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ABSTRACT. In this note, motivated by an inequality of S. Haber, we consider how a polynomial,
having certain properties, gives rise an inequality for a convex sequence.
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1. I NTRODUCTION

The following inequality was proved in [1]. Ifa andb are positive then

1

n + 1
[an + an−1b + · · ·+ bn] ≥

(
a + b

2

)n

(n = 0, 1, . . . ).

If we replaceb
a

by x this can equally well be written as

(1.1)
n∑
0

[
1

n + 1
− 1

2n

(
n

k

)]
xk ≥ 0

in which we can takex ≥ 0.
In [2] this inequality was generalized to the following: If the sequence{uk} is convex then

(1.2)
n∑
0

[
1

n + 1
− 1

2n

(
n

k

)]
uk ≥ 0.

The method used to prove the sequence result (1.2) was based largely on that used by Haber to
obtain his polynomial result (1.1). Indeed, using the same technique again, another sequence
result more general than (1.2) was obtained in [3].

The present author felt that it would be of interest to find those properties possessed by the
polynomial on the left side of (1.1) which allow sequence results like those in (1.2) and [3] to

ISSN (electronic): 1443-5756

c© 2005 Victoria University. All rights reserved.

002-05

http://jipam.vu.edu.au/
mailto:amercer@reach.net
http://www.ams.org/msc/


2 A.MCD. MERCER

be deduced directly from the polynomial itself. To this end, it is the purpose of the present note
to prove the result of the next section.

2. FROM POLYNOMIAL TO SEQUENCE I NEQUALITY

Theorem 2.1.Suppose that the polynomial

(2.1)
n∑
0

akx
k

hasx = 1 as a double root and that when we write

bk =
k∑

j=0

aj (k = 0, . . . , n− 1)

and

ck =
k∑

j=0

bj (k = 0, . . . , n− 2)

we find that all theck are non-negative. Then we have

(2.2)
n∑
0

akuk ≥ 0 if the sequence{uk} is convex.

Note. The coefficientsck are simply the coefficients of∑n
0 akx

k

(x− 1)2

obtainable, in a simple case, by carrying out the actual division but it is convenient to have
the above formulae for bothbk andck as it is often possible to discover the properties of these
without any calculation.

Proof. Since the polynomial in (2.1) has1 as a double root we can write

(2.3)
n∑
0

akx
k = (1− x)

n−1∑
0

bkx
k

and

(2.4)
n−1∑

0

bkx
k = (1− x)

n−2∑
0

ckx
k.

Comparing coefficients and solving the resulting equations we get

bk =
k∑

j=0

aj (k = 0, . . . , n− 1)

and

ck =
k∑

j=0

bj (k = 0, . . . , n− 2).

We note, in passing, that if we extended each of the summations above tok = n then, because
the sums of all theak and all of thebk are zero, we would havebn = 0 andcn = cn−1 = 0.
These features are apparent in the second and third examples below.
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Clearly, from (2.3) and (2.4) we have

(2.5)
n∑
0

akx
k = (1− x)2

n−2∑
0

ckx
k.

Now the identity (2.5) holds equally well in any commutative ring so we can replace the variable
x by E whereE is the numerical shift operator which acts on any sequence{uk}n

k=0 in Rn+1 as
follows:

E(uk) = uk+1 (k = 0, 1, 2, . . . , n− 1).

So (2.5) yields the operator identity
n∑
0

akE
k =

[
n−2∑

0

ckE
k

]
(E − 1)2.

Given a convex sequence{uk}, we allow each side of this to operate onu0 when we get
n∑
0

akuk =

[
n−2∑

0

ckE
k

]
(u2 − 2u1 + u0).

That is
n∑
0

akuk =
n−2∑

0

ck(uk+2 − 2uk+1 + uk).

Since the sequence{uk} is convex and theck are all non-negative we arrive at the result
n∑
0

akuk ≥ 0

and this completes the proof. �

3. EXAMPLES

The first example which presents itself is that discussed in the introduction. It is a simple
matter to check thatx = 1 is a root of the polynomial appearing on the left in (1.1) and of its
derivative. That it is precisely a double root follows by Descartes’ rule of signs. The coefficients
in (1.1) are palindromic, taking signs (plus, minus, plus) as we proceed from left to right and
by (2.3) their sum is zero. Hence the partial sumsbk take the signs (plus, minus) as we proceed
from left to right and by (2.4) their sum is also zero. From this it follows that all theck, which
are the partial sums of thebk, are non-negative. Hence, by the theorem stated above, (1.2)
follows from the properties of the polynomial in (1.1).

Note. We emphasize here that the theorem gives the sequence inequality, not from the polyno-
mial inequality, but from the properties of the polynomial itself. The polynomial inequality is
actually a special case of the sequence inequality. In the present example the inequality (1.1) is
a consequence of (1.2).

As a second example we give a new proof of an inequality which appears in [4] (see the
result 130 on p. 99 there). Changing the suffix notation there in an obvious way we consider
the polynomial

2n∑
0

akx
k,

where

ak =
1

n + 1
(k even) : ak = − 1

n
(k odd).
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Note. In this examplek runs from0 to 2n rather than from0 to n. We find that

bk =
1

n + 1
− 1

n
+

1

n + 1
− 1

n
+ · · · − 1

n
(k + 1 terms, ifk is odd)

and

bk =
1

n + 1
− 1

n
+

1

n + 1
− 1

n
+ · · ·+ 1

n + 1
(k + 1 terms, ifk is even).

It is now a simple matter to calculate theck when we find that

ck =
(2n− k − 1)(k + 1)

4n(n + 1)
(k odd) :

(2n− k)(k + 2)

4n(n + 1)
(k even).

so that all theck are non-negative. So by the theorem of the last section we deduce that
2n∑
0

akuk ≥ 0

when theuk are convex. This is the result referred to in [4].
As a final example we consider the polynomial

2 + 3x− 7x2 − 3x3 + 5x4.

This has1 as a double root and the partial sums of the coefficients are2, 5,−2,−5, 0 and the
partial sums of these are2, 7, 5, 0, 0 which are all non-negative and so if{uk} is a convex
sequence then

2uk + 3uk+1 + 5uk+4 ≥ 7uk+2 + 3uk+3.

Obviously this last example was contrived, starting from the result

5x4 − 3x3 − 7x2 + 3x + 2 = (x− 1)2(5x2 + 7x + 2),

but we included it because of its purely arithmetical nature.
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