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ABSTRACT. In this paper we establish upper bounds of

i (f (Qii +2$i+1> ny (56'1‘ —2$i+1|)> 7 R
i—1

when the functiory is superquadratic and the g&t) = (x1, ..., x,) iS given except its arrange-
ment.
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1. INTRODUCTION

We start with the definitions and results of [1] ahd [5] which we use in this paper.

Definition 1.1. The setsy ™) = (y;,...,y,) and ("y) = (“y1,...,” y,) are symmetrically
decreasing rearrangements of an ordered g¢t= (v1, . . ., y,) of n real numbers, if

(1.1) Y1 < Y, Syp <00 < Yagz)

and

(1.2) Y S TS Y1 S0 S Y.

A circular rearrangement of an ordered $¢b = (v1, - . ., ¥, ) iS a cyclic rearrangement dfy)

or a cyclic rearrangement followed by inversion.

Definition 1.2. An ordered sety) = (v,...,y,) Of n real numbers is arranged in circular
symmetric order if one of its circular rearrangements is symmetrically decreasing.
Theorem A ([1]). Let ' (u,v) be a symmetric function defined far< u,v <  for which
9% F (u,v) >0

oudv — 7
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Let the sely) = (y1,...,un), @ <y; < 3,7 =1,...,n be given except its arrangement.
Then

n

Z F (yi, Yiv1) (Ynt1 = 41)

is maximal if (y) is arranged in circular symmetrical order.

Definition 1.3 ([5]). A function f, defined on an interval = [0, L] or [0, oo) is superquadratic,
if for eachz in I, there exists a real numbeér(z) such that

f) —f@)=2Cx)(y—z)+ f(ly—=|)
forally € I.
A function is subquadratic i f is superquadratic.

Lemma A ([5]). Let f be a superquadratic function witHi (z) as in Definitior] 1.B.

(i) Thenf (0) <0
(i) If f(0) = f"(0) =0, thenC (z) = f' (x) wheneverf is differentiable.
(iiiy If f >0, thenfis convexand (0) = f'(0) =0

The following lemma presents a Jensen'’s type inequality for superquadratic functions.

Lemma B ([6, Lemma 2.3]) Suppose thaf is superquadratic. Let, > 0,1 <r <n and let
T=>_ AN, where\. >0,and>." A\, =1.Then

Z)\f z.) > f(T +Z)\f|$r—x\

If f(x)is subquadratic, the reverse mequallty holds.
From Lemma B we get an immediate result which we state in the following lemma.
Lemma C. Let f (z) be superquadratic o0, L] and let z,y € [0, L],0 < A < 1, then

Af (@) + (1 =X) f(y)
> [Qe+ 1=y + A (L=Ny —z) + (1 =X) f Ay —2])

> F(Az 4+ (1— A +Z( (2)\ (1A ]1—2)\]k\x—y\))

A (=N =22 |z —y[) + (=2 f (AL =27 [z —y]).
If f is positive superquadratic we get that:

M@+ (=N Fy)>fOr+(1—A +Z< (22 (1= N1 =22" |z —y]))

More results related to superquadracity were dlscusse[ﬂjlmo [6].

In this paper we refine the results in [7] by showing that for positive superquadratic functions
we get better bounds than in [7].

Theorem B ([[7, Thm. 1.2]) If f is a convex function and,, x,, . . ., x, lie in its domain, then

éf(x»—f(@)

n—1 T + X Tp_1+ Tp Tn + X1
L) e () e (7))
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Theorem C([7, Thm. 1.4]) If f is a convex function and, ..., a, lie in its domain, then
(n=D[f (b)) + -+ f (b))l <nlf(ar) +---+ [ (an) = [ (a)],
whereq = 4% gandp, = M=% i =1,...,n.

2. THE MAIN RESULTS

Theorem 2.1. Let f (z) be a superquadratic function g9, L|. Then forz; € [0,L], i =
1,...,n,wherex, ; = 1,

n—1w— i + T |x; — zi41]
SRz ()

(Sre) B85
holds. If f (x) > 0 too, then
o0 () (55 )
() ()
(5) (52) 552
where(X) = (Z.,...,7,) is a circular symmetrical rearrangement k) = (z1,. .., 2,) .

Example 2.1. The functions

and the function

2?logx, x>0,
f(“):{o, "o

are superquadratic with an increasing second derivative and thereforg (2.2) holds for these
functions.

Proof. Let f be a superquadratic function ¢ L]. Then by Lemma B we get fay < o <
1, 1<k<nandz; €l0,L],z,41 = a1,

@3) Y S =EY S+ Y )

= n;kZ(af(fi)+(1_O‘)f(xi-&-l))"i'ng(xi)

i=1 i=1
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+

Zz 133'1
n

n—k
= — ;f(fwi + (1 —a)zit)
n—k <
Z (af (1 =) |zipr —2]) + (1 — a) f (o] — i)
i=1
Fork = 1 anda = £ we get that.l) holds.
If f () >0, then% > (), where
F(u,v) = fu+v)+ f(ju—0l]), u,v € 0,L].
Therefore according to Theorénj A, the sum
Zf <T+1) +f (%) ; Tpy1 = 1,
i=1
is maximal for(x) = (7y,...,,), which is the circular symmetric rearrangement(®j .
Therefore in this casé (2.2) holds as well. O

Remark 2.2. For a positive superquadratic functignwhich according to Lemnja]A is also a
convex function,[(2]1) is a refinement of Theoren B.
If /" (z) >0, (2.9) is a refinement of Theorgn B as well.

Remark 2.3. Theorenij B is refined by

- Z:L: ZT; n—1 - al\i—.—flf\prl
;fm)—f( e R <§f(—2 ))
Z n;lzn:f(xz—i—Qle)’
=1

because a convex functigh satisfies the conditions of Theor¢m A fBr(u, v) = f (u+v).

The following inequality is a refinement of Theorérm C for a positive superquadratic function
f» which is therefore also convex. The inequality results easily from Lejima B and the identity

Zn:f(ai) Z( Zfaj _”)

(whered;; = 1 fori = j andd;; = 0 fori # j), therefore the proof is omitted.

Theorem 2.4.Let f be a superquadratic function df, L], and letz; € [0, L], = 1,...,n.
Then

m—T ((Zf xz>—f(f)) —;n;f(yi)

> nil (ZZf(|yz’—$j\)(1—5ij)> +%Zf(‘f_$i|)’

i=1 j=1

wherez = 7 %y = (2=5) i=1,...,n.

n—1
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