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Abstract

Inthis paper we consider trigonometric series with the coefficients from & BV S
class. We prove the theorems on belonging to these series to Orlicz space.
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We will study the problems of integrability of formal sine and cosine series

(1.1) g(x) = Z Ap Sinnz,
n=1
(1_2) f(x) — Z \.. COS T On Belonging Of Trigonometric
— " ) Series To Orlicz Space
S. Tikhonov
First, we will rewrite the classical result of Young, Boas and Heywood for series
(1.1 and (L.2) with monotone coefficients.
Title Page
Theorem 1.1 ([1], [2], [11]). LetA, | O.
If 0 < o < 2, then Contents
- <44 44
g(ZE) a—1
— e L(0 <= Ap < 00. < | 2
g (0, ) ;n 00
B Go Back
If 0 < a<1,then Close
s Quit
flz) € L(0,7) < Zn"‘lAn < 0.
e p— Page 3 of 17

Several generalizations of this theorem have been obtained in the following ; Teq pure and Appl. Math. 52) Art. 22, 2004
directions: more general weighted functiong) have been considered; also, http://jipam.vu.edu.au
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integrability of g(x)~y(z) and f(x)v(x) of orderp have been examined for dif-
ferent values op; finally, more general conditions on coefficierdts,} have
been considered.

Igari ([3]) obtained the generalization of Boas-Heywood'’s results. The au-

thor used the notation of a slowly oscillating function.

A positive measurable functiofi(t) defined onD; +o0), D > 0 is said to

be slowly oscillating iftlim SS((}S) = 1 holds for allz > 0.

Theorem 1.2 ([]). Let A, | 0, p > 1, and letS(¢) be a slowly oscillating
function.
If -1 <0 < 1,then

P(2)S (1 &
T ) (xjeﬂ(m) € L(0,7) < > " IS ()L < o
T

n=1
If —1 <0 <0, then
f2(2)S (2)

S € L(0,m) <= ) nP" P (n) N < oo,
xT

n=1

Vukolova and Dyachenko inl[], considering the Hardy-Littlewood type
theorem found the sufficient conditions of belonging of serle$) @nd (L.2) to
the classeg,, for p > 0.

Theorem 1.3 ([L(]). LetA, | 0, andp > 0. Then

an_2)\ﬁ < oo = Y(z) € LP(0,m),

n=1
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where a function)(z) is either af (z) or a g(z).

In the same work it is shown that the converse result does not hold for cosine

series.
Leindler ([5]) introduced the following definition. A sequenece:= {c¢,}

of positive numbers tending to zero is of rest bounded variation, or briefly

R{ BV S, if it possesses the property

()
Z |Cn - Cn+1| S K(C) Cm
n=m

for all natural numbersn, whereK (c) is a constant depending only enin

[5] it was shown that the clasBj BV'S was not comparable to the class of
qguasi-monotone sequences, that is, to the class of sequencés, } such that
n~%, | 0 for somea > 0. Also, in [5] it was proved that the serie$.() and
(1.2) are uniformly convergent over < x < 7 — ¢ forany0 < 6 < 7. In the
same paper the following was proved.

Theorem 1.4 (F]). Let{)\,} € Ry BVS,p>1,and; —1 <6 < _. Then

Yr(x)

xp?

€ L(0,m) <= > n"P2N < oo,

n=1

where a function)(z) is either af (z) or a g(z).

Very recently Nemeths]] has found the sufficient condition of integrability
of series {.1) with the sequence of coefficien}s, } € R4 BV S and with quite
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general conditions on a weight function. The author has used the notation of
almost monotonic sequences.

A sequencey := {~,} of positive terms will be called almost increasing
(decreasing) if there exists constant= C'(v) > 1 such that

CY = Ym (< Cym)

holds for anyn > m.
Here and further’, C; denote positive constants that are not necessarily the

On Belonging Of Trigonometric

same at each occurrence. Series To Orlicz Space
Theorem 1.5 (B]). If {\.} € R§ BV S, and the sequence:= {~,} such that S UL
{y,n?*¢} is almost decreasing for sonae> 0, then
-~ Title Page
ﬁkn < 00 = y(x)g(x) € L(0, 7). Contents
n
i «“ »
Here and in the sequel, a functiofix) is defined by. t'he sequencein the < >
following way: v (%) := v,, n € N and there exist positive constantsaand B
such thatdy, .1 < (z) < By, forz € (75, ). Go Back
We will solve the problem of finding of sufficient conditions, for which series Close
(1.1) and (L.2) belong to the weighted Orlicz spaég®, ). In particular, we Quit
will obtain sufficient conditions for seried (1) and (L.2) to belong to weighted
spaceL?. Page 6 of 17

Definition 1.1. A Ioca_llly integrable_almost eyerywhere positive functigm) : B —————
[0,7] — [0,00) is said to be a weight function. Lét(¢) be a nondecreasing http:/jipam.vu.edu.au
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continuous function defined ¢ co) such that?(0) = 0 andtlim O(t) = +o0.
For a weighty(xz) the weighted Orlicz spadk(®, v) is defined by (see’], [ 17])

(1.3) L(®,y) = {h : /Oﬂy(:c)@(a |h(z)|)dx < oo for some e > 0}.

If &(x) = 2P for 1 < p < oo, when the weighted Orlicz spadg®, v)
defined by {.3) is the usual weighted spadé (0, 7).

We will denote (seef]) by A(p,q) (0 < ¢ < p) the set of all nonnegative
functions®(x) defined on[0, o) such that®(0) = 0 and ®(x)/z? is nonin-
creasing an@(x)/x? is nondecreasing. It is clear that(p, ¢) C A(p,0) (0 <
q < p). As an example/\(p, 0) contains the functio®(z) = log(1 + z).
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The following theorems provide the sufficient conditions of belonging(af)
andg(x) to Orlicz spaces.

Theorem 2.1.Let®(z) € A(p,0) (0 < p). If {\,} € Rf BV S, and sequence
{7} is such that{~,n~'*<} is almost decreasing for somae> 0, then

o
’Y
- n? On Belonging Of Trigonometric
Series To Orlicz Space
where a function)(z) is either a sine or cosine series. S. Tikhonov

For the sine series it is possible to obtain the sufficient condition of its be-
longing to Orlicz space with more general conditions on the sequiengebut Title Page
with stronger restrictions on the functidrn(x).

Contents
Theorem 2.2. Let ®(z) € A(p,q) (0 < ¢ < p). If {\,} € RfBVS, and «“ >
sequencgr, } is such that{y,n~(1+9+} is almost decreasing for sorae> 0,
then N < >
= B(n*A,) < 00 = g() € L(®,7). Go Back
n=1 Close
Remark 2.1. If ®(t) = ¢, then Theorer2.2implies Theorem..5, and if®(¢) = Quit
t? with 0 < p and{~v, = 1,n € N}, then Theoren2.1is a generalization of
Theoreml.3. Also, if®(t) = t* with 1 < p and {, = n*S(n),n € N} with Page 8 of 17
corresponding conditions om and S(n), then Theorem&.1and2.2imply the
sufficiency parts4=) of Theoremd..2and1.4. e sl E e S

http://jipam.vu.edu.au
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Lemma 3.1 (F]). If a,, >0, A\, > 0, and if p > 1, then

P 00 o P
Z An (Z ay> <CY Al (Z A,,)
v=1 n=1 v=n
Lemma 3.2 (| ]) Let<I> e Ap,q) (0<g<p)andt; >0,j=1,2,...,n, n€

N. Then
(1) 7@ (1) < D (Ot) < 02D (1), 0<H<1,t>0,

(2)@(2@-) (2:3 o (1 )) ,  p* =max(l,p).

Lemma 3.3.Let® € A(p,q) (0 < g <p). If \, >0, a, > 0, and if there
exists a constank” such thata,; < Ka, holds for all j,» € N, j < v, then

S YOI > 4
MA@ a, | <C P ka = )
S (Do) seTwoan (B
wherep* = max(1, p).
Proof. Let ¢ be an integer such that < k < 25+, Then

5 12m+1 1
Z%SZ > Y
m=0 p=2m v=2¢

&—-1
(Z 2" Gy +- 2§a2g) <O Z 2" Gy

m=0
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Lemma3.2implies

k=1 k=1 m=1
[e%s) [e'e) AV p*
p kg

Note that this Lemma was proved i ffor the case) < p < 1.
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Proof of Theoren?.1 Letz € (.75, 7]. Applying Abel's transformation we
obtain

|<Z)\k—|—

whereD,(z) are the Dirichlet kernels, i.e.

Z ), cos kx <Z)\k+Z! Ae = Akt1) Di(2)]

k=n+1

k
1
Dy(z) = 3 + Zcosnx, k e N.

Since|Dy(x)| = O

|f(x)| < C (Z/\k +ny |\ - /\k+1|) <C (Z/\k +n/\n> :
k=1 k=n k=1

The following estimates for serie$.¢) can be obtained in the same way:

’<Z)\k+ Z )\kSHl]{JJJ

k=n+1

< Z)\k + Z ‘(/\k; — Ak+1) ﬁk:(x)‘
k=1 k=n
<C <Z)\k+n2|)\k - A,m\) <C <2Ak+mn> :
k=1 k=n k=1

(1) and), € R{ BV S, we see that
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whereD,,(z) are the conjugate Dirichlet kernels, iBy(z) := Z:,:l sinnx, k €
N.

Therefore,
lp(z)| < C (Z A + n)\n> :
k=1
where a function)(z) is either af (z) or ag(z).
One can see that if\,} € RS BVS, then{)\,} is almost decreasing se-

guence, i.e. there exists a constant> 1 such that\, < K\, holds for any
k <mn. Then

(4.1) l(z)] < C (Z Mo Ay 1) <CY A
k=1 k=1 k=1

We will use @.1) and the fact thaf )\, } is almost decreasing sequence; also, we
will use Lemmas3.2and3.3:

T o0 n w/n
/0 V(@)@ (jY(a))de <y @ (Cl ZAk) / () dx
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wherep* = max(1, p). Since there exists a constant- 0 such thaf{~,,n~'<}
is almost decreasing, then

— 7 —e—1 'We
:k V:k
Then .
" T
/ V(@)@ ([Y(@)]) dz < C ) 5P (kM)
0 1
The proof of Theoren2.1is complete. O

Proof of Theoren2.2. While proving Theoren?.2 we will follow the idea of
the proof of Theoren2.1.

Letz € (;35, 7]- Then

(4.2) z)| < Z kx\, +

Z A sin kx

k=n+1

< Z kx Ay, + Z ‘()\k — Akt1) 5k(1’)’

IN

C <EZ/€A,€ + 1%&1«) < Cllimk.
n k=1 " k=1 n k=1
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Using Lemma3.2, Lemma3.3and the estimatel(2), we can write

e 9]

™ n w/n
/ m@amwsz@(clgzm) IRCE

w/(n+1)

<ChrBYy (ka>

n=1

v ]{;1+q > Tv 4
< G Z ¢ (k2>‘k) kaZ—IT-q ( Z V2+q> ’

=1 R ——

wherep* = max(1, p).
By the assumption ofry, },

| @t dx<czk2+q (k2.

and the proof of Theorerd.2is complete. O
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