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A LOGIC OF INJECTIVITY

J. ADÁMEK, M. HÉBERT and L. SOUSA

(communicated by George Janelidze)

Abstract
Injectivity of objects with respect to a set H of morphisms is

an important concept of algebra, model theory and homotopy
theory. Here we study the logic of injectivity consequences ofH,
by which we understand morphisms h such that injectivity with
respect toH implies injectivity with respect to h. We formulate
three simple deduction rules for the injectivity logic and for
its finitary version where morphisms between finitely ranked
objects are considered only, and prove that they are sound in
all categories, and complete in all “reasonable” categories.

1. Introduction

Recall that an object A is injective w.r.t. a morphism h : P → P ′ provided that
every morphism from P to A factors through h. We address the following problem:
given a set H of morphisms, which morphisms h are injectivity consequences of H in
the sense that every object injective w.r.t. all members of H is also injective w.r.t.
h? We denote the injectivity consequence relationship by H |= h.

This is a classical topic in general algebra: the equational logic of Garrett Birkhoff
[10] is a special case. In fact, an equation s = t is a pair of elements of a free algebra
F , and that pair generates a congruence ∼ on F . An algebra A satisfies s = t iff it
is injective w.r.t. the canonical epimorphism

h : F → F/ ∼ .

Thus, if we restrict our sets H to regular epimorphisms with free domains, then
the logic of injectivity becomes precisely the equational logic. However, there are
other important cases in algebra: recall for example the concept of injective module,
where H is the set of all monomorphisms (in the category of modules).

To mention an example from homotopy theory, recall that a Kan complex [14]
is a simplicial set injective w.r.t. all the monomorphisms ∆k

n ↪→ ∆n (for n, k ∈
N, k 6 n) where ∆n is the complex generated by a single n-simplex and ∆k

n is the
subcomplex obtained by deleting the k-th 1-simplex and all adjacent faces. We can
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ask for example whether Kan complexes can be specified by a simpler collection of
monomorphisms, as a special case of our injectivity logic.

Injectivity establishes a Galois correspondence between objects and morphisms
of a category. The closed families on the side of objects are called injectivity classes:
for every set H of morphisms we obtain the injectivity class InjH, i.e., the class of
all objects injective w.r.t. H. In [5] small-injectivity classes in locally presentable
categories were characterized as precisely the full accessible subcategories closed
under products, and in [18] this was sharpened in the following sense. Let us call a
morphism λ-ary if its domain and codomain are λ-presentable objects. Injectivity
classes with respect to λ-ary morphisms are precisely the full subcategories closed
under products, λ-filtered colimits, and λ-pure subobjects. For injectivity w.r.t.
cones or trees of morphisms similar results are in [7] and [15].

In the present paper we study closed sets on the side of morphisms, i.e., we
develop a deduction system for the above injectivity consequence relationship |=.
It has altogether three deduction rules, which are quite intuitive. Firstly, observe
that every object injective w.r.t. a composite h = h2 · h1 is injective w.r.t. the first
morphism h1. This gives us the first deduction rule

cancellation
h2 · h1

h1

It is also easy to see that injectivity w.r.t. h implies injectivity w.r.t. any morphism
h′ opposite to h in a pushout (along an arbitrary morphism), which yields the rule

pushout
h
h′

for every pushout

h //

²² ²²h′ //

Finally, an object injective w.r.t. two composable morphisms is also injective w.r.t.
their composite. The same holds for three, four, . . . morphisms – but also for a
transfinite composite as used in homotopy theory. For example, given an ω-chain of
morphisms

A0
h0 // A1

h1 // A2
h2 // . . .

then their ω-composite is the first morphism c0 : A0 → C of (any) colimit cocone cn :
An → C (n ∈ N) of the chain. Observe that c0 is indeed an injectivity consequence of
{hi; i < ω}. For every ordinal λ we have the concept of a λ-composite of morphisms
(see 2.10 below) and the following deduction rule, expressing the fact that an object
injective w.r.t. each hi is injective w.r.t. the transfinite composite:

transfinite
composition

hi (i < λ)
h

for every λ-composite h of (hi)i<λ

We are going to prove that the Injectivity Logic based on the above three rules is
sound and complete. That is, given a set H of morphisms, then H |= h holds for
precisely those morphisms h which can be proved from assumptions in H using the
three deduction rules above. This holds in a number of categories, e.g., in
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(a) every variety of algebras,
(b) the category of topological spaces and many nice subcategories (e.g. Hausdorff

spaces), and
(c) every locally presentable category of Gabriel and Ulmer.

We introduce the concept of a strongly locally ranked category encompassing (a)-
(c) above, and prove the soundness and completeness of our Injectivity Logic in all
such categories.

Observe that the above logic is infinitary, in fact, it has a proper class of deduc-
tion rules: one for every ordinal λ in the instance of transfinite composition.
We also study, following the footsteps of Grigore Roşu, the completeness of the
corresponding Finitary Injectivity Logic: it is the restriction of the above logic to λ
finite. Well, all we need to consider are the cases λ = 2, called composition, and
λ = 0, called identity:

composition
h1 h0

h for h = h1 · h0

identity idA

The resulting finitary deductive system (introduced in [6] as a slight modification
of the deduction system of Grigore Roşu [19]) has four deduction rules; it is clearly
sound, and the main result of our paper (Theorem 6.2) says that it is also complete
with respect to finitary morphisms, i.e., morphisms with domain and codomain of
finite rank. This implies the expected compactness theorem: every finitary injectivity
consequence of a set H of finitary morphisms is an injectivity consequence of some
finite subset of H.

The completeness theorem for Finitary Injectivity Logic will then be extended to
the k-ary Injectivity Logic, defined in the expected way. Then the full completeness
theorem easily follows.

The fact that the full Injectivity Logic above is complete in strongly locally
ranked categories can also be derived from Quillen’s Small Object Argument [17],
see Remark 3.9 below. However our sharpening to the k-ary logic for every cardinal
k cannot be derived from that paper, and we consider this to be a major step.

Related work Bernhard Banaschewski and Horst Herrlich showed thirty years ago
that implications in general algebra can be expressed categorically via injectivity
w.r.t. regular epimorphisms, see [9]. A generalization to injectivity w.r.t. cones or
even trees of morphisms was studied by Hajnal Andréka, István Németi and Ildikó
Sain, see e.g. [7, 8, 15].

To see more precisely how that work relates to ours and to classical logic, consider
injectivity in the category of all Σ-structures (and Σ-homomorphisms), where Σ is
any signature. Then recall from [4], 5.33 that there is a natural way to associate to
a (finitary) morphism f : A → B a (finitary) sentence

f ′ := ∀X(∧A′(X) → ∃Y (∧B′(X,Y )))

(where A′(X) and B′(X,Y ) are sets of atomic formulas) such that an object C
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satisfies f ′ if and only if it is injective with respect to f (see 2.22 below for more
on this). Such sentences are called regular sentences. In this paper we concentrate
on the proof theory for the (finite and infinite) regular logics. As mentioned above,
the restriction to epimorphisms correspond to considering only the quasi-equations
(i.e., no existential quantifiers), and just equations if we impose they have projective
domains.

Recently, Grigore Roşu introduced a deduction system for injectivity, see [19],
and he proved that the resulting logic is sound and complete for epimorphisms which
are finitely presentable, see 3.5, and have projective domains. A slight modification
of Roşu’s system was introduced in [6]: this is the deduction system 2.4 below. It
differs from [19] by formulating pushout more generally and using composition
in place of Roşu’s union. In [6] completeness is proved for sets of epimorphisms
with finitely presentable domains and codomains. (This is slightly stronger than
requiring the epimorphisms to be finitely presentable, however, without the too
restrictive assumption of projectivity of the domains the logic fails to be complete
for finitely presentable epimorphisms in general, see [6].)

In the present paper completeness of the finitary logic is proved for arbitrary
morphisms (not necessarily epimorphisms) with finitely presentable domains and
codomains. The fact that the assumption of epimorphism is dropped makes the
proof substantially more difficult. We present a short proof in locally presentable
categories first, and then a proof of a more general result for strongly locally ranked
categories. We also formulate the appropriate infinitary logic dealing with arbitrary
morphisms.

There are other generalizations of Birkhoff’s equational logic which are, except
for the common motivation, not related to our approach. For example the categorical
approach to logic of (ordered) many-sorted algebras of Razvan Diaconescu [11], and
the logic of implications in general algebra of Robert Quackenbush [16].

In our joint paper [1] we are taking another route to generalize the equational
logic: we consider orthogonality of objects to a morphism instead of injectivity. The
deduction system is similar: the rule cancellation has to be weakened, and an
additional rule concerning coequalizers is added. We prove the completeness of the
resulting logic of orthogonality in locally presentable categories. The corresponding
sentences are the so called limit sentences, ∀X(∧A′(X) → ∃!Y (∧B′(X,Y ))), where
∃!Y means “there exists exactly one Y such that”.

2. Logic of injectivity

2.0. Assumption Throughout the paper we assume that we are working in a
cocomplete category.

2.1. Definition A morphism h is called an injectivity consequence of a set of
morphisms H, notation

H |= h

provided that every object injective w.r.t. all morphisms in H is also
injective w.r.t. h.
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2.2. Examples (1) A composite h = h2·h1 is an injectivity consequence of {h1, h2}.
(2) Conversely, in every composite h = h2 · h1 the morphism h1 is an injectivity

consequence of h:

A
h1 //

ÃÃ@
@@

@@
@@

@ A′
h2 //

²²

A′′

}}|
|

|
|

X

(3) In every pushout

A
h //

u

²²

A′

v

²²
B

h′
// B′

h′ is an injectivity consequence of h:

A
h //

u

²²

A′

v

²²

»»0
0

0
0

0
0

0

B
h′ //

((PPPPPPPPPPPPPPP B′

ÃÃA
A

A
A

X

2.3. Remark The above examples are exhaustive. More precisely, the following
deduction system, introduced in [6], see also [19], (where, however, it was only
applied to epimorphisms) will be proved complete below:

2.4. Definition The Finitary Injectivity Deduction System consists of one axiom

identity
idA

and three deduction rules

composition
h h′

h′ · h if h′ · h is defined

cancellation
h′ · h

h

and
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pushout
h
h′

if

h //

²² ²²
h′

//

We say that a morphism h is a formal consequence of a set H of morphisms
(notation H ` h) in the Finitary Injectivity Logic if there exists a proof of h from
H (which means a finite sequence h1, ..., hn = h of morphisms such that for every
i = 1, ..., n the morphism hi lies in H or is a conclusion of one of the deduction rules
whose premises lie in {h1, ..., hi−1}).
2.5. Lemma The Finitary Injectivity Logic is sound, i.e., if a morphism h is a
formal consequence of a set of morphisms H, then h is an injectivity consequence
of H. Briefly: H ` h implies H |= h.

The proof follows from 2.2.

2.6. Remark Later we define finitary morphisms (as morphisms whose domains
and codomains are finitely presentable (Section 3) or of finite rank (Section 5)), and
in Section 6 we prove that the resulting Finitary Injectivity Logic is complete, i.e.,
that

H |= h implies H ` h

for every set H of finitary morphisms and every h finitary.

2.7. Example The following rule

finite coproduct
h1 h2

h1 + h2

(where for hi : Ai → Bi the morphism h1 +h2 : A1 +A2 → B1 +B2 is the canonical
coproduct morphism) is obviously sound. Here is a proof in the Finitary Injectivity
Logic:
Using the pushouts

A1
h1 //

²²

B1

²²
A1 + A2

h1+idA2

// B1 + A2

A2
h2 //

²²

B2

²²
B1 + A2

idB1 +h2

// B1 + B2

we can write

h1 h2

h1 + idA2 idB1 +h2

h1 + h2

via pushout

via composition

since h1 + h2 = (idB1 +h2) · (h1 + idA2).
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2.8. Example The following rule

finite wide pushout
h1 . . . hn

h
for every wide pushout

h1

}}{{
{{

{{
{{
h2

²²
...

hn

!!CC
CC

CC
CC

k1 ÂÂ@
@@

@@
@@

k2
²²

...

knÄÄÄÄ
ÄÄ

ÄÄ
Ä

C

where h = ki · hi

is sound. Here is a proof in the Finitary Injectivity Logic:
If n = 2 we have

h1 h2

k2

h = k2 · h2

via pushout

via composition

If n = 3 denote by r a pushout of h1, h2, then a pushout, h′3,

h1

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

r

²²

h2

ÂÂ?
??

??
??

h3 //

k3

²²k1 ÂÂ?
??

??
??

k2ÄÄÄÄ
ÄÄ

ÄÄ
Ä

h′3

//

of h3 along r forms a wide pushout of h1, h2 and h3:

h1 h2 h3

k2

r

k3

h = k3 · h3

via pushout

via composition

via pushout

via composition

Etc.

2.9. Remark We want to define a composition of a chain of λ morphisms for every
ordinal λ (see the case λ = ω in the Introduction). Recall that a λ-chain is a functor
A from λ, the well-ordered category of all ordinals i < λ.

Recall further that λ+ denotes the successor ordinal, i.e., the set of all i 6 λ.

2.10. Definition (i) We call a λ-chain A smooth if for every limit ordinal i < λ we
have

Ai = colim
j<i

Aj
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with the colimit cocone of all aji = A(j → i).
(ii) A morphism h is called a λ-composite of morphisms (hi)i<λ, where λ is an

ordinal, if there exists a smooth λ+-chain A with connecting morphisms aij : Ai →
Aj for i 6 j 6 λ such that

hi = ai,i+1 for all i < λ

and
h = a0,λ.

2.11. Examples λ = 0: No morphism hi is given, just an object A0; and h = a0,0

is the identity morphism of A0.
λ = 1: A morphism h0 is given, and we have h = a0,1 = h0. Thus, a 1-composite

of h0 is h0.
λ = 2: This is the usual concept of composition: given morphisms h0, h1, their

2-composite exists iff they are composable. Then h1 · h0 is the 2-composite.
λ = ω: This is the case mentioned in the Introduction. Observe that, unlike the

previous cases, an ω-composite is only unique up to isomorphism.

2.12. Lemma A λ-composite of morphisms (hi)i<λ is an injectivity consequence
of these morphisms.

Proof This is a trivial transfinite induction on λ. In case λ = 0 this states that idA

is an injectivity consequence of ∅, etc.

2.13. Definition The Injectivity Deduction System consists of the deduction rules

cancellation
h′ · h

h

pushout
h
h′

for every pushout

h //

²² ²²h′ //

and the rule scheme (one rule for every ordinal λ)

transfinite
composition

hi (i < λ)
h

for every λ-composite h of (hi)i<λ

We say that a morphism h is a formal consequence of a set H of morphisms
(notation H ` h) in the Injectivity Logic if there exists a proof of h from H (which
means a chain (hi)i6n of morphisms, where n is an ordinal, such that h = hn,
and each hi either lies in H, or is a conclusion of one of the deduction rules whose
premises lie in {hj}j<i).

2.14. Lemma The Injectivity Logic is sound, i.e., if a morphism h is a formal
consequence of a set H of morphisms, then h is an injectivity consequence of H.
Briefly: H ` h implies H |= h.

The proof (using 2.12) is elementary.



Journal of Homotopy and Related Structures, vol. 2(2), 2007 21

2.15. Remark In 2.13 we can replace transfinite composition by the deduction
rule wide pushout, see below, which makes use of the (obvious) fact that an object
A injective w.r.t. a set {hi}i<λ of morphisms having a common domain is also
injective w.r.t. their wide pushout. Let us note here that this rule does not replace
pushout of 2.13 (because in the latter a pushout of h along an arbitrary morphism
is considered).

2.16. Definition The deduction rule

wide pushout hi (i < λ)
h

for h a wide pushout of {hi}i<λ

applies, for every cardinal λ, to an arbitrary object P and an arbitrary set {hi} of
λ morphisms with the common domain P and the following wide pushout

P
hi

~~~~
~~

~~
~

²² ##HHHHHHHHHH

Pi

ki ÂÂ?
??

??
??

²²

. . .

{{www
ww

ww
ww

ww

Q

h = ki · hi (for any i)

Remark Again, this is a scheme of deduction rules: for every cardinal λ we have
one rule λ-wide pushout. Observe that λ = 0 yields the rule identity.

2.17. Lemma The Injectivity Deduction System 2.13 is equivalent to the deduction
system

composition, cancellation, pushout and wide pushout.

Proof (1) We can derive wide pushout from 2.13. For every ordinal number λ we
derive the rule

hi (i < λ)
h

for h a wide pushout of {hi}i<λ

by transfinite induction on the ordinal λ. We are given an object P and morphisms
hi : P → Pi (i < λ). The case λ = 0 is trivial, from λ derive λ+1 by using pushout,
and for limit ordinals λ form the restricted multiple pushouts Qj of morphisms hi

for i < j, and observe that they form a smooth chain whose composite is a multiple
pushout of all hi’s.

(2) From the system in 2.17 we can derive the rule λ-composition, where λ is
an arbitrary ordinal: the case λ = 0 follows from 0-wide pushout. The isolated
step uses composition: the (λ + 1)-composite of (hi)i6λ is simply hλ · k where k
is the λ-composite of (hi)i<λ. In the limit case, use the fact that a composite h of
(hi)i<λ is a wide pushout of {ki}i<λ, where ki is a composite of (hj)j<i.

2.18. Remark For every infinite cardinal k the k-ary Injectivity Deduction System
is the system 2.13 where λ ranges through ordinals smaller than k. A proof of a
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morphism h from a set H in the k-ary Injectivity Logic is, then, a proof of length
n < k using only the deduction rules with λ restricted as above. The last lemma can,
obviously, be formulated under this restriction in case we use the scheme λ-wide
pushout for all cardinals λ < k.

2.19. Definition The deduction rule

coproduct
hi (i < λ)

∐
i<λ hi

applies, for every cardinal λ, to an arbitrary collection of λ morphisms hi : Ai → Bi.

2.20. Lemma The Injectivity Deduction System 2.13 is equivalent to the deduction
system of 2.17 with wide pushout replaced by

identity + coproduct

Proof (1) coproduct follows from 2.17. In fact,
∐

i<λ hi :
∐

i<λ Ai →
∐

i<λ Bi is
a wide pushout of the morphisms kj :

∐
i<λ Ai →

∐
i<j Ai + Bj +

∐
j<i<λ Ai, where

j ranges through λ, with components idAi (i 6= j) and hj , and kj is a pushout of
hj along the j-th coproduct injection of

∐
i<λ Ai.

(2) Conversely, wide pushout follows from identity+coproduct. We obvi-
ously need to consider only λ > 1 and then we use the fact that given morphisms
hi : A → Bi (i < λ), their wide pushout h : A → C can be obtained from

∐
i<λ hi

by pushing out along the codiagonal ∇ :
∐

λ A → A:

∐
A

‘
hi //

∇
²²

∐
Bi

²²
A

h
// C

2.21. Remark The deduction system of the last lemma has five rules, but the
advantage against the system 2.13 is that they are particularly simple to formulate:

identity idA

cancellation
h2 · h1

h1

composition
h2 h1

h2 · h1 if h2 · h1 is defined
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pushout
h
h′

given

h //

²² ²²h′ //

coproduct
hi (i ∈ I)∐

i∈I hi

We prove below that 2.13, and therefore the above equivalent deduction system,
is not only sound but (in a number of categories) also complete.

2.22. Remark To relate our deduction rules to the usual ones (of classical logic),
let us consider, as in the Introduction, the category of all Σ-structures. Then any
object A can be presented by a set A′(X) of atomic formulas with parameters X in
A: for the familiar algebraic structures, this is just the usual concept of generators
and relations. Given a morphism f : A → B, and such presentations A′(X) and
B′

o(Y ) of A and B, we can also present B by B′(X, Y ), which is the union of B′
o(Y )

and the set of all the equations x = t(Y ) for which f(x) = t(Y ) (t a Σ-term). Then
for the sentence

f ′ := ∀X(∧A′(X) → ∃Y (∧B′(X,Y )))

we have that an object C is f -injective iff C |= f ′. Note that if f is finitary (see
the Introduction or 3.4 below), the presentations, and hence f ′, can be chosen to be
finitary (more details in [4], 5.33). Now, we can associate Gentzen-style rules to sets
of atomic formulas, generalizing the idea of what was done (with more accuracy) in
[6] for sets of equations: associating

A′(X) ⇒ B′(X,Y )

to ∀X(∧A′(X) → ∃Y (∧B′(X,Y ))), the identity axiom is of course

A′(X) ⇒ A′(X)
;

cancellation is a categorical version of the “restriction” rule

A′(X) ⇒ (B′(X,Y ) ∪ C ′(X,Y, Z))
A′(X) ⇒ B′(X,Y )

;

pushout is essentially the “weakening” rule

A′(X) ⇒ B′(X,Y )
(A′(X) ∪ C ′(X,Z)) ⇒ B′(X,Y )

;

and composition is a “ cut” rule

A′(X) ⇒ B′(X, Y ), B′(X, Y ) ⇒ C ′(X,Y, Z)
A′(X) ⇒ C ′(X,Y, Z)

.

The usual stronger “cut” rule

A′(X) ⇒ B′(X, Y ), ((B′(X, Y ) ∪ C ′(X, Y, Z)) ⇒ D′(X, Y, Z, U)
(A′(X) ∪ C ′(X, Y, Z)) ⇒ D′(X, Y, Z, U)
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corresponds to

A
f // B , B + C

g // D

A + C
g·(f+1C) // C

,

which is proved via

f g

f + idC g

g · (f + 1C)

pushout

composition

3. Completeness in locally presentable categories

3.1. Assumption In the present section we study injectivity in a locally presentable
category A of Gabriel and Ulmer, see [12] or [4]. This means that:

(a) A is cocomplete,

and

(b) there exists a regular cardinal λ such that A has a set of λ-presentable objects
whose closure under λ-filtered colimits is all of A.

Recall that an object A is λ-presentable if its hom-functor hom(A,−) : A → Set
preserves λ-filtered colimits. That is, given a λ-filtered diagram D with a colimit
ci : Di → C (i ∈ I) in A, then for every morphism f : A → C

(i) a factorization of f through ci exists for some i ∈ I,

and

(ii) factorizations are essentially unique, i.e., given i ∈ I and ci · g′ = ci · g′′ for
some g′, g′′ : A → Di, there exists a connecting morphism dij : Di → Dj of
the diagram with dij · g′ = dij · g′′.

3.2. Examples (see [4]) Sets, presheaves, varieties of algebras and simplicial sets
are examples of locally presentable categories. Categories such as Top (topological
spaces) or Haus (Hausdorff spaces) are not locally presentable.

3.3. Remark (a) In the present section we prove that the Injectivity Logic is
complete in every locally presentable category. The reader may decide to skip this
section since we prove a more general result in Section 6. Both of our proofs are
based on the fact that for every set H of morphisms the full subcategory InjH (of
all objects injective w.r.t. morphisms of H) is weakly reflective. That is: every object
A ∈ A has a morphism r : A → A, called a weak reflection, such that

(i) A lies in InjH
and

(ii) every morphism from A to an object of InjH factors through r (not necessarily
uniquely).
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In the present section we will utilize the classical Small Object Argument of D.
Quillen [17]: this tells us that every object A has a weak reflection r : A → A in
InjH such that r is a transfinite composite of morphisms of the class

Ĥ = {k; k is a pushout of a member of H along some morphism}.
(b) The reason for proving the completeness based on the Small Object Argument

in the present section is that the proof is short and elegant. However, by using a
more refined construction of weak reflection in InjH, which we present in Section
5, we will be able to prove the completeness in the so-called strongly locally ranked
categories, which include Top and Haus.

The spirits of the two proofs are quite different. Given an injectivity consequence
h of a set of morphisms, in this section we will show how to derive a formal proof of
h from Quillen’s construction of the weak reflection; this construction is “linear”,
forming a transfinite composite. In the next section, a weak reflection will be con-
structed as a colimit of a filtered diagram which somehow presents simultaneously
all the possible formal proofs.

3.4. Definition A morphism is called λ-ary provided that its domain and codomain
are λ-presentable objects. For λ = ℵ0 we say finitary.

3.5. Remark (a) The λ-ary morphisms are precisely the λ-presentable objects of
the arrow category A→. In contrast, M. Hébert introduced in [13] λ-presentable
morphisms; these are the morphisms f : A → B which are λ-presentable objects of
the slice category A ↓ A. In the present paper we will not use the latter concept.

(b) We work now with the Finitary Injectivity Logic, i.e., the deduction system
2.4 applied to finitary morphisms. We generalize this to the k-ary logic below.

3.6. Theorem The Finitary Injectivity Logic is complete in every locally pre-
sentable category A. That is, given a set H of finitary morphisms in A, then every
finitary morphism h which is an injectivity consequence of H is a formal consequence
in the deduction system 2.4. Briefly:

H |= h implies H ` h.

Proof Given a finitary morphism h : A → B which is an injectivity consequence of
H, we prove that

H ` h.

(a) The above object A has a weak reflection

r : A → A

such that r is a transfinite composition of morphisms in Ĥ, see 3.3(a). Since H |=
h, it follows that A is injective w.r.t. h, which yields a morphism u forming a
commutative triangle

A
r //

h ÂÂ?
??

??
??

? A

B

u

??ÄÄÄÄÄÄÄ
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(b) Consider all commutative triangles as above where r : A → A is any α-
composite of morphisms in Ĥ for some ordinal α and u is arbitrary. We prove that
the least possible α is finite. This finishes the proof of H ` h: In case α = 0, we
have that id = u · h, and we derive h via identity and cancellation. In case α
is a finite ordinal greater than 0, we have that r is provable from H using pushout
and composition. Consequently, via cancellation, we get h.

Let C be the class of all ordinals α such that there are an α-composite r of
morphisms of Ĥ and a morphism u with r = u ·h. To show that the least member γ
of C is finite, we prove that for each ordinal γ > ω in C we can find another ordinal
in C which is smaller than γ.

A. Case γ = β + m, with β a limit ordinal and m > 0 finite. Let ai,i+1 (i < β + m)
be the corresponding chain with r = a0,β+m. Since aβ,β+1 lies in Ĥ, we can express
it as a pushout of some morphism k : D → D′ in H:

D
q

ssfffffffffffffffffffffffffffffffff
k //

p

²²

D′

p′

²²
A0 a01

// A1 a12
// Ai ai,i+1

//

vi

²²

Ai+1 ai+1,i+2
//

vi+1

²²

Ai+2 ai+2,i+3
//

vi+2

²²

Aβ aβ,β+1
//

vβ

²²

Aβ+1

zz
zz

zz
zz

zz
zz

zz
zz

Pi pi,i+1
// Pi+1 pi+1,i+2

// Pi+2 pi+2,i+3
// Pβ

. . .

. . .

. . .

We have a colimit Aβ = colimi<β Ai of a chain of morphisms. Hence, because D
is finitely presentable, p factorizes as p = aiβ · q for some i < β and some morphism
q : D → Ai. Let vi be a pushout of k along q, and form a sequence vj of pushouts
of k along aij · q (j < β) as illustrated in the diagram above (taking colimits at the
limit ordinals). Then it is easily seen, due to p = aiβ · q, that vβ = colimj<β vj is a
pushout of k along p. Thus, without loss of generality,

Pβ = Aβ+1 and vβ = aβ,β+1.

Observe that, since aj,j+1 lies in Ĥ, pushout implies that

pj,j+1 ∈ Ĥ for all i 6 j < β.

Also vi ∈ Ĥ since it is a pushout of k along q. Consequently, a0,β+1 is a β-composite
of morphisms bj,j+1 (j < β) of Ĥ as follows (where l is the first limit ordinal after
i):

bj,j+1 = aj,j+1 for all j < i,
bi,i+1 = vi,
bj,j+1 = pj−1,j for all i < j < l,

and
bj,j+1 = pj,j+1 for all l 6 j < β.
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Thus r = a0,β+m is a (β + (m− 1))-composite of morphisms of Ĥ.

B. Case γ is a limit ordinal. The morphism

u : B → A = colim
i<γ

Ai

factors, since B is finitely presentable, through some aiγ , i < γ:

u = aiγ · u for some u : B → Ai.

The parallel pair

A = A0

u·h //
a0i

// Ai

is clearly merged by the colimit morphism aiγ of Aγ = colimi<γ Ai. Since A is finitely
presentable, hom(A,−) preserves that colimit, consequently (see (ii) in 3.1.b), the
parallel pair is also merged by a connecting morphism aij : Ai → Aj for some
i < j < γ:

aij · u · h = a0j .

This gives us a commutative triangle

A0
a01 //

h ÃÃB
BB

BB
BB

B A1
a12 // Aj

B

aij ·u

88ppppppppppppp

. . .

thus a0j is a j-composite of morphisms of Ĥ with j < γ.

3.7. Remark The above theorem immediatly generalizes to the k-ary Injectivity
Logic, i.e., to the deduction system of 2.18 applied to k-ary morphisms. Recall that
for every set of objects in a locally presentable category there exists a cardinal k
such that all these objects are k-presentable. Consequently, for every set H∪{h} of
morphisms there exists k such that all members are k-ary. The proof that H |= h
implies H ` h is completely analogously to 3.6: We show that the least possible α
is smaller than k, thus in Cases A. and B. we work with γ > k.

3.8. Corollary The Injectivity Logic is sound and complete in every locally pre-
sentable category.

In fact, given
H |= h

find a cardinal k such that all members of H∪ {h} are k-ary morphisms. Then h is
a formal consequence of H by 3.7.

3.9. Remark The above corollary also follows from the Small Object Argument
(see 3.3(a)): if h : A → B is an injectivity consequence of H and if r : A → A
is the corresponding weak reflection, then r is clearly a formal consequence of H.
Since A is injective w.r.t. h, it follows that r factors through h, thus, h is a formal
consequence of r (via cancellation).
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4. Strongly locally ranked categories

4.1. Remark Recall that a factorization system in a category is a pair (E , M)
of classes of morphisms containing all isomorphisms and closed under composition
such that

(a) every morphism f : A → B has a factorization f = m · e with e : A → C in E
and m : C → B in M

and

(b) given another such factorization f = m′ · e′ there exists a unique “diagonal
fill-in” morphism d making the diagram

A
e //

e′

²²

C
d

~~}}
}}

}}
}

m

²²
C ′

m′
// B

commutative.

The factorization system is called left-proper if every morphism of E is an epi-
morphism. In that case the E-quotients of an object A are the quotient objects of
A represented by morphisms of E with domain A.

4.2. Definition Let (E ,M) be a factorization system. We say that an object A
has M-rank λ, where λ is a regular cardinal, provided, that

(a) hom(A,−) preserves λ-filtered colimits of diagrams of M-morphisms (i.e.,
given a λ-filtered diagram D whose connecting morphisms lie inM, then every
morphism f : A → colimD factors, essentially uniquely, through a colimit map
of D)

and

(b) A has less than λ E-quotients.

If λ = ℵ0 we say that the object A has finite M-rank.

4.3. Examples (1) For the factorization system (Iso, All), rank λ is equivalent to
λ-presentability.

(2) In the category Top of topological spaces, choose (E , M) = (Epi, Strong
Mono). Here the M-subobjects are precisely the embeddings of subspaces. Every
topological space A of cardinality α has M-rank λ whenever λ > 22α

. In fact,
hom(A,−) preserves λ-directed unions of subspaces since α < λ. And the amount
of quotient objects of A (carried by epimorphisms) is at most

∑
β6α EβTβ where

Eβ is the number of equivalence relations on A of order β and Tβ is the number
of topologies on a set of cardinality β. Since Eβ and Tβ are both 6 22β

, we have∑
β6α EβTβ 6 α · 22α · 22α

< λ, thus we conclude that A has less than λ quotients.

4.4. Remark Every E-quotient of an object of M-rank λ also has M-rank λ. In
fact (a) in 4.2 follows easily by diagonal fill-in, and (b) is obvious.
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4.5. Definition A category A is called strongly locally ranked provided that it has
a left-proper factorization system (E , M) such that

(i) A is cocomplete;
(ii) every object has an M-rank, and all objects of the same M-rank form a set

up to isomorphism;
(iii) for every cardinal µ the collection of all objects of M-rank µ is closed under

E-quotients and under µ-small colimits, i.e., colimits of diagrams with less
than µ morphisms;

and

(iv) the subcategory of all objects of A and all morphisms of M is closed under
filtered colimits in A.

Remark The statement (iv) means that, given a filtered colimit with connecting
morphisms in M, then

(a) the colimit cocone is formed by morphisms of M
and

(b) every other cocone of M-morphisms has the unique factorizing morphism in
M.

4.6. Examples (1) Every locally presentable category is strongly locally ranked:
choose

E ≡ isomorphisms, M≡ all morphisms.

In fact, see [4], 1.9 for the proof of (ii), whereas (iii) and (iv) hold trivially.
(2) Choose

E ≡ epimorphisms, M≡ strong monomorphisms.

Here categories such as Top (which are not locally presentable) are included. In fact,
for a space A of cardinality α we have that hom(A,−) preserves λ-filtered colimits
(=unions) of subspaces whenever α < λ. Thus, by choosing a cardinal λ > α bigger
than the number of quotients of A we get an M-rank of A. It is easy to verify (iii)
and (iv) in Top.

(3) Let B be a full, isomorphism closed, E-reflective subcategory of a strongly
locally ranked category A. If B is closed under filtered colimits of M-morphisms
in A, then B is strongly locally ranked. In fact, B is closed under M in the sense
that given m : A → B in M with B ∈ B, then A ∈ B. (Indeed, we have a reflection
rA : A → A′ in E and m = m′ · rA for a unique m′; this implies that rA ∈ E
is an isomorphism, thus, A ∈ B.) Therefore the restriction of (E , M) to B yields
a factorization system. It fulfils (ii)-(iv) of 4.5 because B is closed under filtered
colimits of M-morphisms.

(4) The category Haus of Hausdorff spaces is strongly locally ranked: it is an
epireflective subcategory of Top closed under filtered unions of subspaces.

4.7. Observation In a strongly locally ranked category the classM is closed under
transfinite composition. This follows from (iv).
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4.8. Definition A morphism is called k-ary if its domain and codomain have M-
rank k. In case k = ℵ0 we speak of finitary morphisms.

4.9. Remark The name “strongly locally ranked” was chosen since our require-
ments are somewhat stronger than those of [2]: there a category is called locally
ranked in case it is cocomplete, has an (E ,M)-factorization, is E-cowellpowered and
for every object A there exists an infinite cardinal λ such that hom(A,−) preserves
colimits of λ-chains of M-monomorphisms. Our definition of rank and the condi-
tion 4.5(ii) imply that the given category is E-cowellpowered. Thus, every strongly
locally ranked category is locally ranked.

An example of a locally ranked category that is not strongly locally ranked is
the category of σ-semilattices (posets with countable joins and functions preserving
them): condition 4.5(iv) fails here. Consider e.g. the ω-chain of the posets exp(n)
(where n = {0, 1, . . . , n − 1}), n ∈ ω, with inclusion as order. The colimit of this
chain is exp(N) ordered by inclusion. If M is the poset of all finite subsets of N
with an added top element, then the embeddings exp(n) ↪→ M form a cocone of the
chain, but the factorization morphism exp(N) → M is not a monomorphism.

5. A construction of weak reflections

5.1. Assumption In the present section A denotes a strongly locally ranked cat-
egory. For every infinite cardinal k, Ak denotes a chosen set of objects of M-rank
k closed under E-quotients and k-small colimits. In particular, one may of course
choose Ak to be a set of representatives of all the objects of M-rank k up to iso-
morphism.

Given a set H ⊆M of k-ary morphisms of Ak (considered as a full subcategory
of A), [2] provides a construction of a weak reflection in InjH, which generalizes
the Small Object Argument (see 3.3). However, this does not appear to be sufficient
to prove our Completeness Theorem for the finitary case. The aim of this section is
to present a different, more appropriate construction.

We begin with the case k = ω and come back to the general case at the end of
this section.

5.2. Convention (a) Morphisms with domain and codomain in Aω are called petty.
(b) Given a set H of petty morphisms, let

H
denote the closure of H under finite composition and pushout in Aω. (That is, H
is the closure of H ∪ {idA; A ∈ Aω} under binary composition and pushout along
petty morphisms.)

(c) Since H ⊆ morAω is a set, we can, for every object B of Aω, index all
morphisms of H with domain B by a set – and that indexing set can be chosen to
be independent of B. That is, we assume that a set T is given and that for every
object B ∈ Aω,

{hB(t) : B → B(t) ; t ∈ T} (5.1)

is the set of all morphisms of H with domain B.
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5.3. Diagram DA For every object A ∈ Aω we define a diagram DA in A and
later prove that a weak reflection of A in InjH is obtained as a colimit of DA. The
domain D of DA, independent of A, is the poset of all finite words

ε, M1, M1M2, . . . , M1 . . .Mk (k < ω)

where ε denotes the empty word and each Mi is a finite subset of T . The ordering
is as follows:

M1 . . . Mk 6 N1 . . . Nl iff k 6 l and M1 ⊆ N1, . . . , Mk ⊆ Nk.

Observe that ε is the least element.
We denote the objects DA(M1 . . . Mk) of the diagram DA by

AM where M = M1 . . . Mk,

and if M1 . . .Mk 6 N1 . . . Nl = N , we denote by

aM,N : AM → AN

the corresponding connecting morphism of DA. We define these objects and connect-
ing morphisms by induction on the length k of the word M = M1 . . . Mk considered.

Case k = 0: Aε = A.
Induction step: Assume that all objects AM with M of length less than or equal

to k and all connecting morphisms between them are defined. For every word M of
length k + 1 denote by

M? 6 M

the prefix of M of length k, and define the object AM as a colimit of the following
finite diagram

AK

hAK
(t)

//

aK,M?

²²

AK(t)

• //

¦¦¯̄
¯̄

¯̄
¯̄

¯̄
¯̄

¯̄

• //

vvllllllllllllllll

AM? . . .

where K ranges over all words K ∈ D with K 6 M? and t ranges over the set
Mk+1. Thus, AM is equipped with (the universal cone of) morphisms

aM?,M : AM? → AM (connecting morphism of DA)

and

dK
M (t) : AK(t) → AM for all K 6 M?, t ∈ Mk+1,
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forming commutative squares

AK

aK,M?

||yyyyyyyy
hAK

(t)

##GGGGGGGG

AM?

aM?,M ""EEEEEEEE AK(t)

dK
M (t){{wwwwwwww

AM

(5.2)

This defines the objects AM for all words of length k+1. Next we define connecting
morphisms

aN,M : AN → AM

for all words N 6 M . If the length of N is at most k, then N 6 M? and we define
aN,M through the (already defined) connecting morphism aN,M? by composing it
with the above aM?,M . If N has length k+1, we define aN,M as the unique morphism
for which the diagrams

AK

aK,N?

||yyyyyyyy
hAK

(t)

##GGGGGGGG

AN?

aN?,N

""DD
DD

DD
DD

D

aN?,M

¹¹-
--

--
--

--
--

--
--

--
--

--
AK(t)

dK
N (t)

{{xx
xx

xx
xx

x

dK
M (t)

¨¨³³
³³
³³
³³
³³
³³
³³
³³
³³
³³
³

AN

aN,M

²²

(K 6 N?, t ∈ Nk+1)

AM

(5.3)
commute.

It is easy to verify that the morphisms aN,M are well-defined and that DA : D →
A preserves composition and identity morphisms.

5.4. Lemma All connecting morphisms of the diagram DA lie in H.

Proof We first observe that, given a finite diagram

Ai
hi //

fi

²²

Bi

C

(i ∈ I)



Journal of Homotopy and Related Structures, vol. 2(2), 2007 33

with all hi in H, a colimit

Ai
hi //

fi

²²

Bi

di

²²
C

h
// D

(i ∈ I)

(5.4)

is obtained by first considering pushouts h′i of hi along fi and then forming a wide
pushout h of all h′i (i ∈ I). Consequently, the connecting morphisms of DA are
formed by repeating one of the following steps: a finite wide pushout of morphisms
in H, a composition of morphisms in H, and a pushout of a morphism in H along
a petty morphism. Since H is closed, by 5.2, under the latter, it is closed under the
first one in the obvious sense, see the construction of a finite wide pushout described
in Example 2.8.

5.5. Lemma For every object AM of the diagram DA and every morphism h :
AM → B of H there exists a connecting morphism aM, N : AM → AN of DA which
factors through h.

Proof We have M = M1 . . .Mk and h = hAM
(t) for some t ∈ T . Put

N = M1 . . . Mk{t}.
Then for K = M the definition of dK

N (t) (see (5.2)) gives the following commutative
diagram:

AM

hAM
(t)

//

id

²²

AM (t)

dK
N (t)

²²
AM aM,N

// AN

Consequently,
aM,N = dK

N (t) · hAM (t)

as required.

5.6. Proposition Let H be a set of petty morphisms with H ⊆M. Then for every
object A ∈ Aω a colimit γM : AM → Â (M ∈ D) of the diagram DA yields a weak
reflection of A in InjH via

rA = γε : A → Â.

Proof (1) Â is injective w.r.t. H: We want to prove that given h ∈ H and f as
follows

B
h //

f

²²

C

Â
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then f factors through h. Firstly, since Â = colimDA is a directed colimit of H-
morphisms (see 5.4) with H ⊆ M, and B has finite M-rank (because B ∈ Aω),
it follows that hom(B,−) preserves the colimit of DA. Thus, there exists a colimit
morphism γN : AN → Â through which f factors, f = γN · f ′.

B
h //

f

²² f ′ ÃÃB
BB

BB
BB

B C
f ′′

##GG
GG

GG
GG

G

Â ANγN

oo

aN, M

²²

h′ // AN (t)

h′′{{wwwwwwww

AM

γM

``AAAAAAAA

By pushing h ∈ H out along f ′ we obtain a morphism h′ ∈ H. Then by 5.5 there
exists M > N such that aN,M = h′′ · h′ for some h′′ : AN (t) → AM . The above
commutative diagram proves that f factors through h.

(2) Let B be injective w.r.t. H. For every morphism f : A → B we define a
compatible cocone fM : AM → B of the diagram DA by induction on

k = the length of the word M

such that fε = f . Then the desired factorization of f is obtained via the (unique)
factorization g : Â → B with g · γM = fM : in fact, g · rA = f .

For k 7→ k + 1, choose for every word N of length k and every t ∈ T a morphism
fN (t) forming a commutative triangle

AN

hAN
(t)

//

fN

²²

AN (t)

fN (t)
{{ww

ww
ww

ww
w

B

(recalling that B is H-injective because it is H-injective). Then for every word M
of length k + 1 we have a unique factorization fM : AM → B making the following
diagrams

AK

hAK
(t)

//

aK, M?

²²

AK(t)

dK
M (t)

²²
fK(t)

¼¼3
33

33
33

33
33

33
33

AM?

fM?

**VVVVVVVVVVVVVVVVVVVVVVV
aM?,M // AM

fM

""FFFFFFFF

B

(5.5)

commutative for all K 6 M? and t ∈ Mk+1.
Let us verify the compatibility

fM = fN · aM, N for all M 6 N in D. (5.6)
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The last diagram yields fM? = fM · aM?, M . Therefore, it is sufficient to prove (5.6)
for words M and N of the same length k +1. In order to do that, we will show that

fM · dK
M (t) = fN · aM,N · dK

M (t), for all K 6 M? and t ∈ Mk+1, (5.7)

and
fM · aM?,M = fN · aM,N · aM?,M . (5.8)

Concerning (5.7), we have

fM · dK
M (t) = fK(t)

= fN · dK
N (t), by replacing M by N in (5.5)

= fN · aM,N · dK
M (t), by (5.3).

As for (5.8), we have

fM · aM?,M = fM?

= fN? · aM?,N?

= fN · aN?,N · aM?,N? , by replacing M by N in (5.5)

= fN · aM,N · aM?,M .

5.7. Convention Generalizing the above construction from ω to any infinite car-
dinal k, we call the morphisms of Ak k-petty. Let us now denote by

Hk

the closure of H under k-composition (2.10) and pushout in Ak. Following 2.18, Hk

is closed under k-wide pushout. We again assume that a set T is given such that, for
every object B ∈ Ak we have an indexing hB(t) : B → B(t), t ∈ T of all morphisms
of Hk with domain B.

5.8. Diagram DA The poset D of 5.3 is generalized to a poset Dk: Let PkT be
the poset of all subsets of T of cardinality < k. The elements of Dk are all functions

M : λ → PkT

where λ < k is an ordinal, including the case ε : 0 → PkT . The ordering is as
follows: for N : λ′ → PkT put

M 6 N iff λ 6 λ′ and Mi ⊆ Ni for all i < λ.

We define, for every A ∈ Ak, the diagram DA : Dk → A. The objects DA(M) =
AM and the connecting morphisms aM,N : AM → AN (M 6 N) are defined by
transfinite induction on λ < k. For λ = 0 we have Aε = A. The isolated step is
precisely as in 5.3, where for M : λ + 1 → PkT we denote by M? : λ → PkT the
domain-restriction. The limit steps are defined via colimits of smooth chains, see
2.10: if λ < k is a limit ordinal and M : λ → PkT is given, then AM is a colimit
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of the chain AM/i (i < λ), where M/i is the domain restriction of M to i, with the
connecting morphisms aM/i, M/j : AM/i → AM/j for all i 6 j < λ. The proof that
these chains are smooth is an easy transfinite induction.

It is also easy to see that all the above results hold: Â = colimDA is an H-
injective weak reflection of A, and all connecting morphisms of DA are members of
H. Consequently, the proof of the following proposition is analogous to that of 5.6:

5.9. Proposition Let H be a set of k-petty morphisms with Hk ⊆ M. Then for
every object A ∈ Ak a colimit γM : AM → Â of DA yields a weak reflection of A in
InjH via rA = γε : A → Â.

6. Completeness in strongly locally ranked categories

6.1. Assumption Throughout this section A denotes a strongly locally ranked
category. We first prove the completeness of the finitary logic. Recall that the finitary
morphisms are those where the domain and codomain are of finite M-rank. Let us
remark that whenever the class M is closed under pushout, then the method of
proof of Theorem 3.6 applies again. However, this excludes examples such as Haus
(where strong monomorphisms are not closed under pushout).

6.2. Theorem The Finitary Injectivity Logic is complete in every strongly locally
ranked category. That is, given a set H of finitary morphisms, every finitary mor-
phism h which is an injectivity consequence of H is a formal consequence (in the
deduction system of 2.4). Shortly: H |= h implies H ` h.

6.3. Remark We do not need the full strength of weak local presentation for
this result. We are going to prove the completeness under the following milder
assumptions on A:

(i) A is cocomplete and has a left-proper factorization system (E , M);
(ii) Aω is a set of objects of finite M-rank, closed under finite colimits and E-

quotients;
(iii) M is closed under filtered colimits in A (see 4.5 (iv)).
The statement we prove is, then, concerned with petty morphisms (see 5.2). We
show that for every set H of petty morphisms we have

H |= h implies H ` h (for all h petty).

The choice of Aω as a set of representatives of all objects of finite M-rank yields
the statement of the theorem.

Proof of 6.2 and 6.3 Let then H be a set of petty morphisms, and let

H
denote the closure of H as in 5.2.

(1) We first prove that the theorem holds whenever H ⊆ M. Moreover, we will
show that for every petty injectivity consequence H |= h we have a formal proof
of h from assumptions in H such that the use of pushout is always restricted to
pushing out along petty morphisms.
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To prove this, consider, for the given petty injectivity consequence h : A → B of
H, the weak reflection rA : A → Â in InjH of 5.6. The object Â is injective w.r.t.
h, thus rA factors through h via some f : B → Â:

A
h //

rA

²²

B

g

²²

f

}}||
||

||
||

||
||

||
||

||
||

||
||

||
||

|

AM

γM

xx
Â ANγN

oo
aN, M

aa

Since B ∈ Aω, it has finite M-rank, and 5.4 implies that hom(B,−) preserves
the colimit Â = colimDA. Then f factors through one of the colimit morphisms
γN : AN → Â:

f = γN · g for some g : B → AN .

We know that rA = γε is the composite of the connecting morphism aε, N : A → AN

of DA and γN , therefore,

γN · aε, N = rA = γN · g · h.

That is, the colimit morphism γN merges the parallel pair aε, N , g · h : A → AN .
Now the domain A has finite M-rank, thus hom(A,−) also preserves Â = colimDA.
Consequently, by (ii) in 3.1(b) the parallel pair is also merged by some connecting
morphism aN, M : AN → AM of DA:

aN, M · aε, N = aN, M · g · h : A → AM .

The left-hand side is simply aε, M , and this is a morphism of H, see Lemma 5.4.
Recall that the definition ofH implies that every morphism inH can be proved from
H using Finitary Injectivity Logic in which pushout is only applied to pushing
out along petty morphisms. Thus, we have a proof of the right-hand side aN, M ·g ·h.
The last step is deriving h from this by cancellation.

(2) Assuming H ⊆ E , then we prove that InjH is a reflective subcategory of A,
and for every object A ∈ Aω the reflection map rA : A → Â is a formal consequence
of H lying in E :

H ` rA and rA ∈ E .

In fact, from H ⊆ E it follows that H ⊆ E (since E is closed under composition and
pushout). Since A has only finitely many E-quotients, see 4.2, we can form a finite
wide pushout, rA : A → Â, of all E-quotients of A lying in H. Clearly, H ` rA, in
fact, rA ∈ H.
The object Â is injective w.r.t. H: given h : P → P ′ in H and f : P → Â, form
a pushout h′ of h along f . This is an E-quotient in H, then the same is true for
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h′ · rA. Consequently, rA factors through h′ · rA, and the factorization, i : B → Â,
is an epimorphism split by h′, thus, f = i · g · h:

P
h //

f

²²

P ′

g

²²
A

rA // Â
h′ //

B
i

oo

The morphism rA is a weak reflection: given a morphism u from A to an object C
of InjH, then u factors through rA because C is injective w.r.t. H and rA ∈ H.

(3) Let H be arbitrary. We begin our proof by defining an increasing sequence of
sets Ei ⊆ E of petty morphisms (i ∈ Ord). For every member f : A → B of H we
denote by fi a reflection of f in Inj Ei:

A
f //

rA

²²

B

rB

²²
Â fi

// B̂

First step: E0 = {idA; A ∈ Aω}. Here Inj E0 = A, thus f0 = f .
Isolated step: For each f ∈ H, let fi = f ′′i · f ′i be the (E , M)-factorization of the

reflection fi of f in Inj Ei, and put

Ei+1 = Ei ∪ {f ′i ; f ∈ H}.
Limit step: Ej = ∪i<jEi for limit ordinals j.
We prove that for every ordinal i we have

H ` f ′i for every f ∈ H (6.1)

and
InjH = Inj Ei ∩ Inj{fi}f∈H. (6.2)

For i = 0, (6.1) and (6.2) are trivial (use cancellation for (6.1) and identity
for (6.2)). Given i > 0, assuming that H ` f ′j for all j < i, with f : A → B in H,
that is, H ` Ei, we have, by (2), that

H ` rB (6.3)

where rB is the reflection of B in Inj Ei. Thus, H ` fi · rA. Moreover, rA is an
epimorphism, therefore the following square

A
rA //

rA

²²

Â
fi // B̂

id

²²
Â

fi // B̂

is a pushout, which proves H ` fi (via pushout). H ` f ′i then follows by cancel-
lation.
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To prove (6.2), observe that (6.1) implies InjH ⊆ Inj Ei, and our previous argu-
ment yields InjH ⊆ Inj {fi}f∈H. Thus, it remains to prove the reverse inclusion:
every object X injective w.r.t. Ei ∪ {fi}f∈H is injective w.r.t. H. In fact, given
f : A → B in H and a morphism u : A → X, then since X ∈ Inj Ei we have a
factorization u = v · rA, and then the injectivity of X w.r.t. fi yields the desired
factorization of u through f .

A
f //

rA

²²

u

ÃÃ@
@@

@@
@@

B

rB

²²

X

Â

v

??ÄÄÄÄÄÄÄÄ

fi

// B̂

__?
?

?
?

(4) Since Aω is a small category, there exists an ordinal j with

Ej = Ej+1.

We want to apply (1) to the category

A′ = Inj Ej ,

and the set

A′ω = Aω ∩ objA′.
Let us verify that A′ satisfies the assumptions (i) – (iii) of Remark 6.3 w.r.t.

E ′ = E ∩morA′ and M′ = M∩morA′.
Ad(i): A′ is cocomplete because it is reflective in A. Moreover, since the reflection

maps lie in E , it follows that (E ′, M′) is a factorization system: in fact, A′ is closed
under factorization in A. Since E ⊆ Epi(A), we have E ′ ⊆ Epi(A′).

Ad(iii): It is sufficient to prove that A′ is closed under filtered colimits of M′-
morphisms in A. In fact, let D be a filtered diagram in A′ with connecting mor-
phisms in M, and let ct : Ct → C (t ∈ T ) be a colimit of D in A. Then C ∈ A′, i.e.,
C is injective w.r.t. fj : Â → E for every f ∈ H. This follows from Â having finite
M-rank (because A ∈ Aω implies Â ∈ Aω due to the fact that rA : A → Â is an
E-quotient): since hom(Â,−) preserves the colimit of D, every morphism u : Â → C
factors through some of the colimit morphisms:

Â
v

ÄÄÄ
Ä

Ä
Ä

fj //

u

²²

E

Ct ct

// C

Since Ct ∈ A′ is injective w.r.t. fj , we have a factorization of v through fj , and
therefore, u also factors through fj . This proves C ∈ A′.
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Ad(ii): Due to the above, every object of A′ having a finite M-rank in A has
a finite M′-rank in A′. Also, a finite colimit of objects of A′ in A′ is a reflection
(thus, an E-quotient) of the corresponding finite colimit in A. Thus, it lies in A′ω.

Next we claim that the set H′ = {fj ; f ∈ H} fulfils

H′ ⊆M′

and H′ is closed under petty identities, composition, and pushouts along petty
morphisms. In fact, in the above (E , M)-factorization of fj :

A

rA

²²

f // B

rB

²²
Â fj

//

f ′j ÂÂ?
??

??
??

? B̂

D

f ′′j

??ÄÄÄÄÄÄÄÄ

we know that f ′j lies in Ej+1 = Ej and Â is injective w.r.t. Ej , thus, f ′j is a split
monomorphism (as well as an epimorphism, since E ⊆ Epi(A)). Thus, f ′j is an
isomorphism, which implies fj ∈ M. H′ contains idA for every A ∈ A′ω because H
contains it; H′ is closed under composition because H is (and f 7→ fj is the action
of the reflector functor from A to Inj Ej). Finally, H′ is closed under pushout along
petty morphisms. In fact, to form a pushout of fj : Â → B̂ along u : Â → C in
A′ = Inj Ej , we form a pushout, g, of f along u · rA in A, and compose it with the
reflection map rD of the codomain D:

A
f //

rA

²²

B

rB

²²

v

½½4
44

44
44

44
44

44
44

44
44

44
44

44

Â
fj //

u

¢¢¤¤
¤¤

¤¤
¤¤

¤¤
¤¤

¤¤
¤¤

¤
B̂

v̂ ÂÂ>
>>

>>
>>

D̂

C g
//

ĝ

33hhhhhhhhhhhhhhhhhhhhhhhhhhh
D

rD

__????????

Since C lies in A′, we can assume rC = idC , and the reflection ĝ = rD ·g of g in A′ is
then a pushout of fj along u. Now f ∈ H implies g ∈ H, and we have ĝ = gj ∈ H′.

(5) We are ready to prove that if a petty morphism h : A → B is an injectivity
consequence of H, then H ` h in A. We write H `A h for the latter since we work
within two categories: when we apply (1) to A′ we use `A′ for formal consequence
in A′. Analogously with |=A and |=A′ . Let ĥ : Â → B̂ be a reflection of h in A′,
then

H′ |=A′ ĥ
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because every object C ∈ A′ = Inj Ej which is injective w.r.t. H′ = {fj}f∈H is, due
to (6.2), injective w.r.t. H in A. Then C is injective w.r.t. h, and from C ∈ A′ it
follows easily that C is injective w.r.t. ĥ. Due to (4) we can apply (1). Therefore,

H′ `A′ ĥ.

We thus have a proof of ĥ from H′ in A′. We modify it to obtain a proof of h from
H in A. We have no problems with a line of the given proof that uses one of the
assumptions fj ∈ H′: we know from (6.1) that H `A fj , and we substitute that line
with a formal proof of fj in A. No problem is, of course, caused by the lines using
composition or cancellation. But we need to modify the lines using pushout
because A′ is not closed under pushout in A. However, a pushout, g′′, of a morphism
g along a petty morphism u in A′

P
g //

u

²²

Q

²²
P ′

g′′ //

g′
''OOOOOOOOOOOOOO

Q′

rQ′

__@@@@@@@@

is obtained from a pushout, g′, of g along u in A by composing it with a reflection
map rQ′ of the pushout codomain. Recall that P, P ′, Q ∈ Aω imply Q′ ∈ Aω. Thus,
we can replace the line g′′ of the given proof by using pushout in A (deriving g′),
followed by a proof of rQ′ (recall from (6.3) that H `A rQ′) and an application of
composition. We thus proved that

H `A ĥ.

Since rB · h = ĥ · rA and H `A rA (see (6.3)), we conclude H `A ĥ · rA; by
cancellation then H `A h.

6.4. Corollary (Compactness Theorem) Let H be a set of finitary morphisms in
a strongly locally ranked category. Every finitary morphism which is an injectivity
consequence of H is an injectivity consequence of a finite subset of H.

6.5. Remark We proceed by generalizing the completeness result from finitary to
k-ary, where k is an arbitrary infinite cardinal. The k-ary logic, then, deals with
k-ary morphisms (i.e., those having both domain and codomain of M-rank k) and
the k-ary Injectivity Deduction System of 2.18.

6.6. Theorem The k-ary Injectivity Logic is complete in every strongly locally
ranked category. That is, given a set H of k-ary morphisms, then every k-ary mor-
phism which is an injectivity consequence of H is a formal consequence (in the k-ary
Injectivity Deduction System).

Proof The whole proof is completely analogous to that of Theorem 6.2. As de-
scribed in Remark 6.3 we work under the following milder assumptions on the
category A:
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(i) A is cocomplete and has a left-proper factorization system (E , M);
(ii) Ak is a set of objects of M-rank k, closed under colimits of less than k mor-

phisms and under E-quotients;
(iii) M is closed under k-filtered colimits in A.
The statement we prove is concerned with k-petty morphisms (see 5.7). We denote
by Hk the closure of H as in 5.7. We write H ` h for the k-ary Injectivity Logic.

(1) The theorem holds whenever Hk ⊆M. The proof, based on the construction
of a weak reflection Â = colimDA of 5.8, is completely analogous to that of (1) in
6.2.

(2) Assuming H ⊆ E , then InjH is a reflective subcategory, and the reflection
maps rA fulfil H ` rA and rA ∈ E . This is analogous to the proof of (2) of 6.2.

(3) The definition of Ei is precisely as in the proof of 6.2.
(4) For the first ordinal j with Ej = Ej+1 the category A′ = Inj Ej fulfils the

assumptions (i)-(iii) above, and the set H′ = {fj ; f ∈ H} fulfils H′ = H′ ⊆M.
(5) The theorem is then proved by applying (1) to A′ and H′: we get H′ ` ĥ in

A′ and we derive H ` h in A precisely as in the proof of 6.2.

6.7. Corollary The Injectivity Logic is sound and complete. That is, given a set
H of morphisms of a strongly locally ranked category, then the consequences of H
are precisely the formal consequences of H (in the Injectivity Deduction System).
Shortly:

H |= h iff H ` h (for all morphisms h)

In fact, soundness was proved in Section 2. Completeness follows from Theorem
6.6: since H is a set, and since every object of A has an M-rank, see 4.5(ii), there
exists k such that all domains and codomains of morphisms of H∪{h} have M-rank
k.

7. Counterexamples

7.1. Example In “nice” categories which are not strongly locally ranked the com-
pleteness theorem can fail. Here we refer to ` of the Deduction System 2.13 (and
the logic concerning arbitrary morphisms). We denote by

CPO(1)

the category of unary algebras defined on CPO’s. Recall that a CPO is a poset
with directed joins, and the corresponding category, CPO, has as morphisms the
continuous functions (i.e., those preserving directed joins). The category CPO(1)
has as objects the triples (A,v, α) where (A,v) is a CPO and α : A → A is a
unary operation. Morphisms are the continuous algebra homomorphisms.

First let us observe that the assumption of cocompleteness is fulfilled.

Lemma CPO(1) is cocomplete.

Proof The category CPO is easily seen to be cocomplete. The category CPO(1)∗

of partial unary algebras on CPO’s (defined as above except that we allow α : A′ →
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A for any A′ ⊆ A) is monotopological over CPO, see [3], since for every monosource
fi : (A,v) → (Ai,vi, αi) (i ∈ I) we define a partial operation α on A at an element
x ∈ A iff αi is defined at fi(x) for every i, and then

αx = y iff fi(y) = αi(fi(x)) for all i ∈ I.

Consequently, CPO(1)∗ is cocomplete by [3], 21.42 and 21.15. Further, CPO(1)
is a full reflective subcategory of CPO(1)∗: form a free unary algebra on the given
partial unary algebra, ignoring the ordering, and then extend the ordering trivially
(i.e., the new elements are pairwise incomparable, and incomparable with any of
the original elements). Thus, CPO(1) is cocomplete.

We will find morphisms h1, h2 and k of CPO(1) with

{h1, h2} |= k but {h1, h2} 6` k.

(i) We define a morphism h1 that expresses, by injectivity, the condition
(h1) x v αx for all x ∈ A.

Let = denote the discrete order on the set N of natural numbers, and v that order
enlarged by 0 v 1. Let s : N → N be the successor operation. Then

h1 = id : (N, =, s) → (N,v, s)

is a morphism such that an algebra is injective w.r.t. h1 iff it fulfils (h1) above.
(ii) The condition

(h2) A 6= ∅
is expressed by the injectivity w.r.t.

h2 : ∅ → (N,=, s)

where ∅ is the empty (initial) algebra. The following morphism k expresses the
existence of a fixed point of α:

k : ∅ → 1

where 1 is a one-element (terminal) algebra.

Proposition {h1, h2} |= k but {h1, h2} 6` k.

Proof To prove {h1, h2} |= k, let (A,v, α) be injective w.r.t. h1 and h2, i.e., fulfill
x v α(x) and be nonempty. Define a smooth (see 2.10) chain (ai)i∈Ord in (A,v) by
transfinite induction: a0 ∈ A is any chosen element. Given ai put ai+1 = α(ai); we
know that ai v ai+1. Limit steps are given by (directed) joins, aj =

⊔
i<j ai. Since

A is small, there exist i with ai = ai+1, that is, ai is a fixed point of α. Thus, A is
injective w.r.t. k.

To prove {h1, h2} 6` k, it is sufficient to find an extension K of the category
CPO(1) in which CPO(1) is closed under colimits (therefore ` has the same
meaning in CPO(1) and in K) and in which there exists an object which is in-
jective w.r.t. h1 and h2 but not w.r.t. k. Thus k cannot be proved in K from h1, h2;
consequently it cannot be proved in CPO(1) either.

We define K by adding a single new object K to CPO(1). The only morphism
with domain K is idK . For every algebra (A,v, α) of CPO(1) we call a function
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f : A → Ord a coloring of A provided that it is continuous and fulfils f(α(x)) =
f(x) + 1 for all x ∈ A.
The hom-object of A and K in K is defined to be the class of all colorings of A.
The composition in K is defined “naturally”: given a continuous homomorphism
h : (A,v, α) → (B, 6, β), then for every coloring f : B → Ord of B we have a
coloring f · h : A → Ord of A. The category CPO(1) is a full subcategory of K
closed under (small) colimits. In fact, given a colimit cocone ai : Ai → A (i ∈ I)
in CPO(1), then for every compatible cocone of colorings fi : Ai → Ord (i ∈ I)
there exists an ordinal j such that all ordinals in ∪i∈Ifi[Ai] are smaller than j.
Let B = (j+, 6, s) be the object of CPO(1) where 6 is the usual linear ordering
of j+ (the poset of all ordinals smaller or equal to j), and s is the successor map
except s(j) = j. Then the codomain restriction f ′i of each fi defines a continuous
homomorphism f ′i : Ai → B, and we obtain a compatible cocone (f ′i)i∈I for our
diagram. The unique continuous homomorphism g : A → B with g·ai = f ′i yields, by
composing it with the inclusion j+ ↪→ Ord, a coloring f : A → Ord with f · ai = fi

(i ∈ I).
It is obvious that K is injective w.r.t. h1: every coloring of (N,=, s) is also a

coloring of (N,v, s). And K is injective w.r.t. h2 (because the inclusion N ↪→ Ord
is a coloring of (N, =, s)). But K is not injective w.r.t. k, since 1 has no coloring.

7.2. Example None of the deduction rules of the Finitary Injectivity Deduction
System can be left out. For each of them we present an example of a finite com-
plete lattice A in which the reduced deduction system is not complete (for finitary
morphisms).

(1) identity The deduction system cancellation, composition and pushout
is not complete because nothing can be derived from the empty set of assumptions,
although ∅ |= idA.

(2) cancellation In the poset

A :

• 0

• 1

• 2

the only object injective w.r.t. {0 → 2} is 2, thus, we see that {0 → 2} |= 0 → 1.
However, 0 → 1 cannot be derived from 0 → 2 by means of identity, composition
and pushout because the set of all morphisms of A except 0 → 1 is closed under
composition and pushout.

(3) composition In A above we clearly have {0 → 1, 1 → 2} |= 0 → 2. However,
the set of all morphisms except 0 → 2 is closed under left cancellation and pushout.

(4) pushout In the poset

¡
¡

•
0

@
@

•
1

@
@

¡
¡

a • • b

we have {0 → a} |= b → 1, but we cannot derive b → 1 from 0 → a using identity,
composition and cancellation because the set of all morphisms except b → 1
is closed under composition and cancellation.
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7.3. Example Here we demonstrate that in the Finitary Injectivity Logic we cannot
restrict the statement of the completeness theorem from the given strongly locally
ranked category A to its full subcategory Aω on all objects of finite rank: although
the relation ` works entirely in Aω, the relation |= does not.

More precisely, let H |=ω h mean that every H-injective object of finite M-rank
is also h-injective. And let `ω be the formal consequence w.r.t. Deduction System
2.4. Then the implication

H |=ω h implies H `ω h

does NOT hold in general for sets of finitary morphisms.
Indeed, let A = Gra be the category of graphs, i.e., binary relational structures

(A,R), R ⊆ A × A, and the usual graph homomorphisms. Recall that Gra is lo-
cally finitely presentable, and the finitely presentable objects are precisely the finite
graphs. Let us call a graph a clique if R = A × A −∆A. Denote by Cn a clique of
cardinality n, and let 0 be the initial object (empty graph).

For the set
H = {0 → Cn}n∈N

we have the following property:
every finite H-injective graph G has a loop (i.e., a morphism from 1 to G).

In fact, if G has cardinality less than n and is injective w.r.t. 0 → Cn, then we have
a homomorphism f : Cn → G. Since f cannot be one-to-one, there exist x 6= y in
Cn with f(x) = f(y) – and the last element defines a loop of G because (x, y) is an
edge of Cn. Hence

H |=ω (0 → 1).

However, 0 → 1 cannot be proved in the Finitary Injectivity Logic. In fact, the
graph

G =
∐

n∈N
Cn

demonstrates that H 6|= (0 → 1).
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[3] J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Cate-
gories, John Wiley and Sons, New York 1990. Freely available at
www.math.uni-bremen.de/∼dmb/acc.pdf
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[8] H. Andréka and I. Németi, Injectivity in categories to represent all first
order formulas, I. Demonstratio Mathematica XII, 3 (1979), 717-732.

[9] B. Banaschewski and H. Herrlich, Subcategories defined by implications,
Houston J. Math. 2 (1976), 149-171.

[10] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Phil.
Soc. 31 (1935), 433–454.

[11] R. Diaconescu, Completeness of category-based equational deduction,
Mathem. Str. in Comput. Sci. 5, 1 (1995), 9-40.

[12] P. Gabriel and F. Ulmer, Lokal Praesentierbare Kategorien, Lect. Notes in
Math. 221, Springer-Verlag, Berlin (1971).
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