

Geometry and Symmetry in Physics ISSN 1312-5192

GREEN'S FUNCTION, WAVEFUNCTION AND WIGNER FUNCTION OF THE MIC-KEPLER PROBLEM

TOMOYO KANAZAWA

Communicated by Ivaïlo M. Mladenov

Abstract. The phase-space formulation of the nonrelativistic quantum mechanics is constructed on the basis of a deformation of the classical mechanics by the *-product. We have taken up the MIC-Kepler problem in which Iwai and Uwano have interpreted its wave-function as the cross section of complex line bundle associated with a principal fibre bundle in the conventional operator formalism. We show that its Green's function, which is derived from the *-exponential corresponds to unitary operator through the Weyl application, is equal to the infinite series that consists of its wave-functions. Finally, we obtain its Wigner function.

1. Introduction

We come to the reluctant conclusion that in our previous paper [5] we obtained only a piece of the local expression of the Green's function for the MIC-Kepler problem. There (Theorem 12) we have presented two expressions denoted by $G_+(r_f, r_i; E)$ and $G_-(\tilde{r}_f, \tilde{r}_i; E)$ where $r = \tilde{r}$ means the position vector x in $\dot{\mathbb{R}}^3 = \mathbb{R}^3 \setminus \{0\}$ i.e., $\boldsymbol{r} = (x, y, z)$. However, $G_-(\tilde{\boldsymbol{r}}_f, \tilde{\boldsymbol{r}}_i; E)$ is actually identical with $G_+(r_f, r_i; E)$ because the transition function is constant (independent of x) and therefore, despite the difference in appearance, τ_{-} is essentially the same local trivialization as τ_+ . This is the reason why $G_-(\tilde{r}_f, \tilde{r}_i; E)$ became equivalent to $G_{+}(r_f, r_i; E)$ in the case of iii). After that we have succeeded in obtaining the other piece of the local expression denoted by $G_{-}(\boldsymbol{x}_f,\,\boldsymbol{x}_i;\,E)$ via of finding another local trivialization τ_- which is transformed into τ_+ by the transition function of principal S^1 bundle varying with the position (more precisely, the longitudinal angle) of point x (see [4]). We have found, in addition, the wave-function of the MIC-Kepler problem. In this paper, by turning the right-hand system of orthogonal curvilinear local coordinates on U_{-} into the left-hand one, we obtain the Green's function and wave-function in a new form. In this way we end up with two left-handed coordinate systems bringing the two local trivializations which are transformed into each other by the transition function of the principal S^1 bundle. Thus it becomes possible to obtain its Wigner function on $T^*(U_+ \cap U_-) \subset T^* \dot{\mathbb{R}}^3$.

doi: 10.7546/jgsp-30-2013-63-73