (B,,(t)), converges to B,(t) for a.e. ¢ € [0, R]|, and we can apply Lemma 3.11
to "/)lc(t’ ) = w(t") = tnilg*(t’ ')a qr = kaa D(t) :] - M, M[ for every t € [O,R],
Ly ={u; ue ®(v)}, L ={u; ue ®(v)}, obtaining the required property for . O

Proof of Theorem 3.10. By Lemmas 3.12 and 3.13 we infer that ® is a upper semicon-
tinuous multifunction with nonempty convex compact values in the space L*([0, R], R™).
On the other hand one can easily check that V' is convex and compact in the same space.
Hence we can apply Proposition 2.2, obtaining that there exists v € V such that v € ®(v).
If we define

R
u(t) = — / som(s)ds,  p(t) = UBy(1),
¢
then w € W, p € W*, u'(t) € 0g*(t,t'"p(t)) and p'(t) = t""'Vh(t,u(t)) for a.e. t €

)
[0, R]. Hence (3.8) and (3.9) are fulfilled, so that, by Lemma 3.9, u is a solution of
problem (3.6). O
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In order to deal with nonsmooth h, we need the following notion of solution to problem
(3.6) obtained by approximation. In Proposition 3.17 we shall show that every solution
of this kind is actually a solution to (3.6).

Definition 3.14. We say that v € W is a solution to (3.6) obtained by approximation if
there exist three sequences (hy),, (ux), and (pg), such that:

(i)  limyg uk(t) = u(t) for a.e. t € [0, R];
(ii)) for every k € N, hg: [0, R] x R™ — R is a measurable function, hg(t,-) is convex
and of class C"! for every ¢ € [0, R], and (hy(t,-)), converges pointwise to h(t,-) for

a.e. t € [0, R];
(iii) for every k € N, (ug,pr) € W x W* is a solution of the Euler-Lagrange inclusions
P(t) = 1"V hi(t, uk(t)), (3.17)
Ppe(t) € " 0g(t, u(t)), (3.18)

for a.e. t € [0, R].

Remark 3.15. One can easily check that, if u is a solution obtained by approximation,
and (hg)k, (uk)k, (pk)r are the sequences appearing in Definition 3.14, then, for every
k € N, uy is a solution to the problem

veEW

min /0 L [0 (E]) + (e, 0(0))] dt (3.19)

In the following lemma we list all the a-priori estimates on the approximating sequences
that will be needed in the last part of this section.

Lemma 3.16. Assume that (H1)—-(H7) hold, and let (uy,pr) € W x W* be a solution to
(3.17)-(3.18). Then

1D, (1) < (1), a.e. t € [0, R], (3.20)
|t "0kt || oo < Mo, (3.21)
i (t)| < t7"U(t),  a.e. t €[0,R]. (3.22)

Proof. The estimate (3.20) follows from (3.17) and (H6), while (3.21) is a direct conse-
quence of (3.20) and (H7). Finally, by (3.21), (3.18), Proposition 2.1(iv) and Lemma 3.6
we obtain (3.22). O

Proposition 3.17. Assume that (H1)—(H7) hold. Then every solution to (3.6) obtained
by approzimation is a solution to (3.6).

Proof. Let u € W be a solution to (3.6) obtained by approximation, and let (hg)y,
(ug, k) be the sequences appearing in Definition 3.14.

From (3.20) we infer that there exists a subsequence, still denoted by (p},),, which con-
verges to a function z in the weak topology of L!([0, R],R™). It is easy to see that the
function p(t) = fot z(s) ds belongs to W*, and limy pi(t) = p(t) for every ¢t € [0, R].

Since limy ug(t) = u(t) for a.e. t € [0, R], from (3.22) we deduce that
t" Ll (1) — " /(1) weak-L'([0, R], R™). (3.23)
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From Proposition 2.1(iv), the inclusion (3.18) can be rewritten as
" lup(t) € "1 0g*(t, t "pi(t)),  a.e. t € [0,R). (3.24)

Since limy, pg(t) = p(t) for every t € [0, R], from (3.23), (3.24) and Lemma 3.11 applied
to ¢p(t,) = ¥(t,) =1"""g*(t, ), qe(t) = t""pe(t), q(t) = t'7"p(t), D(t) =] — M, M[ for
every t € [0, R, &(t) = t" tu}(¢), £(t) = t" 1u'(t), we obtain

"/ (t) € t"ag*(t, t"p(t)),  ae. t€[0,R], (3.25)

which implies, thanks to Lemma 2.1(iv), that (u,p) satisfies (3.9). Finally, from (3.17),
and Lemma 3.11 applied to ¥g(t,-) = t" ‘h(t,-), ¥(t,-) = t" 'h(t,-), D(t) = R™ for
every t € [0, R], gy = ug, ¢ = u, G = H, & = pj, and & = p', we conclude that the pair
(u, p) also satisfies the inclusion (3.8). Hence, by Lemma 3.9, u is a solution to problem
(3.6). O

Now we are in a position to prove that, even if h(¢,-) is not a smooth function, there
exists at least one solution obtained by approximation of problem (3.6).

Theorem 3.18. Assume that (H1)-(H7) hold. Then problem (3.6) admits at least one
solution obtained by approximation.

Proof. Let (¢;), be the standard mollifiers and let hy(t,-) = ¢k * h(t,-). It can be easily
checked that, for every k € N, hi(t,-) is a smooth convex function which satisfies (H6)
and (H7). Hence, by Theorem 3.10, there exists uy € W solution of (3.19), and there
exists py € W* such that (uy,px) is a solution to (3.17) and (3.18).

From (3.22) there exist a subsequence of (ug), still denoted by (ug), and a function
u € W such that limy ug(t) = u(t) for a.e. t € [0, R]. Since (hi(t,-))r converges pointwise
to h(t,-) for every ¢ € [0, R], then u is a solution to (3.6) obtained by approximation. [

4. Euler-Lagrange inclusions

In the previous section we exhibited a solution to problem (3.6) which satisfies also the
Euler-Lagrange inclusions (3.8) and (3.9). Now we want to prove that the solvability of
these inclusions provides a necessary and sufficient condition for minimality.

Theorem 4.1. Assume that (H1)—(H6) hold. Then v € W is a solution of problem (3.6)
if and only if there exists p € W* such that (u,p) is a solution of the Euler-Lagrange
inclusions (3.8) and (3.9).

We shall use the following result concerning necessary minimality conditions for function-
als defined on absolutely continuous functions (see [15], Corollary 1).

Proposition 4.2. Let us consider the minimization problem

min {l(v(a),v(b)) + / bL(t,v(t),U’(t)) dt} (4.1)

vEAC([ab],R™)

where

(i) 1 and L(t,-,-) are convex functions, lower semicontinuous and not identically +o0;
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(ii) L is a normal convex integrand;
(iii) there exist p € L°°([a,b],R™), s € L*([a,b],R™), and o € L*(a,b) such that

Lt u, &) = (u, 5(1)) + (€, p(1)) — a(?)

for a.e. t € [a,b];

(iv) for everyu € R™ there existv € L' ([a,b],R™), and 8 € L'(a,b) such that L(t,u,v(t))
< B(t) for a.e. t € [a,b];

(v) let Cp = {(cascp) € R™ x R™; I(cq, ) < +00} and let Cp, be the set of all pairs
(€q, cp) € R™ XR™ such that there exists v € AC([a, b], R™) with v(a) = ¢,, v(b) = ¢
and (v(t),v'(t)) € DomL(t,-,-) for a.e. t € [a,b]. Assume that riC; N 1iCy, # 0.

Then u € AC([a, b],R™) is a solution to (4.1) if and only if there ezxists p € AC([a, b], R™)
such that

p'(t) € o L(t,v(t),v'(t)), (4.2)
p(t) € 93L(t,v(t),v'(1)),

for a.e. t € [a,b] and

p(a) € 01l(v(a),v(b)), )
—p(b) € Osl(v(a),v(b)), (4.5)

where 0; denotes the subdifferential with respect to the i—th variable.

Proof of Theorem 4.1. If (u,p) € W x W* is a solution of (3.8) and (3.9), then the
minimality of u follows from Lemma 3.9.

Conversely, assume that u is a solution of problem (3.6). For every k € N, k£ > 1/R, let
us consider the set

Wi ={v e AC([1/k, R]) | v(R) = 0}
and the functional

Fe(v) = / V(L () + At o)) de

1k

defined for v € Wy. Let us define ¢, = fol/ *~(t) dt, where ~ is the function defined
in (H6), and lx(z) = ex | — u(1/k)| for every x € R™. We remark that, from (H6) and
the absolute continuity of the Lebesgue integral,

k—o00

We want to prove that the restriction uy of u to the interval [1/k, R] is a solution to the
problem

min {Fy(v) + 1 (v (1/k))} (4.7)
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for every £ > 1/R. To do so, fix v € Wy, and define 6 = v(1/k) — u(1/k) and

0 = (B0 6 iTE /K,
), itt e [1/k, R).

Since w belongs to W and u is a solution of (3.6), we have that F(u) < F(w), which
implies that

Fi(u) < Fiu(v) + /0 v VR u(t) + 8) — h(t, u())] dt < Fi(v) +exld],  (4.8)

where the last inequality follows from (H6) and the definition of €;. From (4.8) we obtain
Fr(ug) + Uk (ur(1/k)) = F(ug) < F(v) + lx(v(1/k))

for every v € Wy, so that uy is a solution of (4.7).

Now we claim that it is possible to apply Proposition 4.2 to problem (4.7). Namely (i) and
(ii) follow from (H1) and (H5), (iii) is satisfied with p = 0, a(t) = —t""1 [f (¢, 0) + h(t,0)],
which belongs to L!'(1/k, R) due to (H2) and (H5), and s(t) a measurable selection of
t — t""10h(t,0), which is integrable since |s(t)|] < ~(¢) for a.e. t € [0, R]. Condition
(iv) is satisfied with v = 0 and §(t) = "' [f(¢,0) + h(t,u)], which belongs to L'(1/k, R)
due to (H2) and Remark 3.2. It remains to prove that (v) is satisfied. Clearly riC;, =
Ci, = R™ x {0}, so that we have to prove that the set of starting points of arcs v €
AC([1/k, R],R™) with v(R) = 0 and such that v'(¢t) € Domf(t,-) for a.e. t € [1/k, R]
contains an open subset. From (H2) we infer that 0 € Domf (¢, ) for a.e. ¢t € [0, R].

We can assume, without loss of generality, that there exists vg € W with v{(t) € Domf(t, )
for a.e. t € [0,R] and vy # 0. Indeed, if this is not true, then Dom f(¢,-) = {0} for
a.e. t € [0, R], so that d¢(t,0) = R™ for a.e. t € [0, R]. Hence, choosing a measurable
selection z(t) of t — t"~10h(t,0), the Euler-Lagrange inclusions (3.8) and (3.9) are fulfilled

with p(t) = fot 2(s) ds.

Let vy be as above and let r, = fll/%k |vg(t)| dt. Since vy # 0, there exists ky € N such that
rr > 0 for every k > ky. For every & € BY", let us define

velt) = & / 0h(s)] ds.

We have v¢(1/k) = r:£ and, thanks to the monotonicity of the map s — f(t,s), s > 0, we
obtain that f(t, [vg(t)]) < f(t, [vg(2)|) for a.e. t € [1/k, R]. Hence, if k > ko, B]" x {0} C
riCy, NriCr,, and (v) in Proposition 4.2 is satisfied.

Thus we can conclude that for every k > kg there exists pp € AC([1/k, R], R™) such that

pi(t) € t"1Oh(t, u(t)), a.e. t €[1/k, R, (4.9)
pe(t) € " tog(t, v/ (1)), a.e. t € [1/k, R, (4.10)
pr(1/k) € Ol (u(1/k)) . (4.11)

Notice that (4.11) can be rewritten as

pe(1/k)| < ek (4.12)
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Let £(t) be a fixed summable selection of the multifunction ¢ — t"~'0h(t, u(t)), t € [0, R].
We extend py, to [0, R] by setting

1/k
Pe(t) = pu(L/R) — / E(s)ds,  te(0,1/k] (4.13)

Hence the inclusion (4.9) is satisfied for a.e. t € [0, R], so that, by (H6),
1P (t)| < (1), for a.e. t € [0, R]. (4.14)

Then p, € AC([0, R],R™) for every k > ky. Moreover, from (4.13), (4.14), and (4.12) we
get

1/k
Pe(0)] < [pk(1/k)| +/0 V(s) ds < 2e, (4.15)

which implies, together with (4.6), that limg px(0) = 0. Then, by the Ascoli-Arzela
compactness theorem, there exists a subsequence of (pi), which converges uniformly to
a function p € AC([0, R],R™) with p(0) = 0, [p'(t)] < v(t) a.e. t € [0, R], and (p}),
converges to p’ weakly in L'([0, R],R™). From (4.9) and Lemma 3.11 we deduce that
p'(t) € t""1Oh(t,u(t)), for a.e. t € [0, R]. Finally, for every k > kg, let us consider the set
Ny C [1/k, R] with Lebesgue measure zero such that (4.10) holds for every t € [1/k, R]\ Ny,
and define N = |, Nj. For each t €]0, R] \ N, we have py(t) € t"1dg(t, u'(t)) for every
k > 1/t. Since limg pi(t) = p(t) and, by Proposition 2.1(ii), the set dg(t, v'(¢)) is closed,
we infer that p(t) € t"'0g(t,u'(t)) for every t €]0, R]\ N, which concludes the proof. [
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