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ABSTRACT. A Griss type inequality for sequences of vectors in inner product spaces which
complement a recent result frohi [6] and applications for differentiable convex functions defined
on inner product spaces and applications for Fourier and Mellin transforms, are given.
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1. INTRODUCTION

In 1935, G. Griss proved the following integral inequality (seé [11] or [12])
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provided thatf andg are two integrable functions dn, b| and satisfy the condition
(1.2) p<f(x) <P andy <g(z) <T forall z € [a,b].
The constanﬁ is thebest possibland is achieved for

f«wzgmazam(x—agb).

The discrete version of (1.1) states that:
fa<a; <A b<b;<B(i=1,..n)wherea, A, a;, b, B, b; are real numbers, then
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2 S.S. RAGOMIR

and the constarﬁt is the best possible.
In the recent paper[2], the author proved the following generalisation in inner product spaces.

Theorem 1.1.Let(X; (-, -)) be an inner product space ovEr, K = C, R, ande € X |le|| = 1.
If p,®,v,I' € Kandzx,y € X such that
(1.4) Re (Pe —x,x — ¢e) > 0 and Re(l'e —y,y —ve) >0

holds, then we have the inequality

(L5) .5} — ) (e, )] < 71 — 6] T —].

The constant is the best possible.

It has been shown in [1] that the above theorem, for the real case, contains the usual integral
and discrete Gruss inequality and also some Gruss type inequalities for mappings defined on
infinite intervals.

Namely, ifp : (—o0, +00) — (—o0, +00) is a probability density function, i.e[,”"_p (t) dt =
1, thenpz € L2?(—o00, ) and obviously||pz|l, = 1. Consequently, if we assume that
f,g € L* (—o0, ) and

N

(1.6) apt < f < p?, Bpt < g < 0p7 ae. on (0,00,

then we have the inequality
(e%¢] [e'e] 1 [e'e] 1 1
an |[ rwawa- [ rwi0a [ 00 < jw-we-m.
In a similar way, ife = (€;),cy € 2 (R) With " |e;|* = 1andz = (2:),c50 ¥ = (U)o € 1 (R)
1€N
are such that
(1.8) ae; <z < Ye;, Pe; <y < ey
forall i € N, then we have

Z TiYi — Z Zie; Z Yi€i

1€eN 1€EN 1eN

(1.9) < (W —a)(6-5).

In the recent papef [6], the author also proved the following discrete inequality in inner
product spaces:

1
(1.10) < 71A-dllX —z|

n n n
E pia;x; — E pPia; E Di%;
=1 =1 =1

providedz; € H,a; € K(K=C,R) anda, A € K, z, X € H are such that

(1.11) Re[(A—a;)(a;—a)] >0 and Re(X —a;,x; —z) >0 foralli e {1,...,n}.

The constant is sharp.

For other recent developments of the Griss inequality, see the papers [1]-[6], [10] and the
websitehttp://rgmia.vu.edu.au/Gruss.html

In this paper we point out some other Gruss type inequalities in inner product spaces which
will complement the above resut (1]10).
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2. PRELIMINARY RESULTS

The following lemma is of interest in itself (see also [6]).
Lemma 2.1. Let(H; (-, -)) be an inner product space over the real or complex numberiield

z € Handp, > 06 = 1,...,n) such thaty_ p; = 1 (n > 2).

If z, X € H are such that -

(2.1) Re (X —zj,z; —x) >0 foralli e {1,....,n},
then we have the inequality

2

2
< X =l

- 1
(2.2) 0<> pilll? - 1
=1

n
E pix;
i=1

The constant is sharp.

Proof. Define

I = <X - ipi%,ipil'i - $>
i=1 i=1

and
I = sz‘ (X — 25,2 — x)
i=1
Then
n n 2 n
I = Zpi (X, @) — (X, z) — sz% + Zpi (i, )
i=1 i=1 i=1
and
I, = Zpi (X, i) — (X, z) — Zpi ]l + Zpi (25, 2) .
i=1 i=1 i=1
Consequently
n n 2
(2.3) L =1 = Zpi Hll?zH2 - Zpimi
i=1 i=1

Taking the real value inj (2.3) we can state
szwi
=1
= Re <X - sz‘xm Zpiﬂfi - SL’> - Zpi Re (X — 2 — x)
i=1 i=1 i=1

which is an identity of interest in itself.
Using the assumptiof (2.1), we can conclude[by| (2.4), that

2

2.4) > pillal® -
=1

n n 2 n n

(2.5) sz' H%H2 - Zpﬂi < Re <X - Zpﬂz‘, Zpixi - $> :
=1 =1 =1 =1

It is known that ify, z € H, then

(2.6) 4Re(z,9) < ||z +yl*,
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with equality iff z = y.
Now, by (2.6), we can state that

Re <X — zn:pz‘xi, zn:pixi - $> < i
i—1 i=1

Using (2.%), we can easily dedu¢e (2.2).
To prove the sharpness of the constariet us assume that the inequal2.2) holds with a
constant > 0, i.e.,

? 1
= ZHX—I’HQ-

n n
X - ZPiIi + Zpﬂz‘ -
i=1 i=1

2
<c|X -z’

(2.7) 0< sz‘ ||$z||2 -
i=1

n
E piZ;
i=1

for all p;, z; andz, X as in the hypothesis of Lemrha R.1.
Assume thatt = 2, p; = py = %, r1 =z andzy = X withz, X € H andx # X. Then,
obviously,

(X —x,21 —2) = (X — 29,29 — ) =0,

which shows that the conditiop (2.1) holds.
If we replacen, p1, p2, 21, z2 in (2.7), we obtain

2 2 2 9 )

2 Uz iy |[e X | — 2] )

d_pilwl=| > ps| =5 | al® +IXI° = | == | =5 <clx -zl
=1 =1

from where we deduce > % which proves the sharpness of the constant fa}:tor O

Remark 2.2. The assumptior} (2.1) can be replaced by the more general condition
(2.8) Zpi Re (X — 2,2 —x) > 0
=1

and the conclusion (2.2) will still remain valid.
The following corollary is natural.

Corollary 2.3. Leta; € K, p; > 0 (i =1,..,n) (n > 2) with ipi =1.1fa,A € Kare such
that -

(2.9) Re[(A—a;)(a; —a)] >0 foralli e {1,...,n},

then we have the inequality

2
< A —al’.

| =

(2.10) 0<> pilail -
=1

n
E bia;
=1

The constant is sharp.

The proof follows by the above Lemma P.1 by choosiig= K, (z,y) = zy, z; = a;,
xr =a, X = A. We omit the detalils.

Remark 2.4. The condition[(2.9) can be replaced by the more general assumption

(2.11) >_piRe[(A—a;) (@ - a) > 0.
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Remark 2.5. If we assume thaK = R, then [2.8) is equivalent with
(2.12) a<a; <Aforallie{l,..n}
and then, with the assumptidn (2/12), we get the discrete Griiss type inequality

2.1 < , Z
(2.13) 0 ;:1 pia; ( E pzal> 4 a)
and the constani is sharp.

3. ADISCRETE INEQUALITY OF GRUSSTYPE

The following Gruss type inequality holds.
Theorem 3.1.Let (H; (-, -)) be an inner product space ov&: K = C, R, z;,y; € H,p; > 0

(1=0,...,n) (n>2)with> p;,=1.Ifx, X,y,Y € H are such that
=1

(3.1) Re(X —x;,xz; —x) > 0and Re (Y —y;,y; —y) >0 foralli € {1,....,n},

then we have the inequality

>t <zple,zplyl>

The constant is sharp.

(3.2) T IX =zl Y =yl

Proof. A simple calculation shows that

(3.3) Zp@ iy i) <szxz,2pzyz>— szpj — T, Yi — Yj) -

1,j=1

Taking the modulus in both parts gf (B.3), and using the generalized triangle inequality, we
obtain

(34) > 2 Z pzpj — T, Yi — yj>| .

2,7=1

>t <zmz,zpzyz>

By Schwartz’s inequality in inner product spaces we have

(3.5) (@i = 5 — yi)| < @i — 25 lys — 5]
foralli,j e {1, ...,n}, and therefore

(o) <zpzxz,zp,yz>

Using the Cauchy-Bunlakowsky-Schwartz inequality for double sums, we can state that

(3.6)

=5 Z pip; l|zi — ZE]H llys — yj“
2,7=1

1 n
B.7) 5 D piws llwi =l llyi — wsl

1,7=1

1 1
1 n ) 2 1 n ) 2
< (5 > pipj llwi — > X (5 > v v =yl )

i,j=1 i,j=1
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and, a simple calculation shows that,

1 - 2 - 2
5 2 b i = zl* =D pillail* —
=1

3,j=1

n 2
E DiZ;
=1

and
1 . 2 . 2
5 2 i llvi—yil* =Y _pilluill* - Ui
i,j=1 =1
We obtain
(3.8) sz i, Yi) <szx“2pzyz>|

M

;pi H%HQ - leﬂz ;Pi%

Using Lemma 2]1, we know that

> villyll® -
i=1

2\ 2
n n 1
2
> pillal* =D v <5 IX —z]
=1 =1
and
1
n n 2 2 1
2
ZMH%H - sz'yz‘ §||Y yll -
=1 =1

Therefore, by[(3]8) we may deduce the desired inequdlity (3.3).
To prove the sharpness of the constgriet us assume th.2) holds with a constant0,
i.e.,

(3.9) <cl|X =2 Y -yl

S <2pm, zplyz>
under the above assumptlons or z,;, vi, r, X, vy, Y andn > 2.

If we choosen =2, 21 =2, 2o =X, y1 =y, 1, =Y (z# X, y#Y)andp, = p, = 1,
then

sz xmyz <sz$zazpzyz> = _szp] — L5, Yi — yj)

2,7=1

= Z pzp] — L Yi — yj)

1<i<j<2

—_

and then

‘<xivy1 - <sz$z,szyz>| = —‘ CU—X Yy — YH

ChooseX —z =2, Y —y = z, z # 0. Then using[(3]9), we derive

1 2 2
Il < elsl?, 2 0
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which implies that: > 1, and the theorem is proved. O

Remark 3.2. The condition[(3.]l) can be replaced by the more general assumption
(3.10) > piRe(X —aja;—x) >0, > piRe(Y —y;,y—y) >0

= =1
and the conclusiorn (3.2) still remains valid.

The following corollary for real or complex numbers holds.

Corollary 3.3. Leta;, b; € K (K= C,R), pi >0 (i=1,..n)With > pi = 1. If a, A, b, B €
=1
K are such that

then we have the inequality

(3.12) szaz i szaz sz i i‘A_a‘ |B — bl

and the constan} is sharp.

The proof is obvious by Theoren 8.1 applied for the inner product sp@ce, -)) where
(r,y) = x - y. We omit the details.

Remark 3.4. The condition[(3.1]1) can be replaced by the more general condition

(3.13) Zlee A—a) (@ —a)] >0, szRe (B—1b;) (i —b)] >0

and the conclusion of the above corollary will still remain valid.
Remark 3.5. If we assume thai;, b;, a, b, A, B are real numbers, then (3]11) is equivalent to

(3.14) a<a; <A b<b<Bforalie{l,..n}
and [3.12) becomes

(3.15) Zplal ; ZplaZZpl i| < —a)(B—b),

which is the classical Griuss inequality for sequences of real numbers.

4. APPLICATIONS FOR CONVEX FUNCTIONS

Let (H; (-,-)) be areal inner product space afid H — R a Fréchet differentiable convex
mapping onH. Then we have the “gradient inequality”
(4.1) F(z) = F(y) =2(VF(y), = —y)

forall z,y € H, whereVF : H — H is the gradient operator associated to the differentiable
convex functiont'.
The following theorem holds.

Theorem 4.1.LetF : H — Rbe asabove and; € H (i = 1, ...,n). Suppose that there exists
the vectorsy,» € H such that(z; —v,¢ —x;) > Oforall i € {1,...,m} andm,M € H

J. Inequal. Pure and Appl. Mathl(2) Art. 12, 2000 http://jipam.vu.edu.au/
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such that(VF (z;) —m, M —VF (z;)) > 0forall i € {1,....m}. Then for allp; > 0
(i =1,...,m)with P,, := > p; > 0, we have the inequality

=1

1 &« 1 & 1
. < F(z)—F | — i | <= \d =AM =m).
(4.2) 0< P gplF (zi) = F (Pm ;pm> < g lle =1l ml|
Proof. Choose in = PL Z ;x; andy = z; to obtain
}

(4.3)

zpﬂ;l)_ <w o) S >

forallj € {1,...,n
If we multiply (4.3) byp; > 0 and sum ovey from 1 to m, we have

m

F(%i%%) ij (z;) Z—<ZpJVF ;) szxz> Z (VF (), 7).

=1
Dividing by P,, > 0, we obtain the inequality

(4.4) 0 < P%ZmF(a)—F(%Zm)
< —Zpl (VF (x;),x;) < ZplvF T ,Pizm:pﬂ?i>
m =1

which is a generallsatlon for the case of inner product spaces of the result by Dragomir and Goh
established in 1996 for the case of differentiable mappings defin&? ¢4.

Applying Theorenj 31 for real inner product spacEs= ¢, x = v, y; = VF (z;), y = m,
Y = M andn = m, we easily deduce

“ 1
(4.5) —sz 2, VF (7)) < me, ZWF(:@)> < ;2= ol M —m|
P, i=1

and then, by[(Z_I-'J4) andl (4.5) we can conclude that the desired ineq(ality (4.2) holds. O
Remark 4.2. The conditions
(4.6) (x; —v,0 —x;) >0, (VF(x;) —m,M — VF (x;)) >0,
foralli € {1,...,m} can be replaced by the more general conditions
(4.7) Zpl vi—7,¢—a;) >0 and » p;(VF (z;) —m,M = VF (;)) >0
=1
and the conclu5|0|11:@].2) will still be valid.

Remark 4.3. Even if the inequality[(4]2) is not as sharp gs(4.4), it can be more useful in
practice when only some bounds of the gradient opefé@#omland of the vectors; (i = 1,...,n)
are known. In other words, it provides the opportunity to estimate the difference

A (F,z,p) ——sz ;) (%Z}Mm);
moi=1

where the differencelsp — ~|| and|| M — m|| are known.
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Remark 4.4. For example, if we know thatV F’ (z;) —m, M — VF (z;)) > 0forall i €
{1,...,m} and the vectors; (i = 1,...,n) are not too far from each other in the sense that

(i =7, ¢ — ;) > 0foralli € {1,...,m} and|¢ — || < 5 (€ > 0), then by ), we
can conclude that

0<A(F,z,p) <e.

5. APPLICATIONS FOR SOME DISCRETE TRANSFORMS

Let (H; (-, -)) be aninner product space o¥€rK = C, R andz = (xy, ..., z,,) be a sequence
of vectors inH.
For a givenm € K, define theliscrete Fourier transform

(5.1) Fu (Z) (m) = iexp (2wimk) X xp, m=1,...,n.

k=1
n
The complex numbed _ exp (2wimk) (zx, yx) is actually the usual Fourier transform of the
k=1

vector((x1,v1) , ..., (Tn, Yn)) € K* and will be denoted by

n

(5.2) Fu (Z-7)(m) = Zexp (2wimk) (xg,yr), m=1,...,n.
k=1

The following result holds.

Theorem5.1.Letz, y € H" be sequences of vectors such that there exists the vecfarg, Y €
H with the properties

(5.3) Re (C' — exp (2wimk) xy, exp Qwimk) x, —c) >0, k,m=1,..,n
and
(5.4) Re(Y —yp,up —y) >0, k=1,...,n.

Then we have the inequality

Fo(-9) (m) - <fw (@) <m>,%zyk>

forall m € {1,...,n}.

The proof follows by Theorem 3.1 applied fpr = % and for the sequences — ¢, =
exp (2wimk) xp andy, (k = 1,...,n). We omit the details.

We can also consider thdellin transform
(5.6) M(Z) (m) == k" oy, m=1,..,n,

k=1

(5.5) 1€ = llY =yl

of the sequence = (z1,...,x,) € H".
We remark that the complex numbgr k™! (x,., y;) is actually the Mellin transform of the

k=1
vector((x1,v1) , ..., (Tn, Yn)) € K* and will be denoted by

n

(5.7) M(z-g) (m) == k"™ (e, i)

k=1
The following theorem holds.
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Theorem5.2.Letz, y € H™ be sequences of vectors such that there exist the vettbrs,, Y €
H with the properties

(5.8) Re <D — k", By, — d> >0

forall k,m € {1,...,n}, and [5.4) is fulfilled.
Then we have the inequality

(5.9)

S|

n
< 41D =4y —y]

M(m-y><m>—<M<a:><m>> Zyk>

k=1

forall m € {1,...,n}.

The proof follows by Theorein 3.1 applied fay = 1 and for the sequences — d; = k),
andy, (k = 1,...,n). We omit the details.
Another result which connects the Fourier transforms for different parametaiso holds.

Theorem 5.3.Letz, y € H" andw, z € K. If there exists the vectoes F, f, F' € H such that
Re (E — exp (2wimk) x, exp 2wimk) x, —e) >0, k,m=1,...,n
and
Re (F' — exp (2zimk) yx, exp (2zimk)yy — f) >0, k,m=1,..,n
then we have the inequality:
P 0) ) = (17 @) () S () ) )| < {18 el 1 - 71,
forall m € {1,...,n}.

The proof follows by Theorein 3.1 for the sequenegs(2wimk) xy, exp (2zimk) y, (k =1,...,n).
We omit the details.
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